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a sun-darkened, wizened-looking old man, supported by a dis-
traught young man, erratically walked and stumbled into the emer-
gency room (ER) of a small, semi-rural hospital. The old man’s clothes 
and heavy boots were well worn and covered in dirt. As he got closer 
to the desk, the admitting clerk could see his drowsy eyes staring off 
into the distance. The young man nervously explained that he had 
found his grandfather wandering around in the hills after he did not 
come home as expected. The grandson said that his grandfather was 
not speaking coherently, and he did not seem to know where he was. 
Upon further questioning, it was determined that the high price of 
gold had prompted the old man to start reworking his gold mining 
claim about 6 months ago, after years of inactivity.

When the doctor examined the man, he saw an intention tremor, 
an inability to perform rapid alternating movements (adiadochokine-
sis, a clinical manifestation of cerebellar dysfunction), and mild rigid-
ity. Hypertension and tachycardia also were present. The old man 
could not contribute to his medical history, but his grandson said that 
his grandfather had shaking hands for several months and recently 
had complained of headaches, fatigue, and a “pins and needles” feel-
ing in his arms and legs.

When asked to explain what his grandfather did at the mine and if 
he had been exposed to anything, the young man said that his grand-
father first mined the rock containing gold and then ground it up and 
mixed it with a silvery liquid until it formed a small ball (Figure 1). 
Then he heated the ball in a pan over a camp stove until just the gold 
was left. When asked where and how often this process was performed, 
the young man replied that when the weather was warm, the task was 
done outside almost every day, but since the weather was cold, his 
grandfather had moved the operation into the old mine shack.
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The ER doctor ordered standard blood and urine 
tests and urinary heavy metals. The urine sample 
revealed 748 µg mercury/l (normal range, 1 to 8 µg/l). 
The patient was given chelation therapy1 with dimer-
caprol and gradually recovered from most effects over 
the next 6 months.

This chapter will explore the neurotoxic aspects 
of selected environmental toxicants and endocrine 
disruptors, including persistent and semi-persistent 
organic pollutants, insecticides, and toxic metals.

Neurotoxicity

Neurotoxicity is the adverse change in the structure 
or function of the central or peripheral nervous sys-
tem. A neurotoxicant2 is an element or compound that 
elicits this adverse effect by direct or indirect action on 
one or more components of the adult nervous system 
or the developing nervous system in utero or during 
childhood. Indirect actions include effects mediated 
via other systems that are necessary for the develop-
ment or maintenance of nervous system function.

Neurotoxic effects may be transient or permanent 
and may manifest either immediately following expo-
sure or at some later time, even years after exposure. 

Individual neurotoxicants are found in many different 
chemical and product classes.

The mechanisms of neurotoxicity are far ranging 
but can be generalized into several broad classes: oxi-
dative stress, cell death (necrosis or apoptosis; see 
Chapter 8), disruption of signaling pathways, disrup-
tion of homeostatic mechanisms, interference in neu-
rotransmission, interference with synthesis or metabo-
lism of key cellular components and macromolecules, 
and disruption of the endocrine system. Additionally, 
for the developing nervous system, mechanisms may 
include disruption of morphogenic signals (i.e., sig-
nals that regulate the structural development of the 
brain); interference with the morphogenic roles of hor-
mones, neurotransmitters, and their receptors; and 
inappropriate stimulation of neuronal differentiation 
or apoptosis by various mechanisms. A diagram of 
brain development and the vulnerability of develop-
mental processes is shown in Figure 2.

Exposures to environmental neurotoxicants and 
endocrine disruptors occur via air, water, soil, and 
food. Although these agents may exert toxicity in 
other organ systems, the nervous system is differ-
ent because it is incompletely developed in children 
and neurogenesis is lacking in adults except for a few 
restricted brain areas; that is, in adults, destroyed neu-
rons are not replaced, and their absence potentially 
affects multiple functions and numerous interconnec-
tions between cells of the nervous system and those of 
other organs.

The risk for neurotoxicity, as for any form of toxic-
ity, is related to the intensity, frequency, and duration 
of exposure to the neurotoxic agent. Risk is also influ-
enced by the physical and chemical (physicochem-
ical) properties of the agent, the route of exposure, 

Figure 1 Amalgamation Often the 
gold is so small that it is not easily seen 
or removed by panning methods—a lot 
can just float away. Mercury captures 
the gold in an amalgam. Gold miners 
crush rock that contains gold; extract 
as much rock by washing it away, or 
if the gold is in mud, just wash away 
the mud and let the gold settle out or 
float in the water; combine the remains 
(gold dust or bits) with mercury to form 
a ball (combined mercury and gold), as 
shown in the figure; and then burn off 
the mercury leaving the gold behind.

1Chelation therapy is the administration of chelating agents. In 
the case of metals, it is the use of specific agents that will bind 
the metal at two or more sites (chelate) so that the metal will no 
longer react with biological molecules and will be eliminated 
from the body.
2The term neurotoxin is sometimes used in place of neurotoxi-
cant; however, neurotoxin is generally reserved for those toxic 
substances produced by a living organism, such as botulinum 
toxin (botulism).



the concentration achieved at the target site, and the 
inherent toxicity of the agent itself.

The young and the elderly are two potentially vul-
nerable populations with respect to the effects of neu-
rotoxicants. For the young, the central nervous system 
(CNS) develops over an extended period postnatally, 
and any neurotoxic insult can induce morphological, 
functional, and behavioral changes that may persist 
throughout life. For the elderly, the natural aging pro-
cess results in loss of nervous system plasticity and 
compensatory capacity.

Assessment of neurotoxicity in humans is based 
on clinical observations following exposure and 
the results of epidemiological studies specifically 
designed to investigate the association of exposure 
and neurotoxicity endpoints. Neuropsychological and 
behavioral testing performed in humans includes cog-
nitive testing batteries, psychiatric and symptom ques-
tionnaires, behavioral and neurophysiological tests, 
and neuroimaging (e.g., magnetic resonance imaging 
[MRI], positron emission tomography [PET], and sin-
gle-photon emission computed tomography [SPECT]; 

see Chapter 4). Additionally, blood and urine can be 
evaluated for neurochemicals, hormones, metabolites, 
and other biomarkers of interest.

Animal studies can raise questions of risk, help 
identify mechanisms of action, and explore the rela-
tionship of defined exposures (i.e., dose, route, and 
duration) to neurological endpoints. Several agencies 
throughout the world have developed guidelines for 
evaluating the potential neurotoxicity of agents in ani-
mal studies. The guidelines by the U.S. Environmental 
Protection Agency (EPA, 1998), as an example, give 
five categories of neurotoxicity evaluation:
1. Structural or neuropathological (e.g., morphologi-

cal endpoints, neurite outgrowth, myelination 
of peripheral and central nerves, integrity of the 
blood–brain barrier)

2. Neurophysiological (e.g., axonal transport, electro-
physiological indices, calcium homeostasis, hor-
mone concentrations)

3. Neurochemical
4. Behavioral/neurological3

5. Developmental

Any identified adverse changes could then be investi-
gated by appropriate means.
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Figure 2 The development of the brain is shown from the 
embryonic and fetal stages on the left, progressing to 24 
years of age on the right. The developmental processes 
and their duration are depicted in the center. Each process 
has its unique vulnerabilities to environmental insult. The 
bottom panel indicates that early alterations in normal pro-
cesses can have lasting effects on neural connectivity and 
patterning, but later insults may be more adaptive or com-
pensatory in nature. (After Andersen, 2003.)

3The functional observational battery (FOB) is the primary 
means of screening and comprises a number of aspects of 
behavior and neurological functions to identify specific deficits 
in sensory and motor function.
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Endocrine Disruptors

Endocrine disruption is just one of many mechanisms 
of action that can result in neurotoxicity. Endocrine 
disruptors (EDs), as the name implies, interfere with 
the endocrine system and may cause adverse effects 
in development or in the reproductive, nervous, or 
immune system. An ED is a natural or synthetic sub-
stance that directly or indirectly interrupts the action 
of the endocrine system by altering the synthesis, 
metabolism, regulation, or transport of one or more 
hormones; altering the release of hormone from an 
endocrine gland; or altering the normal hormonal 
response at the level of the hormone receptor.

The first evidence for the adverse effects of what 
would later be described as an ED was published in 
1971, when Herbst et al. (1971) reported that daugh-
ters born to women treated with diethylstilbestrol 
(DES) during pregnancy were diagnosed with uncom-
mon vaginal adenocarcinomas during their teens and 
early 20s. DES is a synthetic nonsteroid with potent 
estrogenic properties that was administered during 
pregnancy to reduce the risk of complications and 
miscarriages. The effects and mechanisms of DES-
induced endocrine disruption subsequently were 
investigated and confirmed in animal models. Since 
that time, there has been a growing awareness of the 
potential endocrine disrupting effects of environmen-
tal agents at low levels of exposure. In 2001, an expert 
panel for the U.S. National Toxicology Program (NTP) 
reported that there was sufficient evidence to support 
the endocrine disruption effects of DES, genistein (an 
isoflavone derived from soy inhibits thyroid hormone 
metabolism), methoxychlor (an insecticide that has 
estrogenic activity), and nonylphenol (an industrial 
chemical identified in drinking water supplies that has 
estrogenic activity) at low dose exposures (NTP, 2001). 
None of the recognized effects was directly related to 
the nervous system, and the only potential indirect 
effect was on brain sexual dimorphism by genistein 
and nonylphenol.

Endocrine disruptors can interfere at any level of 
the endocrine system, causing perturbations in nor-
mal function and homeostasis. For instance, EDs may 
mimic a natural hormone and bind to cellular recep-
tors in the membrane, cytosol, or nucleus (see Chap-
ter 3). As a mimic (or agonist), the ED can elicit the 
same response as the natural hormone, although the 
response may be different in magnitude. EDs can also 
act as antagonists and bind to a receptor without elicit-
ing a response and prevent the binding of the endoge-
nous hormone. Alternatively, EDs can bind and elicit a 
nontypical response. EDs also can have effects that are 
not dependent on hormone receptor binding. EDs can 
directly or indirectly interfere with normal hormone 

synthesis, metabolism, uptake, or release, thus affect-
ing the availability of hormone.

The effects of hormones and EDs are dose depen-
dent, and physiological concentrations can produce 
different effects than are produced by high or systemi-
cally toxic concentrations. Examples of dose-specific 
effects include signaling via a single steroid receptor at 
low doses versus signaling via multiple receptors due 
to nonselectivity at high doses, up-regulation at low 
doses versus receptor down-regulation at high doses, 
and high-dose cytotoxicity (toxicity to cells). The sensi-
tivity of different organ systems to ED effects also can 
be related to differences in tissue receptor distribu-
tion and tissue specificity of endocrine-transcriptional 
elements.

As awareness of the effects of endocrine disruption 
grew, it was evident that endocrine disruption could 
also be responsible for perturbations in the nervous 
system resulting in neurological and neurobehavior-
al deficits. This chapter will focus on ED effects that 
potentially impact the nervous system.

The connection between the nervous and endocrine 
systems is complex and manifold. The nervous system 
is intimately involved in the actions of the endocrine 
system and vice versa, so much so that the term neuro-
endocrine system has been assigned to the interactions 
of the nervous and endocrine systems. As was previ-
ously mentioned in Chapter 3, the endocrine system 
consists of the following glands: pineal, hypothala-
mus, pituitary, thyroid, parathyroids, thymus, adre-
nals, pancreas, and ovaries in females, and testes in 
males. All endocrine glands act by secretion of a hor-
mone into the bloodstream. That hormone then regu-
lates some body system, which may be close in prox-
imity or at some distance from the secreting gland.

One often thinks of hormones as steroids, but hor-
mones also include amines (amino acid derivatives), 
polypeptides, and glycoproteins (proteins that contain 
one or more sugar molecules as part of their struc-
ture). Neurons can synthesize and release polypep-
tides that act as hormones and affect release of other 
hormones or hormone actions at target organs. An 
example is gonadotropin-releasing hormone (GnRH) a 
decapeptide from the basal hypothalamus that stimu-
lates gonadotropin release from the anterior pituitary 
gland. If the synthesis or release of this hormone is 
altered, then downstream effects related to ovarian 
and testicular steroidogenesis (steroid hormone syn-
thesis) and gametogenesis (formation of the gametes, 
namely, eggs and sperm) are also affected. Just as 
important as the hormones are the receptors for those 
hormones found throughout the body, including the 
CNS, where neurons of the noradrenergic, serotoner-
gic, and dopaminergic systems express steroid hor-
mone receptors.
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The central neuroendocrine system is primarily 
responsible for the neural modulation of endocrine 
function near the brain, and it consists of interaction 
of the nervous and endocrine systems at the level 
of the hypothalamus and the posterior and anterior 
pituitary, as shown in Figure 3. Neural–endocrine 
interactions outside the area of the brain are often 
referred to as the diffuse neuroendocrine system. The 
central and diffuse neuroendocrine systems control 
diverse functions such as reproduction, metabolic 
energy balance, osmoregulation, and other homeo-
static processes.

The neuroendocrine actions of EDs also may occur 
via non-hormonally mediated mechanisms. Numer-
ous neurotransmitter systems such as dopamine 
(DA), norepinephrine (NE), serotonin (5-HT), glu-
tamate, and others are sensitive to endocrine dis-
ruption via many mechanisms. The effects in these 
systems help to explain how EDs can negatively 
influence cognition, learning, memory, and other 
nonreproductive behaviors.

A majority of studies published on potential EDs 
are related to the hypothalamic–pituitary–gonadal 
(HPG) axis and the hypothalamic–pituitary–thyroid 
(HPT) axis. The brief discussion here is limited to these 
two systems, but the principles of interaction apply for 
other components of the neuroendocrine system.

Hypothalamic–Pituitary–Gonadal  
(HPG) System

The hypothalamus controls reproductive function 
through complex interactions with the anterior pitu-
itary. Endocrine disruptors can interfere with function 
in the adult and alter normal reproductive function. 
EDs can also have long-lasting effects on the devel-
oping organism. The regions of the hypothalamus 
that control the reproductive neuroendocrine systems 
undergo development during specific periods. That 
development is controlled in large part through expo-
sure to endogenous estrogen and androgen hormones. 
Exogenous hormones may perturb steroidal actions by 
binding to steroid receptors, changing steroid metabo-
lism, or altering normal sexual dimorphism. Disrup-
tion of normal brain sexual differentiation may affect 
both reproductive physiology and behavior later in 
life. For example, developmental exposures have been 
shown to affect mate preference behavior in rats that is 
passed on to subsequent generations through epigen-
etic modification of specific genes (Crews et al., 2007).

Hypothalamic–Pituitary–Thyroid (HPT) System

As mentioned previously, hormones released from 
the hypothalamus interact with the anterior pituitary. 
Thyrotropin-releasing hormone (TRH) is released 
from the hypothalamus and interacts in the anterior 
pituitary, where it causes release of thyrotropin, also 
known as thyroid-stimulating hormone (TSH). TSH, 
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Figure 3 Neuroendocrine interactions at the hypothala-
mus and posterior and anterior pituitary (A) Neurons 
in the hypothalamus produce oxytocin and vasopressin. 
Action potentials travel down the axons to the axon ter-
minals in the posterior pituitary where the hormones are 
released. (B) Neurohormones, known as releasing fac-
tors or hormones, are produced by and released from the 
hypothalamus. Hypothalamic hormones such as thyro-
tropin-releasing hormone (TRH), gonadotropin-releasing 
hormone (GnRH), growth hormone-releasing hormone 
(GHRH), and corticotrophin-releasing hormone (CRH), 
cause their corresponding hormones that are produced in 
the anterior lobe of the pituitary (throid-stimulating hor-
mone [TSH], follicle-stimulating hormone [FSH], lutenizing 
hormone [LH], prolactin [PRL], growth hormone [GH], and 
adrenocorticotropic hormone [ACTH]) to be released into 
the circulation.  (From Purves et al., 1998.)
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as shown in Figure 4, stimulates the release of thyroid 
hormones (TH) (thyroxine [T4] and triiodothyronine 
[T3]). Under normal circumstances, the accumulation 
of TH will trigger a negative feedback response at the 
level of the anterior pituitary and inhibit TRH release 
and thus the downstream release of TH.

A complex neural circuitry in the hypothalamus 
regulates energy and metabolic homeostasis. Chang-
es in thyroid gland function or interference with 
TH distribution or action may produce effects on 

development, metabolism, or adult physiology. The 
function of the thyroid can be impacted directly or 
indirectly at different points of TH synthesis, release, 
transport, metabolism, and clearance. In addition, 
alterations in uptake of iodide (I–) and disruption of 
the sodium/iodide co-transporter (NIS)4 can affect 
thyroid hormone levels. Figure 5 gives one an idea of 
the complexity of the HPT system and the multiple 
points at which an environmental neurotoxicant may 
interfere with normal TH synthesis.
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Figure 5 The HPT axis and the potential target 
sites where environmental neurotoxicants 
may interfere with thyroid function The 
effects of interaction at any particular site will 
depend on the stage of development, the 
general physical health of the individual, and 
the dose at the target and the duration of 
exposure. NIS, sodium/iodide co-transporter; 
THR, thyroid hormone receptor; TPO, thyroid 
peroxidase; TSH, thryoid-stimulating hormone. 
(After Gilbert et al., 2012.)

4This cotransporter is also known as the Na+/I– symporter 
(NIS). NIS is a transmembranal protein that transports I– along 
with Na+ into follicular cells of the thyroid gland. I– uptake is 
the first step in TH synthesis (Dohan et al., 2003).
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Once TH is secreted into the blood, its availability 
to cells can be affected by accessibility of specific carri-
ers or binding proteins in the blood and by cell-specific 
transporters that control TH uptake into various tis-
sues and cells. Inside the cell, T4 is converted to T3 by 
deiodinases (enzymes that remove iodine), which is an 
important step in TH action. There are several deiodin-
ases present in tissues as shown in Figure 6. A number 
of environmental chemicals are known to affect deio-
dinase activity and produce symptoms and hormone 
levels that are not entirely consistent with hypothyroid-
ism. In these cases, mechanistic studies are required to 
identify the etiology.

TH is known to play an essential role in normal 
brain development, and experimental hypothyroid-
ism is associated with numerous neuroanatomical and 
behavioral effects, including deficits in learning and 
habituation, changes in anxiety, and hyperactivity in 
rats (Negishi et al., 2005; Zoeller and Crofton, 2005). 

Figure 7 shows how TH mimetics might induce hyper-
thyroidism in some tissues while inducing hypothy-
roidism in others. The results are dependent on the 
distribution of tissues that can and cannot efficiently 
take up the TH mimetic.

The interested reader is invited to examine The 
Endocrine Society’s Scientific Statement, which reviews 
studies of EDs and their mechanisms of action (Dia-
manti-Kandarakis et al., 2009) and two recent reviews 
published by Parent et al. (2011) and Vandenberg et 
al. (2012).

Section Summary

• Neurotoxicity is the adverse change in the struc-
ture or function of the nervous system.

• A neurotoxicant is an element or compound 
(agent) that elicits neurotoxicity via direct or indi-
rect actions on the mature or developing nervous 
system.
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of TH (T4 and T3) The major deiodinases 
are not only involved in the synthesis of 
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Figure 7 The influence of thyroid 
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2009.)
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• Neurotoxicity is dependent on the agent, the expo-
sure (dose, frequency, and duration), the route of 
exposure, the concentration at the target site, and 
the status of the nervous system (e.g., developing, 
mature, senescent).

• The mechanisms of neurotoxicity are numerous, 
including cell death, disruption of signaling path-
ways, and endocrine disruption, to name a few.

Persistent and Semi-
Persistent Organic Pollutants

Persistent organic pollutants (POPs) are synthetic 
organic compounds that are resistant to environmen-
tal degradation through chemical, biological, and pho-
tolytic processes. The POPs are ubiquitous and per-
sistent because of their physicochemical properties, 
which include low water solubility, high lipid solu-
bility, semi-volatility, and relatively high molecular 
masses. POPs with molecular masses lower than 236 
g/mole are less persistent in the environment (Ritter 

et al., 1995). These pollutants are of concern because 
their persistence and lipid solubility result in bioac-
cumulation in fatty tissues and bioconcentration up 
the food chain. Figure 8 depicts how POPs move in the 
environment, bioconcentrate in the aquatic food chain, 
and ultimately end up being consumed by humans 
and animals that eat fish or the animals that feed on 
fish. In addition to the aquatic cycles, animals bioac-
cumulate POPs by feeding on contaminated plants.

In May 1995, the United Nations Environment 
Programme Governing Council began investigating 
12 priority POPs known as the “dirty dozen”: aldrin, 
chlordane, DDT, dieldrin, endrin, heptachlor, hexa-
chlorobenzene, mirex, polychlorinated biphenyls 
(PCBs), polychlorinated dibenzo-ρ-dioxins (PCDDs), 

Meyer/Quenzer
Psychopharmacology 2/e, Sinauer Associates
Precision Graphics
MQ2e 17.08      Date 01-15-13

Migration
through
groundwater

Food chain

Sediment resuspension

Urban runoff

Industrial runoff

Atmospheric deposition

Exchange  with
atmosphere

Agriculture runoff

Figure 8 The distribution and accumulation of POPs 
in the environment and the food chain POPs enter the 
environment through atmospheric deposition and various 
types of runoff. Additionally, POPs deposited on land can 
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polychlorinated dibenzofurans (PCDFs), and toxa-
phene (WHO, 2010). The list has been informally 
enlarged to include other organic pollutants, some-
times referred to as semi-persistent organic pollutants 
(semi-POPs), such as bisphenol A (BPA), polycyclic 
aromatic hydrocarbons (PAHs), phthalates, and poly-
brominated diphenyl ethers (PBDEs), to name a few.

In the following sections, PCBs are discussed as an 
example of POPs, and PBDEs and BPA as examples of 
semi-POPs.

Polychlorinated Biphenyls (PCBs)

Polychlorinated biphenyls (PCBs) are synthetic 
chlorinated aromatic compounds that were used in 
industrial and consumer products such as dielectrical 
fluids in capacitors and transformers, hydraulic flu-
ids, and lubricating oils, and in plasticizers. Although 
PCB production was banned in the late 1970s, they 
persist as environmental contaminants worldwide. 
There are 209 PCB congeners (chemicals synthesized 
by the same synthetic chemical reactions and proce-
dures) containing from 1 to 10 chlorines (although 
technically not polychlorinated, the monochlorinated 
compounds are usually included in the discussion 
of PCBs) with corresponding molecular weights of 
188.7 to 498.7 g/mole. The general structure of PCBs 
is shown in Figure 9.

The general population is exposed to PCBs primar-
ily through ingestion of contaminated foods (e.g., fish, 
meat, dairy products). The fetus is exposed via placen-
tal transfer, and the infant via breast milk. Measurable 
levels of PCBs are found in the serum of a majority 
of the U.S. population (CDC, 2009, 2012a). Although 
individual congeners are present at low concentra-
tions in human tissue, it is not unusual to be exposed 
simultaneously to a number of congeners with similar 
physicochemical properties because they migrate and 
bioaccumulate in similar manners. The longest half-
lives for PCBs in humans are estimated to be 10 to 15 
years (Ritter et al., 2011). Reports of longer half-lives 
have been attributed to ongoing exposure and weight 
gain (increased adipose tissue stores) with age.

There are two distinct categories of PCBs, referred 
to as coplanar and non-coplanar congeners. Coplanar 
molecules have a fairly rigid structure that potentially 

allows them to bind at the aryl hydrocarbon recep-
tor (AhR)5 and gives them a different toxicity profile 
than the non-coplanar congeners that do not bind at 
the AhR. As could be expected, classes of congeners 
with a similar mechanism of action are likely to act 
additively to produce effects. Although some studies 
have addressed specific PCB congeners, as opposed to 
mixtures, understanding the neurotoxicity of PCBs is 
hampered by the fact that many congeners have not 
been studied, and their potency as neurotoxicants is 
unknown. Overall, evidence for neurotoxicity of the 
PCBs is growing. No regulatory guidance for PCBs 
based on neurotoxicity, however, has been established 
by the EPA. Goodman et al. (2011) suggest that insuf-
ficient evidence from epidemiological studies, due to a 
lack of comparability across studies, make it impossi-
ble to establish a strong assessment based on a weight 
of evidence approach.

Neurotoxicity in adults

No reports of acute poisoning solely with PCBs 
have been identified. A variety of symptoms such as 
chloracne (an acne-like condition produced by some 
halogenated compounds), hyperkeratosis (abnormal 
thickening of the skin), goiter, pigmentation, abnor-
mal nails, hearing loss, eye disorders, and jaundice 
are attributed to chronic PCB poisoning; however, 
there are no reports of PCB poisoning in the absence 
of other potential contaminants. In 1968 and 1979, 
there were mass poisonings via PCB-contaminated 
rice oil in Japan and Taiwan, respectively (Guo et al., 
1999; Masuda, 2003). Clinical signs of toxicity were 
observed in thousands of people. Neurological studies 
performed in a subset of the Taiwan victims revealed 
electrophysiological sensory and motor neuropathies 
at 2 and 4 years post-exposure (Chia and Chu, 1985). 
In both the Japan and Taiwan incidents, the PCBs 
were co-contaminated with PCDDs and PCDFs, so it 
is impossible to know the contributions of these toxic 
compounds to the observed effects (WHO, 2010).

A more recent study of adults exposed chronically 
to PCBs via consumption of fish from the Great Lakes 
showed impaired memory and learning, but no effects 
on executive functioning (e.g., cognitive flexibility 
[or set shifting], response inhibition, working mem-
ory, attention, planning) and visuospatial function 
(Schantz et al., 2001). Other contaminants identified 

5The AhR is a member of a family of transcription factors. The 
endogenous biomolecule that binds to this receptor is unknown. 
The receptor, however, is known to bind a variety of cyclical 
(ring-containing) exogenous molecules, some of which are natu-
rally occurring, and others of which are generated by human 
activity (e.g., synthetic compounds like PCBs or compounds 
produced by combustion of fossil fuels).
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from blood samples (i.e., lead, mercury, and dichloro-
diphenyldichloroethylene [DDE]) were not associated 
with impairments. The authors were careful to state 
that their “study suggests … that PCB exposure dur-
ing adulthood may be associated with impairments 
in certain aspects of memory and learning,” and “it 
would be prudent to interpret the findings with cau-
tion until they have been replicated in an independent 
exposure cohort.”

Neurotoxicity in children and the developing 
nervous system

The poisonings in Japan and Taiwan also raised 
awareness about the developmental toxicity of PCBs 
because the individuals most affected were children 
who had been exposed in utero. These children exhib-
ited delayed cognitive development and behavioral 
problems, in addition to growth retardation (Guo et 
al., 2004). Further attention was drawn to this issue 
by studies of Jacobson and colleagues in the 1980s 
and 1990s that examined children from infancy to late 
childhood who had been exposed prenatally to PCBs 
through maternal fish consumption. They reported 
associations between higher PCB exposures and dec-
rements in behavioral endpoints, such as decreased 
activity and hypotonic motor reflexes, and IQ. Volu-
minous research has been performed on PCB expo-
sures and neurobehavioral endpoints; however, the 
findings have not been as consistent as one would 
hope. Several reviews have been written on one or 
more aspects of neuropsychological function follow-
ing prenatal PCB exposure, and the interested reader 
is referred to those articles for additional information 
(Boucher et al., 2009; Schantz et al., 2003; Stewart et al., 
2012). The following discussion gives a summary of 
the overall findings and controversies.

In an effort to identify a profile of cognitive effects 
from prenatal PCB exposure, Boucher et al. (2009) 
reviewed studies of nine prospective longitudinal 
birth cohorts from Canada, the Faroe Islands, Ger-
many, Japan, the Netherlands, and the United States 
that examined prenatal PCB exposure and aspects of 
cognition in children. They identified the most consis-
tently reported effect as impaired executive function-
ing. The authors also identified negative effects on 
processing speed, verbal abilities, and visual recog-
nition memory in most of the studies. These effects 
appeared to be independent of sensory and motor 
functions.

Inconsistent results among epidemiological stud-
ies of PCBs and IQ have been interpreted by some as 
suggesting that, at most, a case could be made for sub-
tle effects at low-level exposure. Stewart et al. (2012) 
hypothesized that confounding due to the presence 

of non-PCB organochlorines such as DDE, hexachlo-
robenzene (HCB), and Mirex;6 differences in maternal 
age, environmental factors, and parental IQ (leading 
to type I statistical error); and the presence of potential 
suppressor variables (leading to type II errors) could 
explain the lack of association between PCB exposure 
and IQ decrements in some studies. Their examina-
tion of the effects of confounding supported their 
hypothesis that IQ decreased but had been obscured. 
Additional studies with appropriate controls will be 
needed to lay the question to rest.

Studies of PCBs also are complicated by contami-
nants such as PCDDs and PCDFs. Measurement of 
PCDDs and PCDFs in epidemiologic studies has been 
rare because of analytical difficulties. In the Dutch 
PCB/PCDD study, however, lactational exposure to 
dioxin (a PCDD) was not associated with child cogni-
tive abilities at 42 months of age (Patandin et al., 1999), 
suggesting that any observed effects were attribut-
able to PCBs. Similarly, a German birth cohort study 
of PCDDs and PCDFs did not find an association with 
mental and psychomotor developmental indexes at 12 
and 24 months of age (Wilhelm et al., 2008).

Developmental animal studies are supportive of the 
neurotoxic effects of PCBs. These studies have shown 
behavioral deficits across many different tests of exec-
utive function, including cognitive flexibility, working 
memory, and inhibitory control (Sable and Schantz, 
2006). Animal PCB studies also have shown that 
altered motor behavior was associated with changes 
in cerebellar function and anatomy.

More recently, the question has been raised as to 
whether PCB exposure could be linked to the increased 
prevalence of attention deficit hyperactivity disorder 
(ADHD) (Eubig et al., 2010), although no human stud-
ies have directly assessed the association of ADHD 
with PCB exposure. Aspects of both executive func-
tioning and attention are impaired in ADHD and with 
PCB exposure, which suggests a possible association. 
ADHD is a highly heritable disorder, however, and 
until human studies appropriately examine this con-
founder, the causal association of PCB exposure and 
ADHD is only speculation (Brondum, 2011).

Mechanisms of action

The mechanisms for the neurotoxic effects of PCBs are 
neither well known nor uniform across the 209 con-
geners. From the animal studies that have been con-
ducted on individual congeners and congener mixes, 
the effects observed point to mechanisms related to 

6Cohorts from the Great Lakes (Michigan and New York) 
showed the association of IQ with quartiles of PCBs and quar-
tiles of HCB, both of which were similar in predicting IQ.



Environmental Neurotoxicants and Endocrine Disruptors   11

ED for some and to direct toxic action for others, while 
still other congeners and mixtures point to both mech-
anisms of action. Effects are seen with direct estrogen-
ic or antiandrogenic activity, interaction at the AhR, 
interference with one or more aspects of thyroid func-
tion, and interference with neurotransmitter effects.

In rats, PCB congeners can affect the HPT axis in 
several ways, including causing a reduction in circu-
lating levels of T4 or inhibiting the TSH response to 
thyrotropin-releasing hormone. From the available evi-
dence, it appears that PCBs may exert different actions 
on thyroid function, depending on many factors.

PCBs also cause cell death, although mechanisms 
vary between congeners. Coplanar PCBs act through 
the AhR to induce cell death, while non-coplanar 
PCBs act through alteration of intracellular secondary 
messengers, alteration of cell membranes, or inhibition 
of DA synthesis.

Other potential mechanisms of action are interfer-
ence in calcium homeostasis (affecting many calci-
um-dependent systems, including neurotransmitter 
release); inhibition of the DA transporter (responsible 
for reuptake of DA into the neuron) and the vesicu-
lar monoamine transporter (VMAT2) (responsible for 
packaging cytosolic DA into vesicles for later release); 
oxidative stress and production of reactive oxygen 
species (ROS); and alteration in long-term potentiation 
(LTP) (controlled by intracellular second messengers).

Polybrominated Diphenyl Ethers 
(PBDEs)

Polybrominated diphenyl ethers (PBDEs) are organo-
bromine compounds that are used as flame retardants 
in products such as plastics, polyurethane foams, and 
electronics. PBDEs resemble PCBs in molecular struc-
ture and also have 209 possible congeners, contain-
ing from 1 to 10 bromines (although technically not 
polybrominated, the monobrominated compounds 
are usually included in the discussion on PBDEs ) with 
corresponding molecular weights of 249.1 to 959.2 g/
mole. See the structure of PBDEs in Figure 10 and note 
the similarity to the PCBs.

PBDEs were commercially marketed as one of 
three mixtures: pentabrominated BDE (pentaBDE), 
octabrominated BDE (octaBDE), and decabrominated 
BDE (decaBDE) (ATDSR, 2004). PentaBDE, which was 
primarily used in North America, and octaBDE have 
been banned in the European Union (EU) and in sev-
eral states in the United States. In 2004, the production 
of pentaBDE and octaBDE in the United States ceased 
voluntarily. Globally, decaBDE is the most widely 
used PBDE and is still produced in the United States 
and Europe. It must be remembered that all PBDE 

products are mixtures of congeners, not just a single 
congener.

Similar to PCBs, the PDBEs are lipophilic and bio-
accumulate in the food chain (ATDSR, 2004). PBDEs 
have been detected in the air, sediments, soil, house 
dust, some foods, and many animal species. The 
general population is exposed to PBDEs primarily 
through diet and house dust. PBDEs have been detect-
ed in human tissues, blood, and breast milk. Five con-
geners of the tetra-, penta-, and hexaBDEs (congeners 
BDE-47, -99, -100, -153, -154) usually account for 90% 
of the total body burden (ATDSR, 2004; McDonald, 
2005). Concentrations of PBDEs (primarily lower bro-
minated congeners) are particularly high in breast 
milk (ATSDR, 2004). Estimated exposure of an infant 
through breast milk is about 0.3 µg/kg-day, with a 
range up to 4.1 µg/kg-day (Jones-Otazo et al., 2005). 
These levels are within the current reference doses 
(RfDs; estimates of the daily oral exposure of humans, 
including sensitive subgroups, which are not likely to 
cause harmful effects over a lifetime of exposure) of 
most PBDEs as set by the EPA (2008a-d).

Extremely high PBDE levels in humans also have 
been reported: maternal and fetal blood plasma con-
centrations as high as 580 and 460 ηg/g lipid, respec-
tively (ATDSR, 2004), and a toddler with plasma lev-
els of 418 ηg/g lipid (651 ηg/g if including BDE-209) 
(Costa and Giordano, 2007). These levels are nearly 
ten-fold that reported for the general U.S. population 
(Sjodin et al., 2008).

In rodents, the total body half-lives of all PBDEs 
are in the order of several days to several months; 
decaBDE is cleared most rapidly, with a half-life of 
less than 24 hours (ATDSR, 2004). The half-lives in 
humans are estimated to be several years for the lower 
brominated congeners, and days to months for the 
octa- to decaBDEs.

Neurotoxicity in adults

No reports were identified regarding PBDE neuro-
toxicity in adults. In contrast to the large database on 
PBDE body burden, there is almost no information 
on possible adverse health effects in humans from 
PBDE exposure. In rodents, PBDEs have low acute 
toxicity with oral LD50s (lethal dose in 50% of animals) 
in animals greater than 5 g/kg (ATSDR, 2004). With 
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chronic exposure, the target organs are liver, kidney, 
and thyroid gland. Toxicological profiles appear to 
be similar among congeners. The lesser potency of 
decaBDE compared with the lower brominated conge-
ners appears to be related to differences in lipophilic-
ity and bioaccumulation.

Neurotoxicity in children and the developing 
nervous system

Similar to adults, there is essentially no information 
on the neurotoxic effects of PBDEs in infants or chil-
dren with acute or chronic exposure. There has been 
concern, however, regarding potential developmental 
neurotoxicity of PBDEs in humans (Costa and Gio-
dano, 2007; McDonald, 2005). This concern arises from 
the following:

• PBDEs are known to cross the placenta and have 
been detected in fetal blood and liver.

• Developmental neurotoxicity has been reported 
following prenatal and early postnatal exposure of 
rodents to one or more PDBE congeners.

• Neurochemical changes are observed following 
developmental exposure of rodents to PBDEs.

• PBDEs affect TH homeostasis.

• PBDEs are excreted in milk.

• Infants and toddlers have the highest body burden 
of PBDEs because of exposure via maternal milk 
and house dust.

• Levels of PBDEs causing developmental neurotox-
icity in animals are similar to those found in highly 
exposed infants and toddlers.

• Young animals have higher tissue concentrations 
than adults and may have a reduced ability to 
excrete PBDEs.

The daily intake of PBDEs for breast-fed infants, 
estimated at 20.6 ηg/kg-day in Taiwan, was correlated 
with lower birth weight and length, lower head and 
chest circumference, and decreased body mass index 
(Chao et al., 2007). Much higher infant PBDE exposure 
levels, however, have been estimated for Canada and 
the United States at 280 ηg/kg-day and 306 ηg/kg-
day, respectively (Jones-Otazo et al., 2005; Schecter 
et al., 2006), which raises the question as to possibly 
greater effects in these populations.

Two epidemiological studies have shown significant 
effects following PDBE prenatal exposure. A longitu-
dinal cohort study in New York of prenatal exposure 
to several PBDE congeners assessed neurodevelop-
mental effects at 12 to 48 months of age (Herbstman 
et al., 2010). Children with the highest exposure lev-
els of three congeners (BDE-47, -99, and -100) scored 

lower on mental and physical developmental tests. 
Some associations were statistically significant for 
12-month Psychomotor Development Index (PDI) 
(BDE-47), 24-month Mental Development Index (MDI) 
(BDE-47, -99, and -100), 36-month MDI (BDE-100), 
48-month full-scale and verbal IQ (BDE-47, -99, and 
-100), 36-month MDI (BDE-100), and 72-month perfor-
mance IQ (BDE-100). A prospective cohort study in the 
Netherlands examined the association between neuro-
psychological functioning at 5 to 6 years and maternal 
blood organohalogens measured at 35 weeks of preg-
nancy (Roze et al., 2009). In this study, PBDEs correlat-
ed with worse fine manipulative abilities and attention, 
but with better visual perception and behavior.

Both short-term exposure of animals during the 
perinatal period and exposures throughout gestation 
to weaning commonly have resulted in alterations in 
motor activity and impaired learning and memory, 
with hyperactivity being most consistent (Driscoll et 
al., 2012). There is a question, however, of whether 
hyperactivity is permanent or only transient. One 
study suggests that BDE-209 reduces LTP and affects 
synaptic plasticity (Xing et al., 2009).

Table 1 shows the EPA RfDs for four BDE conge-
ners. Note that the RfD for BDE-209 (the chlorine-
saturated congener) is the greatest, which reflects its 
relatively lower toxicity. Confidence in the RfDs for 
all of these congeners, however, was listed as “low,” 
reflecting the lack of human data and an inconsistency 
in animal data. To put these RfDs in perspective, the 
PBDE no observed effect levels (NOELs), determined 
in animal studies that examined either developmental 
neurotoxicity or TH changes, range from 140 to 1000 
µg/kg-day (McDonald, 2005).

Mechanisms of action

Various animal studies of adult or prenatal and post-
natal PBDE exposures have shown perturbation of the 
thyroid system and TH disruption, mostly reduced 
circulating levels of T4 or T3 (Costa and Giodano, 

TABLE 1 EPA-Derived Chronic Oral RfDs for 
Single PBDE Congenersa

Congener Number of chlorines RfDb

BDE-47   4   100

BDE-99   5   100

BDE-153   6   200

BDE-10 10 7000

Source: EPA, 2008a–d.
aBased on developmental neurotoxicity in animals.
bExpressed in ηg/kg-day.
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2007). The mechanism for this effect has not been 
elucidated. In a study of adult rats, a decrease in 
circulating T4 was found at 421 µg BDE-47/g lipid 
(Darnerud et al., 2007), which is about three orders 
of magnitude higher than levels measured in highly 
exposed humans. Although it has been proposed that 
PBDEs bind to the TH receptor (THR) because of their 
structural similarity to T4, in vitro studies have not 
revealed high affinity of PBDEs for the THR.

Human studies are still needed to confirm the 
potential effects on the TH system because rats and 
mice appear particularly sensitive (Herbstman et al., 
2008). A recent epidemiologic study of PBDEs sug-
gested a slight decrease of TSH in exposed pregnant 
women (Chevrier et al., 2010), but another study of 
electronic-waste recycling workers revealed higher 
TSH levels than in controls (Yuan et al., 2008). A study 
comparing maternal and fetal blood PBDE levels 
found no correlation with serum T4 concentrations 
(Mazdai et al., 2003). Clearly, well-designed studies 
investigating the relationship between body burden of 
PBDEs and child development are needed to validate 
the animal findings.

Additional mechanisms for PBDE-induced neu-
rotoxicity are alterations in signal transduction path-
ways; induction of oxidative stress; interactions as 
antagonists or agonists at androgen, progesterone, 
and estrogen receptors;7 induction of mixed-function 
monoxygenases (a family of enzymes that participate 
in many biochemical reactions); and inhibition of cyto-
chrome P450 17 (CYP17), a key enzyme in the synthe-
sis of testosterone (Canton et al., 2006).

Bisphenol A (BPA)

Bisphenyl A (BPA; 4,4-isopropylidenediphenol) is a 
synthetic monomer that is one of the highest produc-
tion synthetic compounds worldwide. It is a semi-per-
sistent organic pollutant (molecular weight, 228.3 g/
mole) that is used primarily in the production of plas-
tics, including polycarbonate plastics and epoxy res-
ins. These materials are found in toys, compact disks, 
paints, food and beverage containers, dental sealants, 
and flooring (NTP, 2008). The chemical structure of 
BPA is shown in Figure 11.

The primary source of exposure for the general 
population is through food and water. It has been esti-
mated that human consumption of BPA from epoxy-
lined food cans alone is over 6 µg/person-day (Chapin 

et al., 2008). The neonate is exposed to BPA through 
infant formula, maternal milk, or canned food. Con-
centrations in the range of 1 to 10 ηg/ml have been 
reported in the serum of pregnant women, fetal amni-
otic fluid, and cord serum collected at birth (Diamanti-
Kandarakis et al., 2009).

BPA is quickly absorbed from the gastrointestinal 
(GI) tract following oral exposure. Little free BPA, the 
biologically active form, remains following metabo-
lism in the liver to BPA-glucuronide, the primary 
metabolite of BPA (NTP, 2008). The half-life of the 
glucuronide, which is excreted in the urine, is less than 
6 hours.

Data from the 2005–2006 National Health and 
Nutrition Examination Survey (NHANES) data-
base for the U.S. population reported the daily 
intake of BPA at the 95th percentile to be 195.8 ηg/
kg for women and 237.9 ηg/kg for men (LaKind 
and Naimon, 2011), which corresponds to 11.7 µg/
day for a 60-kg (132 pound) woman and 16.7 µg/day 
for a 70-kg (154 pound) man. The Centers for Disease 
Control and Prevention (CDC) reported that of 2517 
Americans aged 6 years and older surveyed in 2003–
2004, 92.6% had detectable BPA (including metabo-
lites) in their urine (Calafat et al., 2008). Similarly, a 
Canadian study found that 91% of people 6 to 70 years 
of age had detectable levels of BPA (Bushnik et al., 
2010). There were no reports of acute or chronic toxic-
ity identified in human adults.

Neurotoxicity in children and the developing 
nervous system

The effect of BPA in humans with regard to devel-
opmental neurotoxicity is an area of intense debate 
because of the inconsistencies in published findings 
(Braun et al., 2009). One U.S. prospective birth cohort 
study of infants assessed at 5 weeks of age did not 
identify any significant associations between neurobe-
havior and maternal urinary BPA measured at about 
16 and 26 weeks of gestation (Yolton et al., 2011). 
However, investigators did report a trend toward 
hypotonia (decreased muscle tone) associated with 
BPA exposure at 16 weeks of gestation. In another 
study of prenatal BPA exposure in which maternal 
urinary BPA also was measured at about 16 to 26 
weeks of pregnancy and at birth, the BPA levels were 

7Most PBDEs have antiandrogenic activity; tetra- to hexaBDEs 
have potent estrogenic activity in vitro; heptaBDE and 6-OH-
BDE-47, a metabolite of BDE-47, have antiestrogenic activity 
(Hamers et al., 2006; Meerts et al., 2001).
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associated with externalizing behaviors (e.g., hyperac-
tivity and aggression) that were stronger for females 
than males at 2 years of age (Braun et al., 2009). At the 
95th percentile, the mean maternal urinary BPA values 
across the sampling period were 7.8 and 8.0 µg BPA/g 
creatinine for male and female offspring, respectively. 
A case report arising from the same study population 
noted a woman with a urinary BPA concentration of 
583 µg/g creatinine at 27 weeks of pregnancy (cohort 
mean was 2.0 µg/g) and 1.9 µg/g at parturition (Sath-
yanarayana et al., 2011). Her infant male was normal 
at birth but presented with neurobehavioral abnor-
malities at 1 month. The etiology is unclear because 
the child was normal at birth and at annual evalua-
tions performed from 1 to 5 years of age.

Animal studies have shown an association between 
prenatal and early postnatal exposure to very low 
BPA doses (10 to 100 µg/kg-day) and neurobehavioral 
effects such as increased anxiety, cognitive deficits, 
altered sexually dimorphic behaviors, and changes 
in dopaminergic and NMDAergic systems (Palanza 
et al., 2008; Poimenova et al., 2010; Tian et al., 2010). 
Other studies have showed no effects on reproduction, 
development, or sexual differentiation at similarly low 
doses (2 to 200 µg/kg-day) (Ryan et al., 2010).

The National Toxicology Program reported “some 
concern” for BPA’s effects on the brain, behavior, and 
prostate gland in fetuses, infants, and children at cur-
rent exposure levels (NTP, 2008). “Some concern” rep-
resents the midpoint level of concern used by the NTP 
where there are insufficient data from human studies 
but there is limited evidence of developmental changes 
in some animal studies at doses potentially relevant 
to humans. In January 2010, the U.S. Food and Drug 
Administration (FDA) announced that it agreed there 
is reason for some concern about the potential effects 
of BPA (FDA, 2010). The interested reader is invited to 
read an Expert Panel Report by the NTP Center for the 
Evaluation of Risks to Human Reproduction (CERHR)8 
on the reproductive and developmental toxicity of BPA 
(Chapin et al., 2008).

Mechanisms of action

The primary mechanism of action for BPA is endo-
crine disruption related to its weak estrogenic proper-
ties and interaction on the nuclear estrogen receptor 
(ER) and the membrane ER. BPA is known to cross 
the placenta readily and to bind to a-fetoprotein, the 
estrogen-binding protein that normally prevents 
maternal estrogen from entering the fetal circulation. 

By binding to a-fetoprotein, BPA could potentially 
decrease a-fetoprotein binding of endogenous estro-
gen and thus increase estrogen bioavailability to the 
fetus (Diamanti-Kandarakis et al., 2009).

BPA also has been shown to bind to the thyroid 
hormone receptor (THR) and to antagonize its activa-
tion by T3. As little as 1 µM BPA significantly inhibits 
THR-mediated gene activation (Diamanti-Kandarakis 
et al., 2009). Developmental exposure of rats to BPA 
produces normal TSH levels but elevated T4 levels, 
which is consistent with BPA inhibition of THR-medi-
ated negative feedback.

Seiwa et al. (2004) showed that developmental 
exposure to BPA blocks T3-induced oligodendro-
cyte development from precursor cells. In addition, 
it has been proposed that there may be an association 
between thyroid resistance syndrome and ADHD in 
humans and rats. Well-designed human studies are 
needed to test this hypothesis.

Section Summary

• POPs, including semi-POPs, are ubiquitous con-
taminants that bioconcentrate in the food chain 
and are found in human blood and tissues.

• Mechanisms of toxicity for POPs include both 
direct action on nervous system components and 
indirect action through endocrine disruption.

• Acute high-level exposure to PCPs is associated 
with toxicity in adults; however, co-contamination 
with other halogenated hydrocarbons makes it 
impossible to isolate the effects inherent to PCPs.

• Chronic exposure of the developing human ner-
vous system to PCBs is a concern, although results 
of epidemiological studies have been inconsistent. 
Animal studies have shown altered motor behav-
ior and deficits in cognitive flexibility, working 
memory, and inhibitory control.

• Neurotoxicity resulting from exposure to PBDEs 
has little supporting evidence in the human litera-
ture; evidence is based on animal studies.

• BPA has no acute or chronic studies showing 
human toxicity. The only mechanism for neuro-
toxicity thus far identified from animal studies is 
endocrine disruption.

Insecticides

Insecticides encompass a variety of chemical class-
es and products. They are used both outdoors and 
indoors, and the majority of the U.S. population has 

8The tasks carried out by CERHR (1998–2010) are now carried 
out by the NTP Office of Health Assessment and Translation 
(OHAT) (http://ntp.niehs.nih.gov/pubhealth/hat).
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detectable concentrations of several insecticides and 
their metabolites in the urine (CDC, 2009, 2012a). 
Exposure of the general population to insecticides 
is primarily through contaminated food and water 
and home and garden products, as depicted in Figure 
12. Other sources of exposure are also represented. 
Occupational exposures can be significant, especially 
for pest applicators, agricultural workers, ranchers, 
and farmers.

Two classes of insecticides—organophosphates 
and pyrethrins/pyrethroids—are discussed here. The 
interested reader is invited to read reviews of these 
and other pesticide health effects (Bjorling-Poulson et 
al., 2008; OCFP, 2012).

Organophosphate Insecticides

The organophosphate insecticides, referred to here as 
organophosphates (OPs), usually are esters, amides, 
or thiol derivatives of phosphoric acid. Figure 17.13 
shows the chemical formulas for a phosphate (Figure 
13A) and a phosphorothioate (Figure 13B) compound. 
Organophosphates have a phosphorus with a double 
bond to a terminal oxygen (an oxon), as represented 
by dichlorvos, or to sulfur (a thion), as represented 
by parathion.

The organophosphates in general are well absorbed 
via the oral, dermal, and inhalation routes. Metabolism 
occurs primarily in the liver by hydrolysis at the ester 
linkage, but the rate is highly variable among OPs. 
The resulting metabolites have relatively low toxicity. 
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inhalation, and consumption.

Pesticides are deposited in pools 
of surface water and drain into 
cesspools from soil, water 
runoff, and household waste.

Figure 12 The pathways for human exposure to insecti-
cides and other pesticides (After Sarkar, 2003.)
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The thions exhibit lower toxicity in mammals than the 
oxons and generally require metabolic transformation 
to the oxon form to inhibit the target enzyme, acetly-
cholinesterase (AChE). The normal acetylation of AChE 
by ACh is shown in Figure 14. In the presence of an OP, 
the enzyme is phosphorylated as opposed to being acet-
ylated, as shown in Figure 15.

Not all OPs are capable of “aging” the enzyme. 
Only the phosphate and phosphonate OPs are capable 
of “aging” the enzyme, while the phosphinate OPs 
are incapable because they lack the possibility to be 
hydrolyzed at any site other than the AChE serine 
esteratic site.

Neurotoxicity in adults

OP inactivation of AChE causes accumulation of ace-
tylcholine at cholinergic synapses and leads to over-
stimulation of muscarinic and nicotinic receptors. The 
signs and symptoms of OP poisoning are cholinergic 
in nature, as would be expected, and are referred to as 
cholinergic syndrome, as depicted in Figure 16 and 
listed in Table 2.

In adults, acute poisoning with high doses of an 
OP (brain AChE inhibition exceeding 70%)9 develops 
within minutes to hours of exposure, depending on 
the route of exposure (Clegg and Gemert, 1999). Over-
stimulation of the cholinergic system in both central 
and peripheral nervous systems is the primary form of 
toxicity exhibited with the OPs.

Prolonged effects can occur with irreversible inhibi-
tion of AChE. Death is usually the result of respira-
tory depression coupled with pulmonary secretions. 
Recovery is the result of new enzyme regeneration in 
critical tissues.

Following recovery (24 to 96 hours later) from an 
acute poisoning (cholinergic crisis), an intermediate 
syndrome has been described that is characterized by 
partial respiratory paralysis, reduced tendon reflexes, 
and muscular weakness (face, neck, proximal limbs) 
and lack of muscarinic symptoms (Christensen et al., 
2009; Harper et al., 2009). This syndrome appears to 
be the result of pre- and post-synaptic dysfunction of 
neuromuscular transmission.

Some OPs also can induce a delayed neuropathy 
(OPIDN) that does not involve AChE inhibition, but 
rather, the inhibition of an enzyme called neuropa-
thy target esterase (NTE). NTE deacetylates the major 
membrane phospholipid, phosphatidylcholine, and 
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Figure 13 Organophosphates (OPs) (A) Dichlorvos (phos-
phoric acid, 2,2-dichloroethenyl dimethyl ester) is an 
example of a phosphate OP. (B) Parathion (phosphorothio-
ic acid, O,O-diethyl O-[4-nitrophenyl] ester) is an example 
of a phosphorothioate OP.
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recovery of the enzyme following hydrolysis at the serine 
esteric site (highlighted in blue).
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Figure 15 Phosphorylation of AChE by organophosphate 
OP and very slow recovery of the enzyme via hydrolysis at 
the serine esteric site. With some OPs, there may be com-
plete and irreversible inhibition via hydrolysis at any other 
site (P–OH or P–OR1), which results in strengthening of the 
bond to serine (“aging”).

9Cholinesterase inhibition in red blood cells more closely 
reflects brain cholinesterase inhibition than plasma cholinester-
ase (pseudocholinesterase), although plasma cholinesterase is 
often used as an indicator of exposure.
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plays a major role in membrane homeostasis (Read 
et al., 2009). During neuronal differentiation, it regu-
lates neurite outgrowth and process elongation. NTE 
inhibition results in axonal degeneration, which mani-
fests chiefly as weakness or paresthesia (numbness 
and “pins and needles” feeling) and paralysis of the 
extremities, usually the legs.

Long-lasting behavioral effects have been report-
ed in several human studies following recovery from 
intermediate syndrome or OPIDN (Bjorling-Poulsen, 
2008). Although there has been concern for production 
of neurological effects following chronic, low expo-
sure to OPs, the evidence is equivocal. In fact, chron-
ic exposure may result in tolerance to AChE inhibi-
tion, as has been shown in animal studies, although 
the mechanism is unknown (Christensen et al., 2009; 
Harper et al., 2009).

TABLE 2 Clinical Signs and Symptoms of Acute OP Toxicity 
According to Receptor Type

Peripheral

Central muscarinic 
and nicotinic Muscarinic Nicotinic

Anxiety Miosis Muscle fasciculations

Ataxia Blurred vision Myoclonic jerks

Dysarthria (speech 
disorder)

Nausea Muscle weakness

Confusion Vomiting Muscle rigidity

Headache Diarrhea Hyperreflexia

Fatigue Salivation Tremor

Drowsiness Lacrimation Paralysis

Difficulty 
concentrating

Rhinorrhea Hypertension

Irritability Bradycardia Tachycardia

Emotional lability Abdominal pain Dysrhythmias

Delirium Diaphoresis (profuse sweating) Mydriasis (rare)

Toxic psychosis Urinary incontinence

Respiratory depression Fecal incontinence

Coma

Seizures (occasional)

Sources: ATSDR 2007a; Christensen et al., 2009; Harper et al., 2009; Kumar et al., 2010.
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AChE inhibition leading to acute cholinergic syndrome.
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Neurotoxicity in children and the developing 
nervous system

Children with acute, high-dose poisoning can present 
with signs and symptoms somewhat different from 
those observed for adults (Sofer et al., 1989). In chil-
dren, seizures, lethargy, and coma are more common.

Nineteen epidemiological studies of prenatal OP 
exposure reviewed by the Ontario College of Fam-
ily Physicians (OCFP, 2012) included populations 
expected to be at higher risk for exposure; seven of 
the studies also examined another insecticide, which 
was usually a carbamate or pyrethrins (see OCFP, 
2012 for summaries of individual studies). Most of 
the studies reviewed reported an association between 
OP exposure and impaired or delayed neurodevel-
opmental or behavioral outcomes. Prenatal OP expo-
sure was associated with absent or hypotonic reflex-
es and deficits in attention to stimuli in neonates. In 
studies in which exposure was graded, more effects 
were observed with greater exposure. It was noted 
that deficits either were not measured or were not 
manifest at all time points in the longitudinal studies; 
thus it is difficult to evaluate the onset and persis-
tence of some effects.

In studies from five countries of children over 3 
years of age exposed postnatally to OPs, the neuro-
logical effects observed were inconsistent and were 
not related to OP exposure (OCFP, 2012). In what 
was deemed a high-quality study of Egyptian adoles-
cent workers with high seasonal OP exposures, defi-
cits were reported for all neurobehavioral measures 
evaluated compared with nonworker controls (Abdel 
Rasoul et al., 2008). Additionally, significantly more 
neurological symptoms were self-reported, such as 
difficulty concentrating, depression, and numbness. 
There was also a significant relationship between the 
years worked, the number of neurological symptoms 
reported, and performance on the Trails B test (an 
indicator of executive functioning). Other studies of 
children whose parents were exposed to pesticides, 
including OPs, showed a wide range of results from 
no effects to significant effects. These studies are large-
ly uninterpretable because of study size and multiple 
confounding issues (OCFP, 2012).

In a study of 8- to 15-year-olds in which current 
exposure was evaluated, the increase in a urinary 
OP metabolite was associated with a significantly 
increased risk for the hyperactive/impulsive subtype 
of ADHD (Bouchard et al., 2010). The association with 
the combined subtypes was not statistically signifi-
cant, but was in the same direction.

The developmental neurotoxicity of OPs is still rel-
atively undefined in humans, in part because most 

studies reflect exposures to more than one pesticide. 
In California and New York City studies, an associa-
tion was found between reflex abnormalities in neo-
nates and increased concentrations of OP metabolites 
in maternal urine during pregnancy (Bjorling-Poulson 
et al., 2008). Similar associations between maternal 
urinary metabolites and reflex abnormalities were 
observed for an agricultural cohort from California 
(Young et al., 2005) and an inner city cohort from New 
York (Engel, 2007). Additionally, newborns of women 
who were slow OP metabolizers were more likely 
than newborns of normal or fast metabolizers to have 
abnormal reflexes.

Six cohort studies of prenatally exposed children 
examined up to 3 years of age in Ecuador, New York 
City, and California showed decreases in the Bayley 
Developmental Scales for Infant Development, which 
includes scores on the MDI and PDI scales. Most of 
the studies found that highly prenatally OP-exposed 
children scored lower on the Bayley MDI.

Studies of prenatally OP-exposed children at 3, 3.5, 
and 5 years show overall that high-exposure children 
were more likely to have attention problems. In one 
study, results reached statistical significance only for 
boys. Three studies examined the effects of prenatal 
OP exposure on the IQ of 6- to 9-year-olds using the 
Wechsler Intelligence Scale for children (WISC-IV). 
Two of the studies showed declines in full-scale IQ 
and the subscale of working memory. The third study 
showed nonsignificant trends toward lower IQ with 
higher OP exposure. Pesticide metabolite levels of 
urine in many of the studies have been reported to be 
similar to those measured in general populations in 
the United States and in E.U. countries (Bjorling-Poul-
son et al., 2008). Although the epidemiological evi-
dence for the developmental neurotoxicity of OPs in 
humans is not without problems, there appears to be 
sufficient evidence that the OPs cause adverse effects. 
Additional well-controlled human studies are needed 
to define these neurotoxic effects.

The RfDs for the commonly used OPs range from 
about 10–2 mg/kg-day for less-toxic to about 10–5 mg/
kg-day for more-toxic compounds.

Mechanisms of action

The primary mechanism for neurotoxicity is inhi-
bition of AChE activity, as previously discussed. 
ACh, a neurotransmitter, has important functions 
during brain development that can be disrupted 
by inhibition of AChE. Other effects, as seen with 
chlorpyrifos (a phosphorothiate OP; Figure 17), sug-
gest that mechanisms other than inhibition of AChE 
activity may, at least in part, be responsible for the 
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developmental neurotoxicity of chlorpyrifos and 
possibly other OPs.

Chlorpyrifos is the most extensively studied OP 
with respect to developmental neurotoxicity in ani-
mals. Prenatal or neonatal exposure has resulted 
in a variety of behavioral abnormalities in rodents, 
including long-lasting effects on learning and memo-
ry (Aldridge et al., 2005; Canadas et al., 2005). These 
effects have been proposed to be the result of long-
term alterations in 5-HT synaptic neurochemistry 
independent of AChE inhibition (Aldridge et al., 
2005).

Prenatal exposure of rats to chlorpyrifos results in 
altered programming of synaptic development and 
deficits in brain cell numbers, neuritic projections, 
and synaptic communication (Qiao et al., 2003). The 
effects were first seen in adolescence and persisted 
into adulthood (i.e., the effects extend into relatively 
late stages of brain development). Neurobehavioral 
abnormalities can be induced as late as the second and 
third postnatal weeks in rats, which correspond to the 
neonatal stage of humans. Although this period occurs 
after the major phase of neurogenesis in most brain 
regions, it corresponds to the peak of gliogenesis and 
synaptogenesis. The developing glia are even more 
sensitive to chlorpyrifos than are the neurons. Anti-
mitotic and pro-apoptotic mechanisms via directly 
targeted genes regulating the cell cycle and apoptosis 
during neurodifferentiation in the developing brain 
have been identified (Slotkin and Seidler, 2012). Defi-
cits elicited by prenatal exposure to chlorpyrifos are 
seen even at exposures levels that do not inhibit AChE 
(Slotkin and Seidler, 2012).

Experiments with rat embryo cultures at concen-
trations relevant to humans have produced mitotic 
abnormalities and evidence of apoptosis during neu-
ral tube development (Ostrea et al., 2002). Significant 
effects have been seen at concentrations more than 
an order of magnitude below those present in human 
meconium (a fecal material that collects in the fetal 
intestine during development and is excreted shortly 
after birth) (Roy et al., 1998).

Pyrethrin and Pyrethroid Insecticides

The pyrethroids are synthetic analogs and derivatives 
of six naturally occurring pyrethrins from the Chry-
santhemum genus of plants (ATSDR, 2003). This insec-
ticidal class is quite diverse, but the pyrethroids have 
two common features—an acid moiety (e.g., a central 
ester) and an alcohol moiety. The pyrethrins and pyre-
throids are generally classified into two groups (type I 
and type II) based on their structural and toxicological 
properties. Examples of type I and type II compounds 
are shown in Figure 18.

These compounds are readily degraded in the 
atmosphere, soil, and water and do not persist for lon-
ger than a few days to a few weeks. They are bound 
tightly to soil and do not “travel” or usually contami-
nate ground water. Likewise, they are not readily 
taken up by plant roots. They can bioconcentrate in 
aquatic organisms, however, and are toxic to fish. In 
spite of their lipophilicity, the pyrethroids do not bio-
accumulate in human tissues because they are read-
ily metabolized by hydrolases and cytochrome P450s 
(CYPs) (Soderlund et al., 2002).

These insecticides are used for both commercial 
and home applications. The general population is 
exposed to pyrethrins and pyrethroids primarily via 
foods, especially fruits and vegetables. Other sources 
of exposure include household insecticides, pet sham-
poos, and lice treatments. Occupational exposure can 
be the greatest, and dermal exposure is considered to 
be the most important (ATSDR, 2003). Several reviews 
are available for the interested reader (ATDSR, 2003; 
Breckenridge et al., 2009; Lautraite and Sargeant, 2009; 
Shafer et al., 2005; Soderlund et al., 2002).

Acute neurotoxicity

In rodents, type I pyrethroids typically induce aggres-
sive behavior and increased sensitivity to external 
stimuli. At near lethal doses, fine tremor is observed 
followed by prostration and coarse whole body trem-
or, leading to coma and death. The term T-syndrome, 
for tremor, has been given to these type I responses 
(ATDSR, 2003).

The type II responses in rodents typically include 
pawing and burrowing behavior that is followed by 
profuse salivation, increased startle response, abnor-
mal hand and limb movements and coarse whole body 
tremors that progress to serious writhing (choreoath-
etosis). Clonic seizures may be observed before death. 
The term CS-syndrome, for choreoathetosis and saliva-
tion, has been given to these type II responses. A few 
pyrethroids have demonstrated signs intermediate to 
the T- and CS-syndromes. Both syndromes are acute 
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pyridinyl] ester).
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in nature, and chronic low-level exposures have not 
been reported to produce severe neurological effects 
(ATDSR, 2003).

Human pyrethroid poisoning is rare, and almost 
entirely involves type II pyrethroids. Occupation-
al exposures have been the predominant source of 
pyrethroid poisoning. The main adverse effect of 
dermal exposure to type II pyrethroids is paresthe-
sia, presumably due to a direct excitatory effect on 
small sensory nerve fibers in the skin (Lautraite and 
Sargeant, 2009). Dizziness, headache, and fatigue are 
common symptoms following ingestion and dermal 
exposure of type II pyrethroids. In severe cases, coma 
and convulsions are the principal life-threatening 
features (ATDSR, 2003). Increased acute periph-
eral nerve excitability has been reported for cotton 
workers exposed to deltamethrin over 3 days during 
spraying.

Developmental neurotoxicity

A series of 22 developmental neurotoxicity studies 
in animals have been summarized and critiqued by 
Shafer et al. (2005). The authors noted that there has 
been no systematic evaluation of exposure during 

various developmental periods, and no examination 
of the ontogeny of various behaviors and neurological 
endpoints. They also noted that there were inconsis-
tencies in results even when similar neurobehavioral 
endpoints were evaluated. A few relatively consis-
tent findings, however, were seen in studies in which 
the animals were evaluated following prenatal expo-
sure: increased preweaning muscarinic ACh receptor 
(mAChR) expression in the cortex and increased motor 
activity and decreased habituation. Further work needs 
to be done to assess the potential for these insecticides 
to induce developmental toxicity in humans.

Mechanisms of action

The primary mechanism of action of the pyrethrins 
and pyrethroids is disruption of voltage-sensitive 
sodium channel (VSSC) function. The more potent 
the disruption of VSSC function, the more potent is 
the insecticidal and toxicological activity (Shafer et 
al., 2005). During development, perturbation of VSSC 
function impairs nervous system structure and func-
tion. VSSCs in mammals are composed of one α and 
two β subunits, with tissue specificity. The pyrethroids 
bind to the α subunit, which has been shown to have 
many variants in humans presumably contributing to 
the diversity seen in toxic responses.
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The pyrethroids slow the opening (activation) and 
closing (inactivation) of VSSCs and shift the mem-
brane potential at which they open to more hyper-
polarized potentials; that is, the sodium channels 
open after smaller depolarizing changes in mem-
brane potential. The result is that more sodium 
ions cross the neuronal membrane and depolarize 
it. Type I compounds prolong channel opening just 
long enough to induce repetitive firing of action 
potentials, and type II compounds hold the channels 
open such that depolarization occurs and prohibits 
generation of action potentials (Shafer et al., 2005) 
(Figure 19).

The type II pyrethroids can bind to and block 
GABA receptors in in vitro mammalian brain prepa-
rations. Such blockade would be neuroexcititory in 
nature and is consistent with observed in vivo actions. 
Low potency, however, does not support this mecha-
nism as a major role for acute toxicity (CS syndrome), 
although it could possibly be involved in develop-
mentally induced neurotoxicity. It appears that 

pyrethrins and pyrethroids also affect calcium chan-
nel function; however, direct involvement in massive 
neurotransmitter release during pyrethroid intoxica-
tion has not been shown. There are some pyrethroids 
that have toxic effects that are intermediate between 
the two types.

Section Summary

• OPs produce acute neurotoxicity via inhibition of 
AChE and increased ACh concentrations at nico-
tinic and muscarinic receptors in the central and 
peripheral nervous systems.

• Prolonged toxicity with OPs occurs with irrevers-
ible inhibition of AChE, requiring the synthesis of 
new enzyme for normal function.

• OPIDN is produced by the irreversible inhibi-
tion of NTE, resulting in axonal degeneration and 
peripheral neuropathy.
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Figure 19 Neuromuscular trans-
mission in the presence of pyre-
throids (A) Depiction of propaga-
tion of an action potential down 
the presynaptic nerve axon. Under 
the axon the action potentials gen-
erated by type I and type II pyre-
throids (i.e., repetitive firing and 
depressed firing) are shown rela-
tive to the control action potential 
(i.e., normal size and single action 
potential). The nerve terminal and 
muscle cell shown in (B) depict 
the normal release of glutamate 
(GLU, green circles) from the pre-
synaptic terminal, their interaction 
with muscle cell receptor sites 
that open ion channels for the 
passage of Na+, Ca2+ and Cl– and 
the subsequent generation of the 
excitatory postsynaptic potential 
and the release of Ca2+ and con-
traction of the muscle cell. The site 
for action of the pyretheroids is 
shown at the presynaptic Na+ ion 
channel. (After Bloomquist, 2009.)
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• Studies of developmental neurotoxicity of OPs in 
humans are complicated by exposure to multiple 
pesticides. Effects on cognition and motor activity 
have been seen, although not consistently across 
studies. Prenatal chlorpyrifos exposure of rats 
at levels not causing AChE inhibition results in 
altered programming of synaptic development and 
deficits in brain cell numbers, neuritic projections, 
and synaptic communication.

• Pyrethrins and pyrethroids act through disrup-
tion of VSSC function, and severe poisonings of 
humans are seldom seen, but when they are, it is 
generally a type II compound. Neurotoxicity has 
not been reported following chronic low-level 
exposures.

• Developmental toxicity in humans has not been 
reported for pyrethroids. Animal studies of pre-
natal exposure have shown inconsistent effects 
except for increased preweaning mAChR expres-
sion in the cortex and increased motor activity and 
decreased habituation.

Toxic Metals

Lead, mercury, and arsenic are well-known environ-
mental metals. (Arsenic is included in most discus-
sions of toxic metals, but it is more appropriately 
referred to as a metalloid with properties in between 
those of metals and nonmetals.) Although the term 
heavy metals is often used in reference to the toxic envi-
ronmental metals, it is an imprecise term that lacks a 
consistent and meaningful definition; thus the term 
toxic metals is more appropriately used.

Metals are naturally occurring and are among the 
oldest known toxicants. Hippocrates (460 to 377 bc) 
is credited with describing the symptoms of lead poi-
soning much as they are described today: “appetite 
loss, colic, pallor, weight loss, fatigue, irritability, and 
nervous spasm” (Lessler, 1988); however, it is ques-
tionable whether he recognized lead as the causative 
agent (Hernberg, 2000).

From an environmental perspective, metals are 
naturally redistributed in the environment by both 
geological and biological means, with human activ-
ity magnifying that distribution. The toxicity of many 
metals is determined by the oxidation state of the 
metal, its lipid solubility, the cellular dose achieved, 
the duration of exposure, and the extent of binding 
to the target biomolecule. The common mechanisms 
of metal-induced neurotoxicity are mediated through 
direct and indirect mitochondrial damage; oxidative 
stress and formation of ROS resulting in protein and 

lipid peroxidation; depletion of nonprotein sulfhy-
dryls (e.g., glutathione, a naturally occurring antioxi-
dant present in all cells); binding to protein sulfhydryl 
groups; substitution for key divalent cations, such as 
calcium (Ca2+); and disruption of cellular signaling.

Lead (Pb)

Lead is found in the earth’s crust primarily in areas 
with copper, silver, and zinc. Metallic (elemen-
tal) lead (zero oxidation state, Pb0) is rare because 
it quickly oxidizes in the air. Lead is easy to extract 
and smelt and is highly malleable, which accounts 
for its extensive use through the millennia (Hern-
berg, 2000). Inorganic and organic compounds of 
lead are primarily in the +2 and +4 oxidation states, 
and Pb2+ is more common, being present in various 
ores around the world. In the environment, lead is 
strongly absorbed to soil.

In recent history, lead has been used in many prod-
ucts, including paints, gasoline, ceramics, pipes, sol-
ders, batteries, ammunition, and cosmetics. In the 
United States, lead exposure is most commonly from 
flaking and deteriorating lead-based paints used in 
older homes, contaminated soils and drinking water, 
lead crystal, and lead-glazed pottery (Sanders et al., 
2009). The principal exposure source of lead for the 
general population is via food, and other sources are 
significant for certain populations. Contamination of 
soil from deteriorating lead-based paints and from the 
residual deposition of atmospheric lead from leaded 
gasoline is especially a concern for young children, 
who ingest soil and dust via their daily activities.

GI absorption of ingested water-soluble inorganic 
lead compounds is 3% to 10% in adults, and approxi-
mately 30% to 50% in infants and children (ATSDR, 
2007b; Neal and Guilarte, 2012). Under circumstanc-
es where there is low dietary iron and calcium, lead 
absorption is significantly increased. In the blood, 
greater than 90% of the lead is contained in red blood 
cells, and less than 1% is in the plasma. From the 
blood, lead is distributed to the soft tissues and bone. 
It may be stored preferentially in the bone of adults 
because osteoclasts (the cells responsible for absorp-
tion of bone during normal turnover of bony tissues) 
can interchange Ca2+ and Pb2+. Infants and children 
also store lead in bone, but their bone mass is small 
and the amount of stored lead as a percent of body 
burden is less than that of adults (73% versus 94%). 
Bone turnover due to skeletal growth in children and 
infants mobilizes Pb stores and may result in added 
exposure (Neal and Guilarte, 2012). Lead does not 
penetrate the blood–brain barrier of adults, but may 
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penetrate the more poorly developed blood–brain 
barrier of children. For adults, the half-life of lead in 
blood is about 1 month, and in the skeleton 20 to 30 
years (ATSDR, 2007b).

Lead exhibits neurotoxic effects in the central and 
peripheral nervous systems that are dependent on the 
developmental period and the level and duration of 
exposure.

Neurotoxicity in adults

In adults, acute high-dose lead poisoning can cause 
encephalopathy (brain damage or malfunction) that 
manifests as an altered mental state, seizures, atax-
ia, and coma. Severe encephalopathy generally is 
observed only at extremely high blood levels (460 
µg/100 ml [460 µg/dl]) (ATSDR, 2007b); however, 
less severe, overt encephalopathy has been reported 
at blood levels as low as 100 µg/dl. Chronic occupa-
tional exposures are associated with symptoms rang-
ing from forgetfulness and irritability to weakness 
and paresthesia at blood levels from 40 to 120 µg/dl. 
Chronic lead exposure also is associated with inatten-
tiveness, distractibility, hyperactivity, frustration, and 
aggression at blood levels as low as 10 µg/dl in some 
studies. Peripheral neuropathy in adults is associated 
with chronic exposure at blood levels of 70 µg/dl and 
greater (ATSDR, 2007b).

Neurotoxicity in children and the developing 
nervous system

In children, high-dose lead poisoning can lead to 
significant neurotoxic sequelae similar to what are 
observed in adults, but at lower doses. Overt encepha-
lopathy in children, for instance, is associated with 
blood lead levels as low as 70 µg/dl, compared with 
100 µg/dl in adults (ATSDR, 2007b).

As more data were gathered during the 1960s and 
later, it became apparent that the greatest concern for 
environmental lead exposure was for the prenatally 
and postnatally developing nervous system. In addi-
tion to the high-dose encephalopathic effects of lead, 
it was recognized that lower doses over a prolonged 
exposure period resulted in significant toxic effects. 
Between 1960 and 1991, the CDC blood lead level rec-
ommendation for individual clinical intervention in 
children was lowered from 60 to 25 µg/dl and again 
from 25 to 15 µg/dl in 1991. At the same time, 10 µg/
dl was set as a risk management tool (i.e., not as a 
threshold for toxicity) (Sanders et al., 2009). In 2012, 
the CDC lowered the blood lead threshold in children 
younger than 6 years of age from 10 to 5 µg/dl based 
on a shift in policy from that of a clinical intervention 

to that of a public health approach focused on preven-
tion (CDC, 2012b).

Blood lead levels of 10 µg/dl and higher that are 
associated with chronic lead exposure in early child-
hood are detrimental to neurodevelopment. The rec-
ognized adverse effects include impaired cognitive 
function, behavioral disturbances, attention deficits, 
hyperactivity, conduct problems, antisocial behav-
ior, delinquency, and violence (Bellinger, 2009; Neal 
and Guilarte, 2012; Needleman et al., 2002; Sanders et 
al., 2009; Wright et al., 2008). In children, lead expo-
sure has also been associated with increased risk of 
ADHD (Braun et al., 2006). Blood lead levels in young 
school-age children also predict neurologic deficits 
in children and young adults (Hornung et al., 2009). 
Newly identified neuroanatomical changes in young 
adults exposed to lead in childhood include reduced 
gray matter in the prefrontal region and white matter 
changes indicative of effects on myelination (Brubaker 
et al., 2009).

After decades of study, a nonlinear relationship 
between lead exposure and IQ decline in children has 
been recognized. It appears that the greatest rate of 
decline in IQ comes with the initial 10 µg/dl increase 
in blood lead levels (Neal and Guilarte, 2012). A 
pooled analysis of internationally conducted epidemi-
ology studies calculated that a blood lead level of 10 
µg/dl was associated with a 6-point decline in IQ rela-
tive to children with a 1 µg/dl blood level (Lanphear 
et al., 2005). Another study reported a similar decline 
in IQ points (7.4) with 10 µg/dl (Canfield et al., 2003).

Mechanisms of action

Lead has many interrelated mechanisms that are 
involved in its observed neurotoxicity; however, the 
primary mechanism may well be its effect on calcium 
metabolism via substitution for calcium and disrup-
tion of calcium homeostasis. Although not necessarily 
all of the following are related to disruption of calcium 
metabolism, lead has been shown to promote apop-
tosis, produce excitotoxicity, affect neurotransmitter 
storage and release, damage mitochondria and cause 
oxidative stress resulting in peroxidative damage to 
lipids and proteins, deplete antioxidants by binding to 
sulfhydryls (e.g., glutathione), inactivate antioxidative 
enzymes (e.g., glutathione reductase), deregulate cell 
signaling (e.g., activation of protein kinase C [PKC]), 
alter cellular membranes (e.g., cerebrovascular endo-
thelial cells), impair synaptic transmission, and alter 
neurotransmitter concentrations, alter neurotransmit-
ter receptor channel properties, and affect protein and 
gene expression (ATSDR, 2007b; Neal and Guilarte, 
2012; Sanders et al., 2009) (Figure 20).
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The consequences of some of these mechanisms are 
briefly cited to give the reader a feel, albeit superficial, 
for the profound effect that lead can have on the devel-
oping organism. Perturbations in normal Ca2+ signal-
ing affect synaptic development and plasticity. Lead 
impairs timed programming of cell–cell connections, 
resulting in modification of neuronal circuitry. Lead 
induces precocious differentiation of the glia, whereby 
cells migrate to their eventual positions during structur-
ing of the CNS. Learning and memory deficits may be 
related to inhibition of the N-methyl-d-aspartate recep-
tor (NMDAR) in the hippocampus (Neal and Guilarte, 
2012). It has been hypothesized that Pb2+ also delays the 
normal ontogeny and alters the distribution of NMDAR 
(Figure 20). The interrelationships among and between 
these individual mechanisms are considerable, and the 
interested reader is invited to review several articles 
addressing various aspects of the mechanisms of lead 
neurotoxicity (ATSDR, 2007b; Hsiang and Diaz, 2011; 
Neal and Guilarte, 2012; Sanders et al., 2009).

Mercury (Hg)

Elemental mercury (Hg0), also known as quick silver, 
is a naturally occurring shiny, silver-white metal that 

is a liquid at room temperature. Natural releases from 
volcanoes and the earth’s crust put metallic mercury 
vapor into the atmosphere, as do anthropomorphic 
releases from mining ore deposits, coal-burning power 
plants, and the incineration of waste. An example of 
mercury entering the environment through human 
activity via the recent upsurge in gold mining is 
depicted in Figure 21. Mercury circulates in the atmo-
sphere until it eventually returns to earth, where it 
may settle in aquatic sediments and may be fixed by 
bacteria or plankton as methylmercury (ATDSR, 1999).

Mercury compounds are primarily in the +1 and 
+2 oxidation states, referred to as mercurous (Hg+) 
and mercuric (Hg2+) mercury, respectively. Mercuric 
mercury can form stable organic mercury compounds, 
such as methylmercury (CH3Hg+), which is done in 
association with either a simple anion, such as Cl–, or a 
large, charged molecule, such as a protein.

Mercury historically has been used in thermom-
eters and barometers, as topical antiseptics and pre-
servatives (Box 1), and more recently in fluorescent 
light bulbs, laptop monitors, cell phones, and printed 
circuit boards. Although individual electronic devices 
contain a small amount of mercury (1 g mercury was 
calculated for a cell phone vintage 2000–2005, while 
other electronic devices cited contained 4 mg or more; 
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Figure 20 Pb2+ interaction at the synaptic level In a 
normal synapse, glutamate release (1) normal NMDAR 
density, and Ca2+ influx (2) through open NMDAR chan-
nels activate neuronal nitric oxide synthase (nNOS) and 
calcium/calmodulin kinase II (CAMKII), two enzymes 
involved in the induction and maintenance of long-term 
potentiation (LTP). Developmental exposure of Pb2+ leads 
to reduced numbers of NMDARs and potential block-
age of the receptors by Pb2+ (3). Reduced Ca2+ influx (4) 
may occur as a result of fewer receptors and receptor 

blockage resulting in altered activation of nNOS and 
CAMKII, which affects LTP. (5) Glutamine synthetase (GS) 
is inhibited by Pb2+ and may result in an accumulation of 
GLU in glial cells which then could be available to activate 
extrasynaptic NMDAR subunits. (6) An alternative mecha-
nism for GLU activation of extrasynaptic NMDARs is Pb2+ 
inhibition of the GLU transporters (EAAT1/EAAT), which 
would result in increased extracelluar concentrations of 
GLU. GLN, glutamine. (After Toscano and Guilarte, 2005.)



Environmental Neurotoxicants and Endocrine Disruptors   25

EPA, 2007), their improper recycling has the potential 
to release elemental mercury vapor into the environ-
ment (Ramesh et al., 2007). This is especially a concern 
in third world countries, where environmental regula-
tions are nonexistent or unenforced.

The primary source of human exposure to mer-
cury is via methylmercury through consumption of 
fish and shellfish due to bioaccumulation because of 
its lipid solubility (EPA, 2012a). Consumption of large 
amounts of contaminated fish and/or shellfish can be 
sufficient to cause mercury poisoning in humans and 
animals. Although only a small percentage of metal-
lic and mercuric mercury is absorbed from the adult 
human GI tract (approximately 0.01% and 15%, respec-
tively), approximately 90% to 95% of methylmercury 
is absorbed (ATDSR, 1999). Methylmercury readily 
passes though the placenta, and infants can be exposed 
via the mother’s milk. There appears to be very slow to 
no elimination of methylmercury for infants.

The tissue distribution of mercury is dependent on 
the speciation, lipid solubility, and route of exposure. 
Hg0 is rapidly oxidized in red blood cells to inorganic 
mercury, and thus its distribution is similar to that of 
inorganic mercury. Hg2+ has a high affinity for sulfhy-
dryl groups, and most all Hg2+ in the blood is bound 
to glutathione, cysteine, albumin, and other sulfhy-
dryl-containing proteins.

Once methylmercury is absorbed, it can be trans-
ported across the blood–brain barrier via a carrier-
mediated system (Aschner and Aschner, 1990). In 
the brain, methylmercury is metabolized to a limited 
extent to Hg2+. Mercury toxicity in the brain is nonspe-
cific in that it does not target a specific cell or receptor 
type. Its higher affinity for sulfhydryl groups, how-
ever, leads to its concentration in certain areas of the 

brain such as granule cells of the cerebellum and the 
calcarine region of the occipital cortex (Eto, 1997).

In 1995, the EPA lowered the allowable daily intake 
of methylmercury from 0.5 µg Hg/kg-day, a threshold 
established by the World Health Organization (WHO) 
in 1978, to 0.1 µg/kg-day based on adverse neurologi-
cal effects in infants. The FDA and the EPA issued a 
joint advisory cautioning that “young children, women 
who are pregnant or who may become pregnant, 
and nursing mothers should avoid fish that contain 
high levels of methylmercury” (FDA, 2004). The spe-
cies most likely to have these higher levels are shark, 
swordfish, king mackerel, and tilefish; shrimp, canned 
light tuna, salmon, Pollock, and catfish are the most 
common species to have low levels of mercury (EPA, 
2012b; Neustadt and Pieczenik, 2007; NIEHS, 2012).

Neurotoxicity in adults

Neurotoxicity observed with mercury is similar for 
rodents, wild animals, and humans: ataxia, impaired 
gait, increased excitability, and tremors (ATSDR, 
1999). Inhalation of metallic mercury vapor at high 
concentrations is associated with often acutely fatal 
interstitial pneumonitis. Acute high-level exposure 
of adults to mercury compounds via other routes 
generally results in paresthesia and ataxia that may 
be followed by visual field constriction and blind-
ness. Lethal doses of organic mercury compounds 
have been estimated to range from 10 to 60 mg/kg 
for humans. For both inorganic and organic mercury, 
symptoms may not present for weeks to months after 
exposure. Neuropathology shows selective involve-
ment of the cerebral and cerebellar cortices, focal 
necrosis, lysis, and phagocytosis in the visual cortex 
and cerebral granule cells (ATDSR, 1999). The neurons 
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Figure 21 Release of mercury into the 
environment Mercury vapor enters the 
atmosphere as a result of mining activity 
where it can remain for some time before 
being deposited on land and surface waters 
(primarily through rainfall). Once mercury 
reaches surface water, it can settle into 
sediment, where it may be released through 
sediment resuspension, enter the food 
chain, or re-enter the atmosphere. (After 
UNIDO, 2006.)
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Thimerosal in Vaccinations—Does It Cause Autism?
There has been controversy sur-
rounding the use of thimerosal 
in childhood vaccines (Figure A). 
Thimerosal is a mercury-containing 
preservative that has been blamed 
for causing autism in children 
receiving the vaccines.

The controversy arose in the 
United States in the late 1990s 
and early 2000s with rising public 
concern about environmental mer-
cury poisoning coupled with rising 
awareness of autism (the most 
severe of the autism spectrum 
disorders [ASDs]), rising incidence 
of autism, and an increase in the 
number of vocal advocacy groups 
of parents of autistic children. The 
tale of convergence of these fac-
tors is told by Baker (2008) in an 
article in the American Journal of 
Public Health.

In 1997, a rider was placed on 
the FDA Modernization Act that 
required the FDA to assess the 
mercury content of drug prod-
ucts. Assessment of vaccines in 
which thimerosal was used as a 
preservative began in early 1998. 
Thimerosal, as shown in Figure B, 
contains ethylmercury (CH3CH2Hg) 
attached to thiosalicylate; the mer-
cury content is 49.6% by weight.

The FDA identified three vac-
cines routinely given to infants 
(diphtheria-tetanus-acellular per-
tussis, Haemophilus influenzae 
type b conjugate, and hepatitis B) 
that could potentially have thimer-
osal as a preservative. The analysis 
was completed in April 1999. The 
FDA had calculated that if infants 
received all the vaccines preserved 
with thimerosal over the first 6 
months of life, the cumulative 
exposure could be 187.5 µg of eth-
ylmercury, 200 µg if the influenza 
vaccine was also received (AAP, 
1999). Moving rapidly, the Ameri-
can Academy of Pediatrics (AAP), 
the U.S. Public Health Service 

(PHS), and vaccine manufacturers 
decided in July 1999 that thimero-
sal should be removed from vac-
cines as a precautionary measure 
(CDC, 1999). This decision was 
reached in spite of the fact that 
thimerosal as a vaccine preserva-
tive had not caused any harm. The 
basis for the decision was the EPAs 
RfD for methylmercury (0.1 µg 
mercury/kg-day) since no standard 
for ethylmercury existed.

As chronicled in a review by 
Baker (2008), the efforts of activ-
ist parents of autistic children led 
to the publication of an article in 
Medical Hypotheses (Bernard et 
al., 2001) that compared various 
aspects associated with autism 
versus the signs and symptoms 
reported for mercury exposure. 
Although this article was not peer-
reviewed, for many, especially the 
lay public, the publication legiti-
mized the association between 
mercury and autism. Baker sug-
gested that further complications 
arose when litigation muddied the 

scientific waters with “expert wit-
ness testimony.”

So, what was the basis for the 
claim of a causal relationship 
between thimerosal and develop-
ment of autism? The assumptions 
underlying a causal relationship 
were as follows: (1) ethylmercury 
and methylmercury are equiva-
lent in absorption, distribution, 
metabolism, and excretion (ADME); 
(2) the signs and symptoms of 
mercury poisoning and autism are 
the same, so there is biological 
plausibility; and (3) the rise in the 
incidence of autism was caused by 
thimerosal.

So what does the science 
say? The scientific weight of evi-
dence does not support a causal 
relationship, and furthermore, 
the underlying assumptions for a 
causal relationship were false. First, 
ethylmercury is not methylmer-
cury, and their ADME profiles are 
not equivalent. At the time of the 
original evaluation, because of lack 
of data, it was presumed that the 
half-life of ethylmercury was similar 
to that of methylmercury. The half-
life of ethylmercury, however, was 

Thimerosal in vaccines (A) The only 
commonly recommended childhood 
vaccine that still contains thimerosal is 
the multidose vial of influenza vaccine. 
Single dose vials of the vaccine do not 
contain thimerosal. (B) The chemi-
cal structure of thimerosal (sodium 
ethlymercurithiosalicylate).

BOX 1 Of Special Interest
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are replaced by supporting glial cells. The over-
all acute effect is cerebral edema, but the long-term 
effect is cerebral atrophy that results from prolonged 
destruction of gray matter and subsequent gliosis.

With chronic exposure to mercury, the first man-
ifestation of major CNS effects is paresthesia of the 
hands, feet, and sometimes around the mouth; impair-
ment of coordination, such as waking or writing; mus-
cle weakness; mental disturbances (e.g., mood swings, 
memory loss); and impairment of speech, hearing, and 
peripheral vision. The lower toxicity of mercurous 
compounds relative to mercuric compounds is most 
likely attributable to their lower solubility.

There are two well-known mass poisonings related 
to methylmercury: one in Minamata Bay, Japan, in 
the mid-1950s, and another in Iraq in 1971–1972. The 
Japanese episode is an example of chronic exposure 
and poisoning from contaminated seafood; the Iraqi 
episode is an example of a more acute exposure and 
poisoning from contaminated grain (ATSDR, 1999; 
Grandjean and Herz, 2011).

In Minamata, following an extended period of 
exposure, severe poisoning (called Minamata dis-
ease) presented as ataxia, numbness of the extremities, 
muscle weakness, narrowing of the visual field, and 
damaged hearing and speech. Within a short period 
following symptom onset, some victims exhibited 
psychoses, paralysis, coma, and death. In Iraq, seed 

grain treated with a methylmercury fungicide was 
consumed as food. Symptoms were similar to those 
observed with Minamata disease, with the exception 
that blindness was also reported. The difference in 
visual effects between Minamata and Iraq is thought 
to be most likely due to the different nature of the 
exposures.

Developmental neurotoxicity

The developmental effects observed following in utero 
exposure to methylmercury in Japan gave rise to the 
term “fetal Minamata disease.” The first neurological 
signs were usually seen in infants at an early age and 
included delayed movements, failure to follow visual 
stimuli, and uncoordinated sucking and swallowing. 
These signs were followed by persisting primitive 
reflexes and markedly impaired coordination. In the 
few autopsies that were performed, characteristic neu-
ropathological changes were observed: bilateral cere-
bral atrophy and hypoplasia (fewer cortical nerve cells 
and malformed cells or processes); cerebellar atrophy 
and hypoplasia (reduced granule cell layer); abnormal 
cytoarchitecture; hypoplasia of the corpus callosum; 
defective myelination of white matter; and hydroceph-
alus (Matsumoto et al., 1965). The most characteristic 
abnormality reported was the poorly developed and 
inappropriately located and positioned neurons in the 

subsequently shown to be much 
shorter. Comparing blood levels, 
which are assumed to reflect the 
total body burden, the half-life of 
methylmercury is about 50 days, 
and the half-life of ethylmercury 
from thimerosal in vaccines is 7 to 
10 days. Therefore, in the 2 months 
between vaccinations at birth and 
2, 4, and 6 months, the mercury 
would have been excreted (i.e., 6 to 
8.5 half-lives would have occurred).

Second, the signs and symp-
toms of mercury poisoning are 
not the same as those of autism, 
so there is little to no biologi-
cal plausibility (Gerber and Offit, 
2009; Nelson and Bauman, 2003). 
Children with mercury poisoning 
exhibit characteristic changes in 
head circumference and neuro-
logical motor, speech, sensory, 

psychiatric, and visual changes or 
deficits that are different from or 
not seen in autistic children.

Third, the incidence of autism 
did not decrease but continued 
to increase after removal of thi-
merosal from vaccines; therefore, 
thimerosal could not be the cause 
of the increased incidence.

Furthermore, since the contro-
versy arose, about a dozen stud-
ies have been performed in the 
United States, Canada, the United 
Kingdom, and Denmark. A few 
studies concluded that there was 
an association between thimerosal 
and autism but those studies have 
been evaluated in multiple review 
articles, and all reviews detail sig-
nificant design flaws that invalidate 
a conclusion of causality.

Today, the multidose vial of 
influenza vaccine is the only com-
monly recommended childhood 
vaccine that contains thimerosal 
in the United States and Canada. 
Despite all the scientific evidence 
that does not support the role of 
thimerosal in vaccines in the cau-
sation of autism, many articles in 
the lay press and on the Internet 
keep the controversy alive. The 
advocates sound convincing and 
offer “evidence” to support their 
claim; however, close scrutiny 
reveals the underlying unsupported 
assumptions. The lesson? Look at 
the underlying assumptions, and 
do not accept them without get-
ting the facts. Look to the scientific 
community, not to individuals 
or the lay press, to examine all 

BOX 1 (continued)
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CNS, which is most likely the result of disrupted neu-
ronal migration and maturation.

Neurodevelopmental effects with high-level expo-
sures are undisputed. Questions have been raised 
about the neurodevelopmental effects of exposure to 
low to moderate levels of methylmercury, however, 
because of different findings in studies of the Faroe 
Islands and the Seychelles (Chen et al., 2011). An asso-
ciation was seen in the Faroe Islands study between 
prenatal methylmercury exposure (4 µg/g maternal 
hair; 23 µg/l cord blood) and deficits in motor func-
tion, attention, and verbal domains in children up to 
14 years of age. The Seychelles study, on the other 
hand, did not show an association between neurode-
velopmental endpoints and prenatal methylmercury 
exposure (7 µg/g maternal hair) (Davidson et al., 2010; 
Myers et al., 2009). Neither study showed an associa-
tion with postnatal methylmercury exposures (Faroe 
Islands: 3 µg/g hair; 9 µg/l blood at 7 years of age) 
(Seychelles: 6 µg/g hair at 9 years of age).

When the Faroe Islands and Seychelles studies were 
analyzed with a cohort from New Zealand, however, 
the overall change in child IQ was calculated as –0.18 
points for each 1-µg increase in methylmercury per 
gram maternal hair.

Although no threshold has been determined for 
neurotoxic effects with mercury, several studies sug-
gest that very low levels are without significant effect. 
In the United States for 2-year-old children, back-
ground levels of methylmercury in whole blood were 
approximately 0.5 µg/l. This level of exposure was 
not associated with adverse neurodevelopmental out-
comes in children evaluated at 2, 5, and 7 years of age 
(Cao et al., 2010).

Mechanisms of action

The mechanisms for producing neurotoxicity are 
believed to be similar for inorganic and organic mer-
cury. The relative toxicities of the different forms of 
mercury (e.g., metallic, mercurous, mercuric, inor-
ganic, and methyl and other organic mercury com-
pounds) are related in part to differential accumu-
lation in sensitive tissues. It appears that chronic 
exposure to methylmercury results in an accumulation 
of inorganic as well as organic mercury in the brain 
(ATSDR, 1999). In studies of monkeys, it was observed 
that the brain elimination half-life of methylmercury 
was 35 days, and that of inorganic mercury was on 
the order of years. The presence of inorganic mercury 
was thought to be due to the in vivo demethylation of 
methylmercury.

In the adult brain, the underlying neurotoxic mech-
anism may be disruption in protein synthesis, which is 

among the earliest biochemical effects seen in animal 
studies. Cells with greatest repair capacity survive, 
while others die.

Mercury also can disrupt signaling pathways 
involved in cellular communication throughout the 
CNS and peripheral nervous system. One example 
is the muscarinic ACh (mACh) signaling pathway, 
where Hg2+ (as HgCl2) and methylmercury inhibit 
binding of ACh to the receptor in the cerebellum and 
cerebral cortex in several species, including humans 
(Basu et al., 2005). HgCl2 is more potent than meth-
ylmercury, lending further support to speculation 
that neurotoxicity from methylmercury is the result 
of its demethylation to Hg2+. HgCl2 at sublethal con-
centrations is also implicated in selective inhibition of 
another neurochemical signaling pathway called the 
JAK-STAT pathway (Monroe and Halvorsen, 2006). 
The JAK-STAT pathway is involved in cytokine and 
growth factor signal transduction from the plasma 
membrane to the nucleus for regulation of cell dif-
ferentiation and proliferation, thus inhibition of this 
pathway could be important for the developmental 
neurotoxicity of HgCl2.

At the cellular level, HgCl2 also interferes with 
mitochondrial respiration, resulting in oxidative 
stress. Because neurons have a high mitochondrial 
density, they are especially susceptible, and some neu-
rons (e.g., motor neurons) have limited antioxidant 
capabilities.

Disruption of neuronal migration and neural cyto-
architecture by methylmercury is related to alteration 
of neural cell adhesion molecules (NCAMs) and dis-
ruption of the neurocytoskeleton (microtubules), both 
of which are important for cellular movements and 
kinetics.

Arsenic (As)
Arsenic is widely distributed in nature and occurs as 
a metalloid or semi-metallic element (As0); as organic 
and inorganic arsenite (As3+), arsenate (As5+), and 
arsenide (As3–) compounds; and as arsine (AsH3), 
an inorganic gas. Arsenic is difficult to characterize 
because of its complex chemistry and ability to form 
many compounds.

The major source of arsenic exposure for the gen-
eral population is via food and contaminated drink-
ing water from natural geological sources (ATSDR, 
2007c). Arsenic is one of the top environmental health 
threats in the United States and worldwide. In the 
United States and Europe, public water supplies have 
a regulatory limit of 10 parts per billion (ppb) arsenic; 
however, private water wells are unregulated, as are 
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many water supplies worldwide. Thus, arsenic con-
tamination affects hundreds of millions of people and 
is associated with an extensive list of disease risks.

Both As3+ and As5+ are well absorbed via inhala-
tion and oral routes, and poorly absorbed via the der-
mal route. Water-soluble As3+ and As5+ compounds 
are 80% to 90% absorbed from the GI tract, but 
other arsenicals of lower solubility are less efficient-
ly absorbed. Once absorbed, arsenates are partially 
reduced to arsenite, resulting in a mixture of As3+ and 
As5+ in the blood. As3+ compounds are the principal 
toxic forms; As5+ compounds are less toxic.

Metabolism of inorganic As3+ occurs in the liver, 
and some have speculated that the organic interme-
diary and end products formed by such metabolism 
may be more reactive and toxic than inorganic As3+ 
(Thomas et al., 2007). The biological half-life of orally 
ingested inorganic arsenic in the body is about 40 to 60 
hours, and the half-life of arsenic metabolites is about 
1 day (ATSDR, 2007c).

Although only the neurotoxic effects of arsenic are 
discussed here, it must be remembered that chronic 
arsenic exposure is associated with many diverse dis-
ease processes ranging from keratosis to cancer. The 
interested reader can examine a review that explores 
many aspects of arsenic neurotoxicity (Rodriguez et 
al., 2003).

Neurotoxicity in adults

Ingestion of large doses of arsenic in the range of 70 
to 180 mg can induce encephalopathy and can cause 
death (ATSDR, 2007). If one recovers from severe 
acute toxicity, the most commonly observed neurolog-
ical effect is sensory loss in the peripheral nervous sys-
tem, which appears 1 to 2 weeks after the initial insult. 
The neuropathy results from degeneration of axons, 
which is potentially reversible if there is no additional 
exposure.

Acute inhalation exposure has been associated 
with severe nausea and vomiting, diarrhea, sleep dis-
turbances, decreased concentration, disorientation, 
severe agitation, paranoid ideation, and emotional 
lability, which can be relieved by chelation therapy 
(ATSDR, 2007). Long-lasting effects such as severe 
impairment of learning and memory and mild impair-
ment of visuoperception, visuomotor integration, psy-
chomotor speed, and attention processes, however, 
have been observed even at 8 months post-exposure 
(Rodriguez et al., 2003).

Chronic exposure to inorganic arsenic compounds 
leading to neurotoxicity of both the peripheral and 
central nervous systems usually begins with sensory 
changes, paresthesia, and muscle tenderness, followed 

by weakness, progressing from proximal to distal 
muscle groups (ATSDR, 2007; Rodriguez et al., 2003). 
The sensory nerves are more sensitive, and neurons 
with large axons are more affected than those with 
short axons. Peripheral neuropathy is dose-dependent 
and may be progressive, involving both sensory and 
motor neurons and leading to demyelination of long 
axon nerve fibers.

In one report of chronic exposure to arsenic via 
contaminated well water, disturbances such as for-
getfulness, confusion, and abnormal visual sensations 
were associated with a urinary arsenic of 488 µg/l, 
and peripheral neuropathy was diagnosed in anoth-
er individual with 2260 µg As/l (Rodriguez et al., 
2003). Occupational exposure to arsenic compounds 
has been associated with impairments of higher func-
tion, such as concentration, short-term memory, and 
learning (ATSDR, 2007; Rodriguez et al., 2003). Sever-
ity was associated with the duration of exposure, and 
most symptoms disappeared after exposure ceased.

Studies in rodents administered arsenic trioxide 
(As2O3) or sodium arsenite (NaAsO2) orally have 
shown deficits in behavior, learning, and memory 
after 2 weeks to 3 months at doses that were not sys-
temically toxic (Rodriguez et al., 2003).

Neurotoxicity in children and the developing 
nervous system

With acute exposures, children exhibit symptoms sim-
ilar to those observed in adults. For chronic environ-
mental exposures, children experience the same neu-
rological effects as adults. In areas of endemically high 
arsenic in drinking water, arsenic concentrations in 
the human placental cord blood can be about as high 
as those in maternal blood (Concha et al., 1998), thus 
additional effects following exposure of the develop-
ing nervous system could be anticipated.

Several epidemiological studies of environmental 
arsenic exposure have evaluated neurotoxicity end-
points. A study of 720 children in China, aged 8 to 12 
years, revealed decreased IQ scores with increased 
concentrations of arsenic in the drinking water (Wang 
et al., 2007). The mean IQ score in the control group (2 
µg As/l water) was 105, and it was 101 and 95 for the 
medium (142 µg As/l) and high (190 µg As/l) arsenic 
exposed groups, respectively. These decreases were 
similar to those observed in a study of 201 10-year old 
children in Bangladesh (Wasserman et al., 2004) and 
in two small studies in Mexico (Calderon et al., 2001) 
and Taiwan (Tsai et al., 2003). Many factors affect IQ 
scores; decreasing scores from several studies are sup-
portive but not conclusive evidence of a real effect. 
Other epidemiological studies of arsenic exposure via 
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drinking water have not shown significant neurologi-
cal effects, possibly as the result of confounding due to 
the inability to quantify past exposure (ATSDR, 2007). 
Hearing impairment has also been associated with 
airborne arsenic in chronically exposed 10-year-old 
children.

The physical malformations reported in animal 
studies have not been reported for humans exposed 
to equally high blood arsenic concentrations from con-
taminated drinking water. The differences between 
animal studies and the human experience may be due 
to the form of the arsenic. In humans, the organic arse-
nic metabolite dimethylarsenic acid (DMA) predomi-
nates with chronic exposure. DMA has been shown to 
be less toxic than inorganic As3+ compounds in devel-
opmental animal studies, which may explain the lack 
of malformations in humans.

Mechanisms of action

A number of mechanisms have been proposed for 
the ability of arsenic to cause such diverse adverse 
effects. These include alterations in cell signaling, 
cell cycle control, oxidative stress, DNA repair, and 
others. Arsenic binds to a number of sulfhydryl-con-
taining proteins and enzymes, including mitochon-
drial enzymes, resulting in impaired tissue respira-
tion, which is related to the cellular toxicity of arsenic. 
Arsenic also inhibits mitochondrial energy-linked 
functions by competition with phosphate during oxi-
dative phosphorylation and inhibition of mitochondri-
al adenosine triphosphate (ATP) production, resulting 
in increased ROS generation (Hughes, 2002).

Disruption of hormone signaling may be a key 
component of arsenic-induced developmental effects. 
Arsenic alters steroid hormone receptor (SHR)-medi-
ated gene regulation at very low, environmentally 
relevant concentrations in cell cultures and animal 
models (Bodwell et al., 2004, 2006; Davey et al., 2007). 
All five SHRs (i.e., glucocorticoid, androgen, proges-
terone, mineralocorticoid, and estrogen hormones) 
are affected in a similar manner, suggesting a broad 
effect on these pathways, and also suggesting a com-
mon mechanism for these effects. Additional work is 
needed to elucidate endocrine disruption effects in the 
etiology of arsenic-induced neurotoxicity.

Section Summary

• Lead produces neurotoxic effects ranging from 
fatigue and confusion to encephalopathy at acute 
high-level exposures. Chronic lower-level expo-
sures can result in cognitive deficits and peripheral 
neuropathy. Children are more sensitive than 

adults. Exposure of the developing nervous sys-
tem can produce long-lasting neurological effects, 
including cognitive deficits.

• Mercury causes neurotoxic effects following acute 
high-level exposure and chronic low-level expo-
sures in children and adults. The major source of 
exposure is from methylmercury in food. Pares-
thesia of the hands and feet is often the first mani-
festation of CNS effects in adults and children. 
Severe poisonings proceed to psychoses, paralysis, 
coma, and death. Neurodevelopmental effects at 
high exposure levels are undisputed. Neurode-
velopmental effects following chronic low-level 
exposure are less conclusive but there are sufficient 
studies to suggest adverse effects on cognition, 
attention, and motor function.

• Arsenic causes acute neurotoxicity in adults and 
children at high exposures. Chronic exposure at 
significant levels is generally through contami-
nated drinking water and can induce neurotoxicity 
that first manifests as sensory changes that may 
progress to peripheral neuropathy. Neurodevel-
opmental studies of chronic exposure to low to 
moderate arsenic levels have been complicated by 
the inability to determine past exposure. There is 
suggestive evidence from several studies showing 
decreased IQ scores of children.
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