Chapter 5 References
Textbook
Introduction
Connor, D. J., Loomis, R. S., and Cassman, K. G. (2011) Crop Ecology: Productivity and Management in Agricultural Systems, 2nd ed. Cambridge University Press, Cambridge.
Cordell, D., Drangerta, J.-O., and White, S. (2009) The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 19: 292–305.
Epstein, E., and Bloom, A. J. (2005) Mineral Nutrition of Plants: Principles and Perspectives, 2nd ed. Sinauer Associates, Sunderland, MA.
Larsen, M. C., Hamilton, P. A., and Werkheiser, W. H. (2013) Water quality status and trends in the United States. In: Monitoring Water Quality: Pollution Assessment, Analysis, and Remediation, 1st ed. Ahuja, S., ed., Elsevier, Amsterdam. pp. 19–57.
Matson, P., Lohse, K. A., and Hall, S. J. (2002) The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. Ambio 31: 113–119.
Wenzel, W. W. (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321: 385–408.
Zegada-Lizarazu, W., Matteucci, D. and Monti, A. (2010) Critical review on energy balance of agricultural systems. Biofuels, Bioprod. Biorefin. 4: 423–446.
Essential Nutrients, Deficiencies, and Plant Disorders
Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H., Abadía, A., Álvarez-Fernández, A., López-Millán, A. F. (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol. Biochem. 49: 471–482.
Armstrong, F. A. (2008) Why did nature choose manganese to make oxygen? Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363: 1263–1270.
Arnon, D. I., and Stout, P. R. (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 14: 371–375.
Asher, C. J., and Edwards, D. G. (1983) Modern solution culture techniques. In Encyclopedia of Plant Physiology, New Series, Vol. 15B: Inorganic Plant Nutrition, A. Läuchli and R. L. Bieleski, eds., Springer, Berlin, pp. 94–119.
Bloom, A. J. (1979) Salt requirement for crassulacean acid metabolism in the annual succulent, Mesembryanthemum crystallinum. Plant Physiol. 63: 749–753.
Bouma, D. (1983) Diagnosis of mineral deficiencies using plant tests. In Encyclopedia of Plant Physiology, New Series, Vol. 15B: Inorganic Plant Nutrition, A. Läuchli and R. L. Bieleski, eds., Springer, Berlin, pp. 120–146.
Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., and Lux, A. (2007) Zinc in plants. New Phytol. 173: 677–702.
Brown, P. H. and Bassil, E. (2011) Overview of the acquisition and utilization of boron, chlorine, copper, manganese, molybdenum, and nickel by plants and prospects for improvement of micronutrient use efficiency. In: The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, M. J. Hawkesford and P. Barraclough, eds. Wiley-Blackwell, Oxford. pp. 377-428.
Brownell, P. F., and Bielig, L. M. (1996) The role of sodium in the conversion of pyruvate to phosphoenolpyruvate in mesophyll chloroplasts of C4 plants. Aust. J. Plant Physiol. 23: 171–177.
Cheval, C., Aldon, D., Galaud, J.-P., and Ranty, B. (2013) Calcium/calmodulin-mediated regulation of plant immunity. Biochim. Biophys. Acta, Mol. Cell Res. 1833: 1766–1771.
Colmenero-Flores, J. M., Martinez, G., Gamba, G., Vazquez, N., Iglesias, D. J., Brumos, J., and Talon, M. (2007) Identification and functional characterization of cation–chloride cotransporters in plants. Plant J. 50: 278–292.
Cooper, A. (1979) The ABC of NFT: Nutrient Film Technique: The World’s First Method of Crop Production without a Solid Rooting Medium. Grower Books, London.
Engel, R. E., Bruebaker, L., and Emborg, T. J. (2001) A chloride deficient leaf spot of durum wheat. Soil Sci. Soc. Am. J. 65: 1448–1454.
Epstein, E. (1972) Mineral Nutrition of Plants: Principles and Perspectives. John Wiley and Sons, New York.
Epstein, E. (1999) Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 641–664.
Epstein, E. (2009) Silicon: Its manifold roles in plants. Ann. Appl. Biol. 155: 155–160.
Epstein, E., and Bloom, A. J. (2005) Mineral Nutrition of Plants: Principles and Perspectives, 2nd ed. Sinauer Associates, Sunderland, MA.
Evans, H. J., and Sorger, G. J. (1966) Role of mineral elements with emphasis on the univalent cations. Annu. Rev. Plant Physiol. 17: 47–76.
Gericke, W. F. (1937) Hydroponics—Crop production in liquid culture media. Science 85: 177–178.
Hetherington, A. M., and Brownlee, C. (2004) The generation of Ca2+ signals in plants. Annu. Rev. Plant Biol. 55: 401–427.
Jeong, J., and Guerinot, M. L. (2009) Homing in on iron homeostasis in plants. Trends Plant Sci. 14: 280–285.
Kobayashi, T. and Nishizawa, N. K. (2012) Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 63: 131–152.
Lucena, J.J. (2006) Synthetic iron chelates to correct iron deficiency in plants. In Iron Nutrition in Plants and Rhizospheric Microorganisms. L. L. Barton and J. Abadía eds., Springer, Dordrecht, Netherlands.
Marschner, H. and Marschner, P. (2012) Marschner's Mineral Nutrition of Higher Plants, 3rd ed. Elsevier/Academic Press, London; Waltham, MA.
Mengel, K., and Kirkby, E. A. (2001) Principles of Plant Nutrition, 5th ed. Kluwer Academic Publishers, Dordrecht, Netherlands.
Popelkova, H., and Yocum, C. F. (2007) Current status of the role of Cl– ion in the oxygen-evolving complex. Photosyn. Res. 93: 111–121.
Raven, J. A., and Smith, F. A. (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol. 76: 415–431.
Reguera, M., Espi, A., Bolaños, L., Bonilla, I., and Redondo-Nieto, M. (2009) Endoreduplication before cell differentiation fails in boron-deficient legume nodules. Is boron involved in signalling during cell cycle regulation? New Phytol. 183: 8–12.
Rellán-Álvarez, R., Giner-Martínez-Sierra, J., Orduna, J., Orera, I., Rodríguez-Castrillón, J.A., García-Alonso, J.I., Abadía, J., and Álvarez-Fernández, A. (2010) Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: New insights into plant iron long-distance transport. Plant Cell Physiol. 51: 91–102.
Schwarz, G., and Mendel, R. R. (2006) Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu. Rev. Plant Biol. 57: 623–647.
Sievers, R. E., and Bailar, J. C., Jr. (1962) Some metal chelates of ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and triethylenetriaminehexaacetic acid. Inorg. Chem. 1: 174–182.
Weathers, P. J., and Zobel, R. W. (1992) Aeroponics for the culture of organisms, tissues, and cells. Biotechnol. Adv. 10: 93–115.
Wood, B. W., Reilly, C. C., and Nyczepir, A. P. (2003) Nickel corrects mouse-ear. Pecan Grower 15: 3–5.
Yruela, I. (2009) Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 36: 409–430.
Zobel, R. W. (1989) Steady-state control and investigation of root system morphology. In Applications of Continuous and Steady-State Methods to Root Biology, J. G. Torrey and L. J. Winship, eds. Kluwer Academic, Dordrecht, Netherlands. pp. 165–182.
Treating Nutritional Deficiencies
Brown, P. H. and Bassil, E. (2011) Overview of the acquisition and utilization of boron, chlorine, copper, manganese, molybdenum, and nickel by plants and prospects for improvement of micronutrient use efficiency. In The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, M.J. Hawkesford and P. Barraclough, eds. Wiley-Blackwell, Oxford. pp. 377–428.
Fageria, N., Filho, M. B., Moreira, A., and Guimaraes, C. (2009) Foliar fertilization of crop plants. J. Plant Nutr. 32: 1044–1064.
Fernández, V. and Eichert, T. (2009) Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Crit. Rev. Plant Sci. 28: 36–68.
Fernández, V., Sotiropoulos, T., and Brown, P. (2013) Foliar Fertilization: Scientific Principles and Field Practices. International Fertilizer Industry Association, Paris, France.
Lucas, R. E., and Davis, J. F. (1961) Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92: 177–182.
Mengel, K., and Kirkby, E. A. (2001) Principles of Plant Nutrition, 5th ed. Kluwer Academic Publishers, Dordrecht, Netherlands.
Soil, Roots, and Microbes
Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H., Abadía, A., Álvarez-Fernández, A., López-Millán, A. F. (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol. Biochem. 49: 471–482.
Bar-Yosef, B., Kafkafi, U., and Bresler, E. (1972) Uptake of phosphorus by plants growing under field conditions: I. Theoretical model and experimental determination of its parameters. Soil Sci. 36: 783–800.
Berry, W. L., and Wallace, A. (1981) Toxicity: The concept and relationship to the dose response curve. J. Plant Nutr. 3: 13–19.
Bloom, A. J. (2005) Coordination between roots and shoots. In Long-Distance Transport in Plants, N. M. Holbrook and M. A. Zwieniecki, eds., Academic Press, San Diego, CA, pp. 241–256.
Bloom, A. J., Jackson, L. E., and Smart, D. R. (1993) Root growth as a function of ammonium and nitrate in the root zone. Plant Cell Environ. 16: 199–206.
Bloom, A. J., Randall, L., Taylor, A. R., and Silk, W. K. (2012) Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts. J. Exp. Bot. 63: 1997–2006.
Brady, N. C. (1974) The Nature and Properties of Soils, 8th ed. Macmillan, New York.
Bret-Harte, M. S., and Silk, W. K. (1994) Nonvascular, symplasmic diffusion of sucrose cannot satisfy the carbon demands of growth in the primary root tip of Zea mays L. Plant Physiol. 105: 19–33.
Bucher, M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173: 11–26.
Burns, I. G. (1991) Short- and long-term effects of a change in the spatial distribution of nitrate in the root zone on N uptake, growth and root development of young lettuce plants. Plant Cell Environ. 14: 21–33.
Clarkson, D. T. (1985) Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant Physiol. 36: 77–116.
Colmer, T. D., and Bloom, A. J. (1998) A comparison of net NH4+ and NO3– fluxes along roots of rice and maize. Plant Cell Environ. 21: 240–246.
Comerford, N. B. (1998) Soil phosphorus bioavailability. In Phosphorus in Plant Biology, J. P. Lynch, and J. Deikman, eds., Vol. 19, American Society of Plant Physiologists, Rockville, MD, pp. 136–147.
Dittmer, H. J. (1937) A quantitative study of the roots and root hairs of a winter rye plant (Secale cereale). Am. J. Bot. 24: 417–420.
Durieux, R. P., Kamprath, E. J., Jackson, W. A., and Moll, R. H. (1994) Root distribution of corn: The effect of nitrogen fertilization. Agron. J. 86: 958–962.
Fang, Y. Y., Babourina, O., Rengel, Z., Yang, X. E., and Pu, P. M. (2007) Spatial distribution of ammonium and nitrate fluxes along roots of wetland plants. Plant Sci. 173: 240–246.
Feldman, L. J. (1998) Not so quiet quiescent centers. Trends Plant Sci. 3: 80–81.
Föhse, D., Claassen, N., and Jungk, A. (1991) Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation–anion balance for phosphorus influx in seven plant species. Plant Soil 132: 261–272.
Gregory, P. J. (2006) Plant Roots: Growth, Activity, and Interaction with Soils, Blackwell Pub., Oxford; Ames, Iowa.
Hawkins, B. J., Boukcim, H., and Plassard, C. (2008) A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas fir and lodgepole pine grown and measured with different inorganic nitrogen sources. Plant Cell Environ. 31: 278–287.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. A., and Schulze, E.-D. (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389–411.
Jakobsen, I., Chen, B., Munkvold, L., Lundsgaard, T., and Zhu, Y. G. (2005) Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant Cell Environ. 28: 928–938.
Jones, M. D. and Smith, S. E. (2004) Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms? Can. J. Bot. 82: 1089–1109.
Kashirad, A., Marschner, H., and Richter, C. H. (1973) Absorption and translocation of 59Fe from various parts of the corn root. Z. Pflanzenernähr. Bodenk. 134: 136–147.
Lambers, H., Bishop, J. G., Hopper, S. D., Laliberté, E., and Zúñiga-Feest, A. (2012) Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann. Bot. 110: 329–348.
Marschner, H. and Marschner, P. (2012) Marschner's Mineral Nutrition of Higher Plants, 3rd ed. Elsevier/Academic Press, London; Waltham, MA.
Mengel, K., and Kirkby, E. A. (2001) Principles of Plant Nutrition, 5th ed. Kluwer Academic Publishers, Dordrecht, Netherlands.
Miller, R. and Jastrow, J. (2000) Mycorrhizal fungi influence soil structure. In: Arbuscular Mycorrhizas: Physiology and Function, H. Koltai and Y. Kapulnik, eds., Springer, pp. 3–18.
Peleg, Z., Apse, M. P., and Blumwald, E. (2011) Engineering salinity and water-stress tolerance in crop plants: Getting closer to the field. Adv. Bot. Res. 57: 405–443.
Read, D. J. (1991) Mycorrhizal fungi in natural and semi-natural plant communities. In Ecophysiology of Ectomycorrhizae of Forest Trees. M. Wallenberg Foundation, Stockholm, Sweden. Wallenberg Foundation Symposium Proceedings Vol. 7, pp 27–53.
Robinson, D., Hodge, A., Griffiths, B. S., and Fitter, A. H. (1999) Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proc. R. Soc. Lond., B, Biol. Sci. 266: 431–435.
Robinson, D., Linehan, D. J., and Caul, S. (1991) What limits nitrate uptake from soil? Plant Cell Environ. 14: 77–85.
Rovira, A. D., Bowen, C. D., and Foster, R. C. (1983) The significance of rhizosphere microflora and mycorrhizas in plant nutrition. In Encyclopedia of Plant Physiology, New Series, Vol. 15B: Inorganic Plant Nutrition, A. Läuchli and R. L. Bieleski, eds., Springer, Berlin, pp. 61–93.
Schulze, E. D. and Bloom, A. J. (1984) Relationship between mineral nitrogen influx and transpiration in radish and tomato. Plant Physiol. 76: 827–828.
Sharp, R. E., Hsiao, T. C., and Silk, W. K. (1990) Growth of the maize primary root at low water potentials. II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiol. 93: 1337–1346.
Smith, F. A., Smith, S. E., and Timonen, S. (2003) Mycorrhizas. In: Root Ecology, H. de Kroon and E. J. W. Visser, eds. Springer, Berlin. pp. 257–295.
Smith, S. E., and Read, D. J. (2008) Mycorrhizal Symbiosis, 3rd ed. Academic Press, Amsterdam, Boston.
Smith, S. E., and Smith, F. A. (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62: 227–250.
Smith, S. E., Jakobsen, I., Grønlund, M., and Smith, F. A. (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156: 1050–1057.
Stewart, G. R., and Ahmad, I. (1983) Adaptation to salinity in angiosperm halophytes. In Metals and Micronutrients: Uptake and Utilization by Plants, D. A. Robb and W. S. Pierpoint, eds., Academic Press, New York, pp. 33–50.
Tinker, P. B. and Nye, P. H. (2000) Solute Movement in the Rhizosphere, Oxford University Press, New York.
Walch-Liu, P., Filleur, S., Gan, Y. B., and Forde, B. G. (2005) Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. Photosyn. Res. 83: 239–250.
Wang, B. and Qiu, Y.-L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299–363.
Weaver, J. E. (1926) Root Development of Field Crops. McGraw-Hill, New York.
Web Topics
Antonovics, J., Bradshaw, A. D., and Turner, R. G. (1971) Heavy metal tolerance in plants. Adv. Ecol. Res. 7: 1–85.
Braconnier, S. and Bonneau, X. (1998) Effects of chlorine deficiency in the on leaf gas exchanges in the PB121 coconut hybrid. Agronomie 18: 563-572.
Brown, P. H., Bellaloui, N., Hening, H. and Dandekar, A. (1999) Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency Plant Physiol. 119: 17-20.
Epstein, E. and Bloom, A. (2004) Plant Nutrition, Sinauer Associates, Sunderland, MA.
Grill, E., Loffler, S., Winnacker, E-L., and Zenk, M. H. (1989) Phytochelatins, the heavy metal-binding peptides of plants, are synthesized from glutathione by a specific u-3993'3f-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86: 6838–6842.
Haehnel, W. (1984) Photosynthetic electron transport in higher plants. Annu. Rev. Plant Physiol. 35: 659–693.
Hepler, P. K., and Wayne, R. O. (1985) Calcium and plant development. Annu. Rev. Plant Physiol. 36: 397–439.
Klepper, B., and Kaspar, T. C. (1994) Rhizotrons—Their development and use in agricultural research. Agron. J. 86: 745–753.
Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M., and Smith, J. A. C. (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–638.
Murphy, A., and Taiz, L. (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes: Correlation with copper tolerance. Plant Physiol. 109: 945–954.
Murphy, A., and Taiz, L. (1997) Correlation between long term K+ leakage and copper tolerance in ten Arabidopsis ecotypes. New Phytol. 136: 211–222.
Murphy, A., Zhou, J., Goldsbrough, P. B., and Taiz, L. (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana . Plant Physiol. 113: 1293–1301
Nriagu, J. O., and Pacyna, J. M. (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134–139.
Salt, D. E., and Rauser, W. E. (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol . 107: 1293–1301.
Stohs, S. J., and Bagchi, D. (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18: 321–336.
Terry, N. (1977) Photosynthesis, growth and the role of chloride. Plant Physiol. 60: 69–75.