Chapter 22 References
Textbook
Programmed Cell Death and Autolysis
Avin-Wittenberg, T., Honig, A., and Galili, G. (2012) Variations on a theme: Plant autophagy in comparison to yeast and mammals. Protoplasma 249: 285–299.
Bassham, D. C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L. J., and Yoshimoto, K. (2006) Autophagy in development and stress response of plants. Autophagy 2: 2–11.
Coll, N. S., Vercammen, D., Smidler, A., Clover, C., Van Breusegem, F., Dangl, J. L., and Epple, P. (2010) Arabidopsis type I metacaspases control cell death. Science 330: 1393–1397.
Domínguez, F., and Javier Cejudo, F. (2012) A comparison between nuclear dismantling during plant and animal programmed cell death. Plant Sci. 197: 114–121.
Floyd, B. E., Morriss, S. C., MacIntosh, G. C., and Bassham, D. C. (2012) What to eat: Evidence for selective autophagy in plants. J. Integr. Plant Biol. 54: 907–920.
Fomicheva, A. S., Tuzhikov, A. I., Beloshistov, R. E., Trusova, S. V., Galiullina, R. A., Mochalova, L. V., Chichkova, N. V., and Vartapetian, A. B. (2012) Programmed cell death in plants. Biochem. (Mosc.) 77: 1452–1464.
Izumi, M., Hidema, J., Makino, A., and Ishida, H. (2013) Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol. 161: 1682–1693.
Kim, S.-H., Kwon, C., Lee, J.-H., and Chung, T. (2012) Genes for plant autophagy: Functions and interactions. Mol. Cells 34: 413–423.
Kwon, S. I., Cho, H. J., Kim, S. R., and Park, O. K. (2013) The rab GTPase rabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol. 161: 1722–1736.
Liu, Y., and Bassham, D. C. (2012) Autophagy: Pathways for self-eating in plant cells. Annu. Rev. Plant Biol.63: 215–237.
Liu, Y., Soto Burgos, J., Deng, Y., Srivastava, R., Howell, S. H. and Bassham, D. C. (2012) Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24: 4635–4651.
Van Doorn, W. G., and Papini, A. (2013) Ultrastructure of autophagy in plant cells. Autophagy 9: 1–15.
Wang, J., and Bayles, K. W. (2012) Programmed cell death in plants: Lessons from bacteria? Trends Plant Sci. 18: 133–139.
Xiong, Y., and Sheen, J. (2014) The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 164: 499–512.
Yang, Z., and Klionsky, D. J. (2009) An overview of the molecular mechanism of autophagy. In Autophagy in Infection and Immunity (Current Topics in Microbiology and Immunology, Vol. 335), B. Levine, T. Yoshimori, and V. Deretic, eds., Springer-Verlag, Berlin, pp. 1–32.
Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T. and Ohsumi, Y. (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16: 2967–2983.
Zhuang, X., Wang, H., Lam, S. K., Gao, C., Wang, X., Cai, Y., and Jiang, L. (2013) A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell 25: 4596–4615.
The Leaf Senescence Syndrome
Archetti, M., Döring, T. F., Hagen, S. B., Hughes, N. M., Leather, S. R., Lee, D. W., Lev-Yadun, S., Manetas, Y., Ougham, H. J., Schaberg, P. G., et al. (2008) Unravelling the evolution of autumn colours: An interdisciplinary approach. Trends Ecol. Evol. 24: 166–173.
Fracheboud, Y., Luquez, V., Björkén, L., Sjödin, A., Tuominen, H., and Jansson, S. (2009) The control of autumn senescence in European aspen. Plant Physiol. 149: 1982–1991.
Hörtensteiner, S. (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol. Biol. 82: 505–517.
Keskitalo, J., Bergquist, G., Gardestrom, P., and Jansson, S. (2005) A cellular timetable of autumn senescence. Plant Physiol. 139: 1635–1648.
Kobayashi, Y., Motose, H., Iwamoto, K., and Fukuda, H. (2011) Expression and genome-wide analysis of the xylogen-type gene family. Plant Cell Physiol. 52: 1095–1106.
Krupinska, K. (2007) Fate and activities of plastids during leaf senescence. In: Advances in Photosynthesis and Respiration, Vol. 23: The Structure and Function of Plastids, R. R. Wise and J. K. Hoober, eds., Springer, pp. 433–449.
Krupinska, K., Mulisch, M., Hollmann, J., Tokarz, K., Zschiesche, W., Kage, H., Humbeck, K., and Bilger, W. (2012) An alternative strategy of dismantling of the chloroplasts during leaf senescence observed in a high-yield variety of barley. Physiol. Plant. 144: 189–200.
Lee, D. W., O’Keefe, J., Holbrook, N. M., and Field, T. S. (2003) Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecol. Res. 18: 677–694.
Martínez, D. E., Costa, M. L., Gomez, F. M., Otegui, M. S., and Guiamet, J. J. (2008) ‘Senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J. 56: 196–206.
Mulisch, M., and Krupinska, K. (2013) Ultrastructural analyses of senescence associated dismantling of chloroplasts revisited. In Advances in Photosynthesis and Respiration, Vol. 36: Plastid Development in Leaves During Growth and Senescence, B. Biswal, K. Krupinska and U. C. Biswal, eds., Springer, Dordrecht, pp. 307–335.
Ono, Y., Wada, S., Izumi, M., Makino, A. and Ishida, H. (2013) Evidence for contribution of autophagy to Rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant Cell Environ. 36: 1147–1159.
Stahl, E. (1909) Zur Biologie des Chlorophylls: Laubfarbe und Himmelslicht, Vergilbung und Etiolement. Verlag, Jena, Germany.
Wada, S., Ishida, H., Izumi, M., Yoshimoto, K., Ohsumi, Y., Mae, T., and Makino, A. (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darked leaves. Plant Physiol. 149: 885–893.
Wingler, A. (2011) Interactions between flowering and senescence regulation and the influence of low temperature in Arabidopsis and crop plants. Ann. Appl. Biol. 159: 320–338.
Wingler, A., Stangberg, E. J., Saxena, T., and Mistry, R. (2012) Interactions between temperature and Sugars in the regulation of leaf senescence in the perennial herb Arabis alpina L. J. Integr. Plant Biol. 8: 595–605.
Xiong, Y., and Sheen, J. (2014) The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 164: 499–512.
Leaf Senescence: The Regulatory Network
Breeze, E., Harrison, E., McHattie, S., Hughes, L., Hickman, R., Hill, C., Kiddle, S., Kim, Y.-S., Penfold, C. A., Jenkins, D. et al. (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23: 873–894.
Fischer, A. M. (2012) The complex regulation of senescence. Crit. Rev. Plant Sci. 31: 124–147.
Gan, S., and Amasino, R. M. (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986–1988.
Guo, Y., and Gan, S.-S. (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ. 35: 644–655.
Humbeck, K. (2013) Epigenetic and small RNA regulation of senescence. Plant Mol. Biol. 82: 529–537.
Jibran, R., Hunter, D. A., and Dijkwel, P. P. (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol. Biol. 82: 547–561.
Mothes, K., and Schütte, H. (1961) Über die akkumulation von alpha-aminoisobuttersäure in blattgewebe unter dem einflub von kinetin. Physiol. Plant. 14: 72–75.
O’Hara, L. E., Paul, M. J., and Wingler, A. (2013) How do sugars regulate plant growth and Development? New insight into the role of trehalose-6-phosphate. Mol. Plant 6: 261–274.
Sato, Y., Morita, R., Nishimura, M., Yamaguchi, H., and Kusaba, M. (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc. Natl. Acad. Sci. USA 104: 14169–14174.
Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., and Dubcovsky, J. (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298–1301.
Wang, Y., Lin, A., Loake, G. J., and Chu, C. (2013) H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species. J. Integr. Plant Biol. 55: 202–208.
Leaf Abscission
Aalen, R. B., Wildhagen, M., Stø, I. M., and Butenko, M. A. (2013) IDA: A peptide ligand regulating cell separation processes in Arabidopsis. J. Exp. Bot. 64: 5253–5261.
González-Carranza, Z. H., Shahid, A. A., Zhang, L., Liu, Y., Ninsuwan, U., and Roberts, J. A. (2012) A novel approach to dissect the abscission process in Arabidopsis. Plant Physiol. 160: 1342–1356.
Meir, S., Hunter, D. A., Chen, J.-C., Halaly, V., and Reid, M. S. (2006) Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. Plant Physiol. 141: 1604–1616.
Morgan, P. W. (1984) Is ethylene the natural regulator of abscission? In Ethylene: Biochemical, Physiological and Applied Aspects, Y. Fuchs and E. Chalutz, eds., Martinus Nijhoff, The Hague, Netherlands, pp. 231–240.
Nakano, T., and Ito, Y. (2013) Molecular mechanisms controlling plant organ abscission. Plant Biotechnol. 30: 209–216.
Vahala, J., Ruonala, R., Keinänen, M., Tuominen, H., and Kangasjärvi, J. (2003) Ethylene insensitivity modulates ozone-induced cell death in birch (Betula pendula). Plant Physiol. 132: 185–195.
Whole Plant Senescence
Davies, P. J., and Gan, S. (2012) Towards an integrated view of monocarpic plant senescence. Russ. J. Plant Physio. 59: 467–478.
Henriksson, J. (2001) Differential shading of branches or whole trees: Survival, growth, and reproduction. Oecologia 126: 482–486.
Khan, M., Rozhon, W., and Poppenberger, B. (2014) The role of hormones in the aging of plants–A mini-review. Gerontology 60: 49–55.
Mitteldorf, J. J. (2013) How does the body know how old it is? Introducing the epigenetic clock hypothesis. Biochem. (Mosc.) 78: 1048–1053.
Munné-Bosch, S. (2008) Do perennials really senesce? Trends Plant Sci. 13: 216–220.
Noodén, L. D. (2013) Defining senescence and death in photosynthetic tissues. In Advances in Photosynthesis and Respiration, Vol. 36: Plastid Development in Leaves During Growth and Senescence, B. Biswal, K. Krupinska, and U. C. Biswal, eds., Springer, Dordrecht. pp. 283–306.
Petit, G., Anfodillo, T., Carraro, V., Grani, F., and Carrer, M. (2011) Hydraulic constraints limit height growth in trees at high altitude. New Phytol. 189: 241–252.
Sillett, S. C., van Pelt, R., Koch, G. W., Ambrose, A. R., Carroll, A. L., Antoine, M. E., and Mifsud, B. M. (2010) Increasing wood production through old age in tall trees. For. Ecol. Manage. 259: 976–994.
Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G., Coomes, D. A., Lines, E. R., Morris, W. K., Rüger, N., et al. (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90–93.
Thomas, H. (2013) Senescence, ageing and death of the whole plant. New Phytol. 197: 696–711.
Web Topics
Heun, M., Schäfer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B., and Salamini, F. (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278: 1312–1314.
Hillman, G. C., and Davies, M. S. (1990a) Domestication rates in wild-type wheats and barley under primitive cultivation. Biol. J. Linnean Soc. 39: 39–78.
Hillman, G. C., and Davies, M. S. (1990b) Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J. World Prehistory 4: 157–222.
Sharma, H. C., and Waines, J. G. (1980) Inheritance of tough rachis in crosses of Triticum monococcum and T. boeoticum. J. Hered. 71: 214–216.
Smith, B. D. (1995) The Emergence of Agriculture. Scientific American Library, New York.