Chapter 20 References

Textbook

Floral Evocation: Integrating Environmental Cues

McDaniel, C. N. (1996) Developmental physiology of floral initiation in Nicotiana tabacum L. J. Exp. Bot. 47: 465–475.

McDaniel, C. N., Hartnett, L. K., and Sangrey, K. A. (1996) Regulation of node number in day-neutral Nicotiana tabacum: A factor in plant size. Plant J. 9: 56–61.

McDaniel, C. N., Singer, S. R., and Smith, S. M. E. (1992) Developmental states associated with the floral transition. Dev. Biol. 153: 59–69.

The Shoot Apex and Phase Changes

Clark, J. R. (1983) Age-related changes in trees. J. Arboriculture 9: 201–205.

Huijser, P., and Schmid, M. (2011) The control of developmental phase transitions in plants. Development 138: 4117–4129.

Poethig, R. S. (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923–930.

Poethig, R. S. (2003) Phase change and the regulation of developmental timing in plants. Science 301: 334–336.

Circadian Rhythms: The Clock Within

Bünning, E. (1960) Biological clocks. Cold Spring Harbor Symp. Quant. Biol. 15: 1–9.

Farre, E. M., and Liu, T. (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr. Opin. Plant Biol. 16: 621–629.

Photoperiodism: Monitoring Day Length

An, H., Roussot, C., Suárez-López, P., Corbesier, L., Vincent, C., Piñeiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., et al. (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131: 3615–3626.

Coulter, M. W., and Hamner, K. C. (1964) Photoperiodic flowering response of Biloxi soybean in 72 hour cycles. Plant Physiol. 39: 848–856.

Deitzer, G. (1984) Photoperiodic induction in long-day plants. In Light and the Flowering Process, D. Vince-Prue, B. Thomas, and K. E. Cockshull, eds., Academic Press, New York, pp. 51–63.

El-Din El-Assal, S., Alonso-Blanco, C., Peeters, A. J., Wagemaker, C., Weller, J. L., and Koornneef, M. (2003) The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol. 133: 1504–1516.

Hayama, R., and Coupland, G. (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 135: 677–684.

Hendricks, S. B., and Siegelman, H. W. (1967) Phytochrome and photoperiodism in plants. Comp. Biochem. 27: 211–235.

Lang, A. (1965) Physiology of flower initiation. In Encyclopedia of Plant Physiology (Old Series, Vol. 15), W. Ruhland, ed., Springer, Berlin, pp. 1380–1535.

Lang, A., Chailakhyan, M. K., and Frolova, I. A. (1977) Promotion and inhibition of flower formation in a day-neutral plant in grafts with a short-day plant and a long-day plant. Proc. Natl. Acad. Sci. USA 74: 2412–2416.

Papenfuss, H. D., and Salisbury, F. B. (1967) Aspects of clock resetting in flowering of Xanthium. Plant Physiol. 42: 1562–1568.

Vernalization: Promoting Flowering with Cold

Amasino, R. M. (2004) Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16: 2553–2559.

Bastow, R., Mylne, J. S., Lister, C., Lippman, Z., Martienssen, R. A., and Dean, C. (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427: 164–167.

Purvis, O. N., and Gregory, F. G. (1952) Studies in vernalization of cereals. XII. The reversibility by high temperature of the vernalized condition in Petkus winter rye. Ann. Bot. 1: 569–592.

Long-Distance Signaling Involved in Flowering

Liu, L., Zhu, Y., Shen, L., and Yu, H. (2013) Emerging insights into florigen transport. Curr. Opin. Plant Biol. 16: 607–613.

The Identification of Florigen

Jaeger, K. E. and Wigge, P. A. (2007) FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17: 1050–1054.

Liu, L., Zhu, Y., Shen, L., and Yu, H. (2013) Emerging insights into florigen transport. Curr. Opin. Plant Biol. 16: 607–613.

Song, Y. H., Ito, S., and Imaizumi, T. (2013) Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18: 575–583.

Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S., and Shimamoto, K. (2007) Hd3a protein is a mobile flowering signal in rice. Science 316: 1033–1036.

Taoka, K.-I., Ohki, I., Tsuji, H., Kojima, C., and Shimamoto, K. (2013) Structure and function of florigen and the receptor complex. Trends Plant Sci. 18: 287–294.

Floral Meristems and Floral Organ Development

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052–1056.

Bewley, J. D., Hempel, F. D., McCormick, S., and Zambryski, P. (2000) Reproductive development. In: Biochemistry and Molecular Biology of Plants, B. B. Buchanan, W. Gruissem, and R. L. Jones, eds., American Society of Plant Biologists, Rockville, MD, pp. 988–1034.

Busch, A., and Zachgo, S. (2009) Flower symmetry evolution: Towards understanding the abominable mystery of angiosperm radiation. BioEssays 31: 1181–1190.

Causiera, B., Schwarz-Sommerb, Z., and Davies, B. (2010) Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 21: 73–79.

Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M. F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14: 1935–1940.

Jaeger, K. E., Pullen, N., Lamzin, S., Morris, R. J., and Wigge, P. A. (2013) Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25: 820–833.

Krizek, B. A., and Fletcher, J. C. (2005) Molecular mechanisms of flower development: An armchair guide. Nat. Rev. Genet. 6: 688–698.

Lee, J., and Lee, I. (2010) Regulation and function of SOC1, a flowering pathway integrator. J. Exp. Bot. 61: 2247–2254.

Litt, A., and Kramer, E. M. (2010) The ABC model and the diversification of floral organ identity. Semin. Cell Dev. Biol. 21: 129–137.

Liu, L., Liu, C., Hou, X., Xi, W., Shen, L., Tao, Z., Wang, Y., and Yu, H. (2012) FTIP1 is an essential regulator required for florigen transport. PLOS Biol. 10(4): e1001313. DOI: 10.1371/ journal.pbio.1001313

Liu, Z., and Mara, C. (2010) Regulatory mechanisms for floral homeotic gene expression. Semin. Cell Dev. Biol. 21: 80–86.

Meyerowitz, E. M. (2002) Plants compared to animals: The broadest comparative study of development. Science 295: 1482–1485.

Nakamura, Y., Andres, F., Kanehara, K., Liu, Y.-C., Dörmann, P., and Coupland, G. (2014) Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering . Nat. Commun. 5: 3553.

Pelaz, S., Gustafson-Brown, C., Kohalmi, S. E., Crosby, W. L., and Yanofsky, M. F. (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26: 385–394.

Pelaz, S., Tapia-Lopez, R., Alvarez-Buyll, E. R., and Yanofsky, M. F. (2001) Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11: 182–184.

Rijpkemaa, A. S., Vandenbusscheb, M., Koesc, R., Heijmansd, K., and Gerats, T. (2010) Variations on a theme: Changes in the floral ABCs in angiosperms. Semin. Cell Dev. Biol. 2: 100–107.

Theissen, T., and Saedler, H. (2001) Floral quartets. Nature 409: 469–471.

Web Topics

Beveridge, C. A., and Murfet, I. C. (1996) The gigas mutant in pea is deficient in the floral stimulus. Physiol. Plantarum 96: 637–645.

Hicks, K. A., Millar, A. J., Carre, I. A., Somers, D. E., Straume, M., Meeks-Wagner, D. R., and Kay, S. A. (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274: 790–792.

King, R. W., and Cumming, B. (1972) Rhythms as photoperiodic timers in the control of flowering in Chenopodium rubrum L. Planta 103: 281–301.

Lejeune, P., Bernier, G., Requier, M-C., and Kinet, J-M. (1994) Cytokinins in phloem and xylem saps of Sinapis alba during floral induction. Physiol. Plantarum 90: 522–528.

McDaniel, C. N., Singer, S. R., and Smith, S. M. E. (1992) Developmental states associated with the floral transition. Dev. Biol. 153: 59–69.

McDaniel, C. N., Hartnett, L. K., and Sangrey, K. A. (1996) Regulation of node number in day-neutral Nicotiana tabacum: A factor in plant size. Plant J. 9: 56–61.

Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847–857.

Reed, J. W., Nagatani, A., Elich, T. D., Fagan, M., and Chory, J. (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104: 1139–1149.

Reid, J. B., Murfet, I. C., Singer, S. R., Weller, J. L., and Taylor, S.A. (1996) Physiological genetics of flowering in Pisum. Sem. Cell Dev. Biol. 7: 455–463.

Weigel, D. (1995) The genetics of flower development: From floral induction to ovule morphogenesis. Annu. Rev. Genet. 29: 19–39.

Weller, J. L., Murfet, I. C., and Reid, J. B. (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol. 114: 1225–1236.

Zagotta, M. T., Hicks, K. A., Jacobs, C. I., Young, J. C., Hangarter, R. P., and Meeks-Wagner, D. R. (1996) The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10: 691–702.

Zeevaart, J. A. D. (1985) Bryophyllum. In Handbook of Flowering, Vol. II, A. H. Halevy, ed., CRC Press, Boca Raton, FL, pp. 89–100.

Zeevaart, J. A. D., and Boyer, G. L. (1987) Photoperiodic induction and the floral stimulus in Perilla. In Manipulation of Flowering, J. G. Atherton, ed., Butterworths, London, pp. 269–277.

Zimmer, R. (1962) Phasenverschiebung und andere Störlichtwirkungen auf die endogen tagesperiodischen Blütenblattbewegungen von Kalanchoe blossfeldiana (Phase shift and other light interruption effects on endogenous diurnal petal movements). Planta 58: 283–300. 

Back to top