Chapter 14 References

Textbook

Overview of Plant Cell Wall Functions and Structures

Anderson, C. T., Wallace, I. S.,  and Somerville, C. R. (2012) Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. Proc. Natl. Acad. Sci. USA 109: 1329–1334.

Atmodjo, M. A., Sakuragi, Y., Zhu, X., Burrell, A. J., Mohanty, S. S., Atwood, J. A., 3rd, Orlando, R., Scheller, H. V., and Mohnen, D. (2011) Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proc. Natl. Acad. Sci. USA 108: 20225–20230.

Buanafina, M. M. de O. (2009) Feruloylation in grasses: current and future perspectives. Mol. Plant 2: 861–872.

Buda, G. J., Isaacson, T., Matas, A. J., Paolillo, D. J., and Rose, J. K. (2009) Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy. Plant J. 60: 378–385.

Cannon, M. C., Terneus, K., Hall, Q., Tan, L., Wang, Y., Wegenhart, B. L., Chen, L., Lamport, D. T. A., Chen, Y., and Kieliszewski, M. J. (2008) Self-assembly of the plant cell wall requires an extensin scaffold. Proc. Natl. Acad. Sci. USA 105: 2226–2231.

Carpita, N. C. (1996) Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 445–476.

Carpita, N. C., and McCann, M. (2000) The cell wall. In Biochemistry and Molecular Biology of Plants, B. B. Buchanan, W. Gruissem, and R. L. Jones eds., American Society of Plant Biologists, Rockville, MD, pp. 52–108.

Carpita, N. C., Defernez, M., Findlay, K., Wells, B., Shoue, D. A., Catchpole, G., Wilson, R. H., and McCann, M. C. (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 127: 551–565.

Carroll, A., and Specht, C. D. (2011) Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. Front. Plant Sci. 2: 5.

Carroll, A., Mansoori, N., Li, S. D., Lei, L., Vernhettes, S., Visser, R. G., Somerville, C., Gu, Y., and Trindade, L. M. (2012) Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol. 160: 726–737.

Chambat, G., Karmous, M., Costes, M., Picard, M., and Joseleau, J. P. (2005) Variation of xyloglucan substitution pattern affects the sorption on celluloses with different degrees of crystallinity. Cellulose 12: 117–125.

Chebli, Y., Kaneda, M., Zerzour, R., and Geitmann, A. (2012) The cell wall of the Arabidopsis pollen tube—spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol. 160: 1940–1955.

Chou, Y. H., Pogorelko, G., and Zabotina, O. A. (2012) Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes. Plant Physiol. 159: 1355–1366.

Cosgrove, D. J. (2005) Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6: 850–861.

Cosgrove, D. J., and Jarvis, M. C. (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci. 3: 204.

Derbyshire, P., McCann, M. C., and Roberts, K., (2007b) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol. 7: 31.

Ellis, M., Egelund, J., Schultz, C. J., and Bacic, A. (2010) Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol. 153: 403–419.

Fernandes, A. N., Thomas, L. H., Altaner, C. M., Callow, P., Forsyth, V. T., Apperley, D. C., Kennedy, C. J., and Jarvis, M. C. (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl. Acad. Sci. USA 108: E1195–E1203.

Gunning, B. E. S., and Steer, M. W. (1996) Plant Cell Biology: Structure and Function, Jones and Bartlett, Sudbury, MA.

Hayashi, T. (1989) Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 139–168.

Ishii, T., Matsunaga, T., Pellerin, P., O'neill, M. A., Darvill, A., and Albersheim, P. (1999) The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross-linked dimer. J. Biol. Chem. 274: 13098–13104.

Jarvis, M. C., Briggs, S. P., and Knox, J. P. (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ. 26: 977–989.

Kierzkowski, D., Nakayama, N., Routier-Kierzkowska, A.-L., Weber, A., Bayer, E., Schorderet, M., Reinhardt, D., Kuhlemeier, C., and Smith, R. S. (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335: 1096–1099.

Kimura, S., Laosinchai, W., Itoh, T., Cui, X., Linder, R., and Brown, R. M., Jr. (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11: 2075–2085.

Lee, C., Zhong, R., and Ye, Z. H. (2012) Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant Cell Physiol. 53: 135–143.

Li, S., Bashline, L., Lei, L., and Gu, Y. (2014) Cellulose synthesis and its regulation. Arabidopsis Book 12: e0169.

Liu, L., Shang-Guan, K., Zhang, B., Liu, X., Yan, M., Zhang, L., Shi, Y., Zhang, M., Quian, Q., Li, J., et al. (2013) Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet. 9: e1003704.

Lovegrove, A., Wilkinson, M. D., Freeman, J., Pellny, T. K., Tosi, P., Saulnier, L., Shewry, P. R., and Mitchell, R. A. (2013) RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol. 163: 95–107.

Maloney, V. J., Samuels, A. L., and Mansfield, S. D. (2012) The endo-1,4-beta-glucanase Korrigan exhibits functional conservation between gymnosperms and angiosperms and is required for proper cell wall formation in gymnosperms. New Phytol. 193: 1076–1087.

Matthews, J. F., Skopec, C. E., Mason, P. E., Zuccato, P., Torget, R. W., Sugiyama, J., Himmel, M. E., and Brady, J. W. (2006) Computer simulation studies of microcrystalline cellulose Ib. Carbohydr. Res. 341: 138–152.

McCann, M. C., Wells, B., and Roberts, K. (1990) Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci. 96: 323–334.

Mohnen, D. (2008) Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11: 266–277.

Morgan, J. L., Strumillo, J., and Zimmer, J. (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493: 181–186.

Newman, R. H., Hill, S. J., and Harris, P. J. (2013) Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol. 163: 1558–1567.

O'Neill, M. A., Ishii, T., Albersheim, P., and Darvill, A. G. (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 55: 109–139.

Obel, N., Erben, V., Schwarz, T., Kuhnel, S., Fodor, A., and Pauly, M. (2009) Microanalysis of plant cell wall polysaccharides. Mol. Plant 2: 922–932.

Park, S., Szumlanski, A. L., Gu, F., Guo, F., and Nielsen, E. (2011) A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat. Cell Biol. 13: 973–980.

Peaucelle, A., Braybrook, S. A., Le Guillou, L., Bron, E., Kuhlemeier, C., and Hofte, H. (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21: 1720–1726.

Popper, Z. A., and Fry, S. C. (2008) Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta 227: 781–794.

Ralet, M. C., Andre-Leroux, G., Quemener, B., and Thibault, J. F. (2005) Sugar beet (Beta vulgaris) pectins are covalently cross-linked through diferulic bridges in the cell wall. Phytochemistry 66: 2800–2814.

Ralph, J., Lundquist, K., Brunow, G., Fachuang, L., Kim, H., Schatz, P. F., Marita, J. M., Hatfield, R. D., Ralph, S. A., Holst, J. C., et al. (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3: 29–60.

Rees, D. A. (1977) Polysaccharide Shapes. Chapman and Hall, London.

Roland, J. C., Reis, D., Mosiniak, M., and Vian, B. (1982) Cell wall texture along the growth gradient of the mung bean hypocotyl: ordered assembly and dissipative processes. J. Cell Sci. 56: 303–318.

Scheller, H. V., and Ulvskov, P. (2010) Hemicelluloses. Annu. Rev. Plant Biol. 61: 263–289.

Schultink, A., Cheng, K., Park, Y. B., Cosgrove, D. J., and Pauly, M. (2013) The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents. Plant Physiol. 163: 86–94.

Sethaphong, L., Haigler, C. H., Kubicki, J. D., Zimmer, J., Bonetta, D., DeBolt, S., and Yingling, Y. G. (2013) Tertiary model of a plant cellulose synthase. Proc. Natl. Acad. Sci. USA 110: 7512–7517.

Skopec, C. E., Himmel, M. E., Matthews, J. F., and Brady, J. W. (2003) Energetics for displacing a single chain from the surface of microcrystalline cellulose into the active site of Acidothermus cellulolyticus Cel5A. Protein Eng. 16: 1005–1015.

Tabuchi, A., Li, L. C., and Cosgrove, D. J. (2011) Matrix solubilization and cell wall weakening by beta-expansin (group-1 allergen) from maize pollen. Plant J. 68: 546–559.

Talbott, L. D., and Ray, P. M. (1992) Molecular size and separability features of pea cell wall polysaccharides: implications for models of primary wall structure. Plant Physiol. 92: 357–368.

Tan, L., Eberhard, S., Pattathil, S., Warder, C., Glushka, J., Yuan, C., Hao, Z., Zhu, X., Avci, U., Miller, J. S., et al. (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25: 270–287.

Velasquez, S. M., Ricardi, M. M., Dorosz, J. G., Fernandez, P. V., Nadra, A. D., Pol-Fachin, L., Egelund, J., Gille, S., Harholt., J., Ciancia, M., et al. (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332: 1401–1403.

Verhertbruggen, Y., Yin, L., Oikawa, A., and Scheller, H. V. (2011) Mannan synthase activity in the CSLD family. Plant Signal. Behav. 6: 1620–1623.

Waldron, K. W., and Brett, C. T. (2007) The role of polymer cross-linking in intercellular adhesion. In Plant Cell Separation and Adhesion, J. Roberts and Z. Gonzalez-Carranza eds., Blackwell, Oxford, pp. 183–204.

Wang, T., Zabotina, O., and Hong, M. (2012) Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51: 9846–9856.

Wilson, R. H., Smith, A. C., Kacurakova, M., Saunders, P. K., Wellner, N.,  and Waldron, K. W. (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol. 124: 397–405.

Zhang, T., Mahgsoudy-Louyeh, S., Tittmann, B., and Cosgrove, D. J. (2013) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose [DOI:10.1007/s10570-013-9996-1]

Zhao, Q., Yuan, S., Wang, X., Zhang, Y., Zhu, H., and Lu, C. (2008) Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and EGTA in vitro. Plant Physiol. 147: 1874–1885.

Zykwinska, A., Thibault, J. F., and Ralet, M. C. (2008) Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr. Polym. 74: 957–961.

Primary Cell Wall Structure and Function

Cosgrove, D. J., and Jarvis, M. C. (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci. 3: 204.

Fry, S. C. (2004) Primary cell wall metabolism: Tracking the careers of wall polymers in living plant cells. New Phytol. 161: 641–675.

Gibeaut, D. M., Pauly, M., Bacic, A., and Fincher, G. B. (2005) Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta 221: 729–738.

Harris, P. J., and Stone, B. A. (2008) Chemistry and molecular organization of plant cell walls. In Biomass Recalcitrance, M. Himmel ed., Wiley-Blackwell, Boston, pp. 61–93.

Thimm, J. C., Burritt. D. J., Sims, I. M., Newman, R. H., Ducker, W. A., and Melton L. D. (2002) Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan. Physiol. Plant 116: 164–171.

Mechanisms of Cell Expansion

Anderson, C. T., Carroll, A., Akhmetova, L., and Somerville, C. (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol. 152: 787–796.

Baskin, T. I. (2005) Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21: 203–222.

Baskin, T. I., Wilson, J. E., Cork, A., and Williamson R. E. (1994) Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol. 35: 935–942.

Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G., and Yang, Z. (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120: 687–700.

Gardiner, J. C., Taylor, N. G., and Turner S. R. (2003) Control of cellulose synthase complex localization in developing xylem. Plant Cell 15: 1740–1748.

Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M., and Ehrhardt, D. W. (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11: 797–806.

Li, S., Bashline, L., Lei, L., and Gu, Y. (2014) Cellulose synthesis and its regulation. Arabidopsis Book 12: e0169.

Li, S., Lei, L., Somerville, C. R., and Gu, Y. (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc. Natl. Acad. Sci. USA 109: 185–190.

Marga, F., Grandbois, M., Cosgrove, D. J., and Baskin, T. I. (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J. 43: 181–190.

Paredez, A. R., Somerville, C. R., and Ehrhardt, D. W. (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312: 1491–1495.

Settleman, J. (2005) Intercalating Arabidopsis leaf cells: a jigsaw puzzle of lobes, necks, ROPs, and RICs. Cell 120: 570–572.

Szymanski, D. B., and Cosgrove, D. J. (2009) Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr. Biol. 19: R800-R811.

The Extent and Rate of Cell Growth

Albersheim, P., Darvill, A., Roberts, K., Sederoff, R., and Staehelin, A. (2011) Plant Cell Walls. Garland Science, New York.

Bibikova, T. N., Jacob, T., Dahse, I., and Gilroy, S. (1998) Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development 125: 2925–2934.

Bootten, T. J., Harris, P. J., Melton, L. D., and Newman, R. H. (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall. J. Exp. Bot. 55: 571–583.

Cavalier, D. M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., Zabatina, O. A., Hahn, M. G., Burgert, I., Pauly, M., et al. (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20: 1519–1537.

Chebli, Y., Kaneda, M., Zerzour, R., and Geitmann, A. (2012) The cell wall of the Arabidopsis pollen tube—spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol. 160: 1940–1955.

Cosgrove, D. J. (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177: 121–130.

Cosgrove, D. J. (1993) Wall extensibility: its nature, measurement, and relationship to plant cell growth. New Phytol. 124: 1–23.

Cosgrove, D. J. (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9: 1031–1041.

Cosgrove, D. J. (2000) Loosening of plant cell walls by expansins. Nature 407: 321–326.

Cosgrove, D. J. (2001) Wall structure and wall loosening: a look backwards and forwards. Plant Physiol. 125: 131–134.

Cosgrove, D. J. (2005) Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6: 850–861.

Derbyshire, P., Findlay, K., McCann, M. C., and Roberts, K. (2007a) Cell elongation in Arabidopsis hypocotyls involves dynamic changes in cell wall thickness. J. Exp. Bot. 58: 2079–2089.

Dick-Perez, M., Zhang, Y., Hayes, J., Salazar, A., Zabotina, O. A., and Hong, M. (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50: 989–1000.

Durachko, D. M., and Cosgrove, D. J. (2009) Measuring plant cell wall extension (creep) induced by acidic pH and by alpha-expansin. J. Vis. Exp. 11: 1263.

Fayant, P., Girlanda, O., Chebli, Y., Aubin, C. E., Villemure, I., and Geitmann, A. (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22: 2579–2593.

Hayashi, T. (1989) Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 139–168.

Keegstra, K., Talmadge, K. W., Bauer, W. D., and Albersheim, P. (1973) The structure of plant cell walls: III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51: 188–196.

Kerff, F., Amoroso, A., Herman, R., Sauvage, E., Petrella, S., Filee, P., Charlier, P., Tabuchi, A., Nikolaidis, N., et al. (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc. Natl. Acad. Sci. USA 105: 16876–16881.

Nikolaidis, N., Doran, N., and Cosgrove, D. J. (2013) Plant expansins in bacteria and fungi: Evolution by horizontal gene transfer and independent domain fusion. Mol. Biol. Evol. 31: 376–386.

Park, Y. B., and Cosgrove, D. J. (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol. 158: 1933–1943.

Rayle, D. L., and Cleland, R. E. (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99: 1271–1274.

Sampedro, J., and Cosgrove, D. J. (2005) The expansin superfamily. Genome Biol. 6: 242.

Tabuchi, A., Li, L. C., and Cosgrove, D. J. (2011) Matrix solubilization and cell wall weakening by beta-expansin (group-1 allergen) from maize pollen. Plant J. 68: 546–559.

Wang, T., Park, Y. B., Caporini, M. A., Rosay, M., Zhong, L., Cosgrove, D. J., and Hong, M. (2013) Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Proc. Natl. Acad. Sci. USA 110: 16444–16449.

Zhao, Z., Crespi, V. H., Kubicki, J. D., Cosgrove, D. J., and Zhong, L. (2013) Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose [DOI: 10.1007/s10570-013-0041-1].

Secondary Cell Wall Structure and Function

Balakshin, M., Capanema, E., Gracz, H., Chang, H. M., and Jameel, H. (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233: 1097–1110.

Boerjan, W., Ralph, J., and Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54: 519–546.

Ciesielski, P. N., Matthews, J. F., Tucker, M. P., Beckham, G. T., Crowley, M. F., Himmel, M. E., and Donohoe, B. S. (2013) 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils. ACS Nano 7: 8011–8019.

Cosgrove, D. J., and Jarvis, M. C. (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci. 3: 204.

Crestini, C., Melone, F., Sette, M., and Saladino, R. (2011) Milled wood lignin: a linear oligomer. Biomacromolecules 12: 3928–3935.

Ding, S. Y., Liu, Y. S., Zeng, Y., Himmel, M. E., Baker, J. O., and Bayer, E. A. (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338: 1055–1060.

Donaldson, L. (2001) Lignification and lignin topochemistry - An ultrastructural view. Phytochemistry 57: 859–873.

Donaldson, L. (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci. Technol. 41: 443–460.

Fernandes, A. N., Thomas, L. H., Altaner, C. M., Callow, P., Forsyth, V. T., Apperley, D. C., Kennedy, C. J., and Jarvis, M. C. (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl. Acad. Sci USA 108: E1195–E203.

Gorshkova, T., Brutch, N., Chabbert, B., Deyholos, M., Hayashi, T., Lev-Yadun, S., Mellerowicz, E. J., Morvan, C., Neutelings, G., Pilate, G., et al. (2012) Plant fiber formation: state of the art, recent and expected progress, and open questions. Crit. Rev. Plant Sci. 31: 201–228.

Hosmani, P. S., Kamiya, T., Danku, J., Naseer, S., Geldner, N., Guerinot, M. L., and Salt, D. E. (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc. Natl. Acad. Sci. USA 110: 14498–14503.

Huntley, S. K., Ellis, D., Gilbert, M., Chapple, C., and Mansfield, S. D. (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J. Agric. Food Chem. 51: 6178–6183.

Langan, P., Petridis, L., O'Neill, H. M., Venkatesh Pingali, S., Foston, M., Nishiyama, Y., Schulz, R., Linder, B., Leif Hanson, B., Harton, S., et al. (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem. 16: 63–68.

Lee, Y., Rubio, M. C., Alassimone, J., and Geldner, N. (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153: 402–412.

Liu, C. J. (2012) Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly. Mol. Plant 5: 304–317.

Lu, F., and Ralph, J. (2010) Lignin. In Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, R. C. Sun ed., Elsevier, Amsterdam, pp. 169–207.

Naseer, S., Lee, Y., Lapierre, C., Franke, R., Nawrath, C., and Geldner, N. (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc. Natl. Acad. Sci. USA 109: 10101–10106.

Plomion, C., Leprovost, G., and Stokes, A. (2001). Wood Formation in Trees. Plant Physiol. 127: 1513–1523.

Ralph, J., Brunow, G., and Boerjan, W. (2007) Lignins. In Encyclopedia of Plant Science, K Roberts, ed., Wiley, Chichester, pp. 1123–1134.

Reis, D., Vian, B., and Roland, J. C. (1994) Cellulose-glucuronoxylans and plant-cell wall structure. Micron 25: 171–187.

Roppolo, D., and Geldner, N. (2012) Membrane and walls: Who is master, who is servant? Curr. Opin. Plant Biol. 15: 608–617.

Roppolo, D., De Rybel, B., Tendon, V. D., Pfister, A., Alassimone, J., Vermeer, J. E. M., Yamazaki, M., Stierhof, Y.-D., Beeckman, T., and Geldner, N. (2011) A novel protein family mediates Casparian strip formation in the endodermis. Nature 473: 380–383.

Roudier, F., Fernandez, A. G., Fujita, M., Himmelspach, R., Borner, G. H., Schindelman, G., Song, S., Baskin, T. I., Dupree, P., Wasteneys, G. O., et al. (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17: 1749–1763.

Schindelman, G., Morikami, A., Jung, J., Baskin, T. I., Carpita, N. C., Derbyshire, P., McCann, M. C., and Benfey, P. N. (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 15: 1115–1127.

Smith, R. A., Schuetz, M., Roach, M., Mansfield, S. D., Ellis, B., and Samuels, L. (2013) Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell 25: 3988–3999.

Stewart, J. J., Akiyama, T., Chapple, C., Ralph, J., and Mansfield, S. D. (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol. 150: 621–635.

Szyjanowicz, P. M., Mckinnon, I., Taylor, N. G., Gardiner, J., Jarvis, M. C., and Turner, S. R. (2004) The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37: 730–740.

Takahashi, J., Rudsander, U. J., Hedenstrom, M, Banasiak, A., Harholt, J., Amelot, N., Immerzeel, P., Ryden, P., Endo, S., Ibatullin, F. M., et al. (2009) KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. Plant Cell Physiol. 50: 1099–1115.

Terashima, N., Awano, T., Takabe, K., and Yoshida, M. (2004) Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy. C. R. Biol. 327: 903–910.

Terashima, N., Kitano, K., Kojima, M., Yoshida, M., Yamamoto, H., and Westermark, U. (2009) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J. Wood Sci. 55: 409–416.

Turner, S. R., and Somerville, C. R. (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9: 689–701.

Vanholme, R., Demedts, B., Morreel, K., Ralph, J., and Boerjan, W. (2010) Lignin biosynthesis and structure. Plant Physiol. 153: 895–905.

Vanholme, R., Morreel, K., Darrah, C., Oyarce, P., Grabber, J. H., Ralph, J., and Boerjan, W. (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol. 196: 978–1000.

Xu, P., Donaldson, L. A., Gergely, Z. R., and Staehelin, L. A. (2006) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci. Technol. 41: 101–116.

Zhong, R., and Ye, Z. H. (2007) Regulation of cell wall biosynthesis. Curr. Opin. Plant Biol. 10: 564–572.

Web Topics

Green, P. B. (1968) Cell morphogenesis. Annu. Rev. Plant Physiol. 20: 365–394.

Hope, A. B., and Walker, N. A. (1975) The Physiology of Giant Algal Cells. Cambridge University Press, London.

Metraux, J-P., Richmond, P., and Taiz, L. (1980) Control of cell elongation in Nitella by endogenous cell wall pH gradients. Multiaxial extensibility and growth studies. Plant Physiol. 65: 204–210.

Richmond, P. A. (1983) Patterns of cellulose deposition and rearrangement in Nitella: In vivo analysis by birefringence index. J. Appl. Polym. Sci. 37: 107–122.

Back to top