Chapter 1 References
Textbook
Plant Life Processes: Unifying Principles
Williams, M. (2013) How to be a plant. Teaching Tools in Plant Biology: Lecture Notes. Plant Cell (online), DOI: [10.1105/tpc.113.tt0713].
Plant Classification and Life Cycles
Joppa, L. N., Roberts, D. L., and Pimm, S. L. (2011) How many species of flowering plants are there? Proc. R. Soc. B. 278: 554–559.
Overview of Plant Structure
Bell, K., and Oparka, K. (2011) Imaging plasmodesmata. Protoplasma 248: 9–25.
Burch-Smith, T. M., Stonebloom, S., Xu, M., and Zambryski, P. C. (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248: 61–74.
Fitzgibbon, J., Beck, M., Zhou, J., Faulkner, C., Robatzek, S., and Oparka, K. (2013) A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis. Plant Cell 25: 57–70.
Robinson-Beers, K., and Evert, R. F. (1991) Fine structure of plasmodesmata in mature leaves of sugar cane. Planta 184: 307–318.
Ueki, S., and Citovsky, V. (2011) To gate, or not to gate: Regulatory mechanisms for intercellular protein transport and virus movement in plants. Mol. Plant 4: 782–793.
Weng, J.-K. and Chapple, C. (2010). The origin and evolution of lignin biosynthesis. New Phytol. 187: 273–285.
Plant Cell Organelles
Behrman, E. J., and Gopalan, V. (2005) Cholesterol and plants. J. Chem. Edu. 82: 1791–1793.
Buchanan, B. B., Gruissem, W., and Jones, R. L., eds. (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists, Rockville, MD.
The Endomembrane System
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular Biology of the Cell. 4th ed. Garland Science, New York.
Ambrose, C., Ruan, Y., Gardiner, J., Tamblyn, L. M., Catching, A., Kirik, V., Marc, J., Overall, R., and Wasteneys, G.O. (2013) CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev. Cell. 24: 649–659.
Donohoe, B. S., Kang, B. H., Gerl, M. J., Gergely, Z. R., McMichael, C. M., Bednarek, S. Y., and Staehelin, L. A. (2013) Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae. Traffic 14: 551–567.
Fiserova, J., Kiseleva, E., and Goldberg, M. W. (2009) Nuclear envelope and nuclear pore complex structure and organization in tobacco BY-2 cells. Plant J. 59: 243–255.
Griffing, L. R. (2010) Networking in the endoplasmic reticulum. Biochem. Soc. Trans. 38: 747–753.
Griffing, L. R. Gao, H. and Sparkes, I. (2014) ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2. Front. Plant Sci. 5: 218–229.
Gunning, B. E. S., and Steer, M. W. (1996) Plant Cell Biology: Structure and Function of Plant Cells. Jones and Bartlett, Boston.
Hawes, C. (2012) The ER/Golgi interface – is there anything in-between? Front. Plant Sci. 3: 1–3.
Idziak, D., Betekhtin, A., Wolny, E., Lesniewska, K., Wrigth, J., Febrer, M., Bevan, M. Jenkins, G., and Hasterok, R. (2011) Painting the chromosomes of Brachypodium – current status and future prospects. Chromosoma 120: 469–479.
Ito, Y., Uemura, T., Shoda, K., Fujimoto, M., Ueda, T., and Nakano, A. (2012) cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol. Biol. Cell. 23: 3203–3214.
Langhans, M., Hawes, C., Hillmer, S., Hummel, E., and Robinson, D. G. (2007) Golgi regeneration after brefeldin A treatment in BY-2 cells entails stack enlargement and cisternal growth followed by division. Plant Physiol. 145: 527–538.
Mehrshahi, P., Stefano, G., Andaloro, J. M., Brandizzi, F., Froehlich, J. E., and DellaPenna, D. (2013) Transorganellar complementation redefines the biochemical continuity of endoplasmic reticulum and chloroplasts. Proc. Natl. Acad. Sci. USA 11: 12126–12131.
Mollenhauer, H. H., Morre, D. J., and Griffing, L. R. (1991) Post Golgi apparatus structures and membrane removal in plants. Protoplasma 162: 55–60.
Nanjo, Y., Oka, H., Ikarashi, N., Kaneko, K., Kitajima, A., Mitsui, T., Muñoz, F. J., Rodríguez-López, M., Baroja-Fernández, E., and Pozueta-Romero, J. (2006) Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-golgi to the chloroplast through the secretory pathway. Plant Cell 18: 2582–2592.
Otegui, M., Herder, R., Schulze, J., Jung, R., and Staehelin, L. A. (2006) The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. Plant Cell 18: 2567–2581.
Schoberer, J., and Strasser, R. (2011) Sub-compartmental organization of Golgi-resident N-glycan processing enzymes in plants. Mol. Plant 4: 220–228.
Schoberer, J., Runions, J., Steinkellner, H., Strasser, R., Hawes, C., and Osterrieder, A. (2010) Sequential depletion and acquisition of proteins during Golgi stack disassembly and reformation. Traffic 11: 429–444.
Villarejo, A., Burén, S., Larsson, S., Déjardin, A., Monné, M., Rudhe, C., Karlsson, J., Jansson, S., Lerouge, P., Rolland, N. et al. (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat. Cell Biol. 7: 1224–1231.
Viotti, C., Bubeck, J., Stierhof, Y. D., Krebs, M., Langhans, M., van den Berg, W., van Dongen, W., Richter, S., Geldner, N., Takano, J. et al. (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell. 22: 1344–57.
Viotti, C., Krüger, F., Krebs, M., Neubert, C., Fink, F., Lupanga, U., Scheuring, D., Boutté, Y., Frescatada-Rosa, M., Wolfenstetter, S. et al. (2013) The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. Plant Cell. 25(9): 3434–49.
Independently Dividing or Fusing Organelles Derived from the Endomembrane System
Barton, D. A., Cole, L. Collings, D. A., Liu, D. Y., Smith, P. M., Day, D. A., and Overall, R. L. (2011) Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J. 66: 806–817.
Buchanan, B. B., Gruissem, W., and Jones, R. L., eds. (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD.
Carrie, C., Murcha, M. W., Giraud, E., Ng, S., Zhang, M. F., Narsai, R., and Whelan, J. (2013) How do plants make mitochondria? Planta 237: 429–39.
Chapman, K. D., Dyer, J. M., and Mullen, R. T. (2012) Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man. J. Lipid Res. 53: 215–226.
Hu, J., Baker, A., Bartel, B., Linka, N., Mullen, R. T., Reumann, S., and Zolman, B. K. (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24: 2279–2303.
Huang, A. H. C. (1987) Lipases. In The Biochemistry of Plants: A Comprehensive Treatise, Vol. 9: Lipids: Structure and Function, P. K. Stumpf, ed., Academic Press, New York, pp. 91–119
Independently Dividing, Semiautonomous Organelles
Carrie, C., Murcha, M. W., Giraud, E., Ng, S., Zhang, M. F., Narsai, R., and Whelan, J. (2013) How do plants make mitochondria? Planta 237: 429–39.
Gunning, B. E. S., and Steer, M. W. (1996) Plant Cell Biology: Structure and Function of Plant Cells. Jones and Bartlett, Boston.
The Plant Cytoskeleton
Furt, F., Liu, Y., Bibeau, J. Tüzel, E., and Vidali, L. (2013) Apical myosin XI anticipates F-actin polarized growth of Physcomitrella patens cells. Plant J. 73: 417–428.
Lindeboom, J. J., Lioutas, A., Deinum, E. E., Tindemans, S. H., Ehrhardt, D. W., Emons, A. M., Vos, J. W., and Mulder, B. M. (2013) Cortical microtubule arrays are initiated from a nonrandom prepattern driven by atypical microtubule initiation. Plant Physiol. 161: 1189–1201.
Nakamura, M., Ehrhardt, D. W., and Hashimoto, T. (2010) Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat. Cell Biol. 12: 1064–1070.
Peremyslov, V. V., Mockler, T. C., Filichkin, S. A., Fox, S. E., Jaiswal, P., Makarova, K. S., Koonin, E. V., and Dolja, V. V. (2011) Expression, splicing and evolution of the myosin gene in plants. Plant Physiol. 155: 1191–1205.
Suetsugu, N., Sato, Y., Tsuboi, H., Kasahara, M., Imaizumi, T., Kagawa, T., Hiwatashi, Y., Hasebe, M., and Wada, M. (2012) The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants. Plant Cell Physiol. 53: 1854–65.
Wasteneys, G. O., and Ambrose, J. C. (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol. 19: 62–71.
Wasteneys, G. O., and Brandizzi, F. (2013) Cytoskeleton-dependent endomembrane organization in plant cells: An emerging role for microtubules. Plant J. 75: 339–349.
Cell Cycle Regulation
Higaki, T., Kutsuna, N., Sano, T., and Hasezawa, S. (2008) Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis. BMC Plant Biol. 8: 80.
McMichael, C. M., and Bednarek, S. Y. (2013) Cytoskeletal and membrane dynamics during higher plant cytokinesis. New Phytol.197: 1039–1057.
Müller, S., Wright, A. J., and Smith, L. G. (2009) Division plane control in plants: new players in the band. Trends Cell Biol. 19: 180–188.
Roeder, A. H., Cunha, A., Ohno, C. K., and Meyerowitz, E. M. (2012) Cell cycle regulates cell type in the Arabidopsis sepal. Development 139: 4416–27.
Seguí-Simarro, J. M., Austin, J. R., White, E. A., and Staehelin, L. A. (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16: 836–856.
Xu, X. M., Meulia, T., and Meier, I. (2007) Anchorage of plant RanGAP to the nuclear envelope involves novel nuclear-pore-associated proteins. Curr. Biol. 17: 1157–1163.
Plant Cell Types
Froelich, D. R., Mullendore, D. L., Jensen, K. H., Ross-Elliott, T. J., Anstead, J. A., Thompson, G. A., Pelissier, H. C., and Knoblach, M. (2011) Phloem ultrastructure and pressure flow: Sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell 23: 4428–4445.
Gunning, B.E.S. (2009) Plant Cell Biology on DVD. Springer, New York, Heidelberg.
Kaneda, M., Rensing, K., and Samuels, L. (2010) Secondary cell wall deposition in developing secondary xylem of poplar. J. Integr. Plant Biol. 52: 234–243.
Rudall, P. J. (1987) Laticifers in Euphorbiaceae – a conspectus. Bot. J. Linn. Soc. 94: 143–163.
Samuels, A. L., Rensing, K. H., Douglas, C. J., Mansfield, S. D., Dharmawarhana, D. P., and Ellis, B. E. (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216: 72–82.
St-Pierre, B. Vazquez-Flota, F. A., and De Luca, V. (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11: 887–900.
Vian, B., Roland, J.-C., and Reis, D. (1993) Primary cell wall texture and its relation to surface expansion. Int. J. Plant Sci. 154: 1–9.
Wightman, R., and Turner, S. (2008) The roles of the cytoskeleton during cellulose deposition at the secondary wall. Plant J. 54: 794–805.
Web Topics
Woese, C. R., Kandler, O., and Wheelis, M. L. (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576–4579.