Neuroscience 6e Chapter 6 Summary

The complex synaptic computations occurring at neural circuits throughout the brain arise from the actions of a large number of neurotransmitters, which act on an even larger number of postsynaptic neurotransmitter receptors. Glutamate is the major excitatory neurotransmitter in the brain, whereas GABA and glycine are the major inhibitory neurotransmitters. The actions of these small-molecule neurotransmitters are typically faster than those of the neuropeptides. Thus, most small-molecule transmitters mediate synaptic transmission when a rapid response is essential, whereas the neuropeptide transmitters, as well as the biogenic amines and some small-molecule neurotransmitters, tend to modulate ongoing activity in the brain or in peripheral target tissues in a more gradual and ongoing way. Two broadly different families of neurotransmitter receptors have evolved to carry out the postsynaptic signaling actions of neurotransmitters. Ionotropic or ligand-gated ion channels combine the neurotransmitter receptor and ion channel in one molecular entity, and therefore give rise to rapid postsynaptic electrical responses. Metabotropic receptors regulate the activity of postsynaptic ion channels indirectly, usually via G-proteins, and induce slower and longer-lasting electrical responses. Metabotropic receptors are especially important in regulating behavior, and drugs targeting these receptors have been clinically valuable in treating a wide range of behavioral disorders. The postsynaptic response at a given synapse is determined by the combination of receptor subtypes, G-protein subtypes, and ion channels that are expressed in the postsynaptic cell. Because each of these features can vary both within and among neurons, a tremendous diversity of transmitter-mediated effects is possible. Drugs that influence transmitter actions have enormous importance in the treatment of neurological and psychiatric disorders, as well as in a broad spectrum of other medical problems.

Back to top