Skip to main content
United States
Jump To
Support
Register or Log In
Support
Register or Log In
Instructors
Browse Products
Getting Started
Students
Browse Products
Getting Started
Return to Maths for Chemistry 3e Student Resources
Chapter 21 Multiple choice questions
Quiz Content
*
not completed
.
Using integration by parts, find:
y
=
∫
x
3
e
5
x
d
x
.
y
=
e
5
x
5
(
x
3
−
3
x
2
)
+
c
correct
incorrect
y
=
2e
5
x
125
(
5
x
−
1
)
+
c
correct
incorrect
y
=
3e
5
x
25
(
x
2
−
2
x
)
+
c
correct
incorrect
y
=
e
5
x
625
(
125
x
3
−
75
x
2
+
30
x
−
6
)
+
c
correct
incorrect
*
not completed
.
Using integration by parts, find:
y
=
∫
x
2
ln
3
x
d
x
.
y
=
x
3
9
(
ln
3
x
−
1
)
+
c
correct
incorrect
y
=
x
3
9
(
3
ln
3
x
−
1
)
+
c
correct
incorrect
y
=
x
3
9
(
ln
3
x
+
1
)
+
c
correct
incorrect
y
=
x
3
9
(
−
ln
3
x
+
1
)
+
c
correct
incorrect
*
not completed
.
Using integration by parts, find:
y
=
∫
e
4
x
sin
3
x
d
x
.
y
=
e
4
x
25
(
4
sin
3
x
−
3
cos
3
x
)
+
c
correct
incorrect
y
=
25
e
4
x
(
4
sin
3
x
−
3
cos
3
x
)
+
c
correct
incorrect
y
=
e
4
x
25
(
3
cos
3
x
−
4
sin
3
x
)
+
c
correct
incorrect
y
=
25
e
4
x
(
3
cos
3
x
−
4
sin
3
x
)
+
c
correct
incorrect
*
not completed
.
Using integration by substitution, find:
y
=
∫
x
7
(
2
x
8
−
5
)
6
d
x
.
y
=
(
2
x
8
−
5
)
7
42
+
c
correct
incorrect
y
=
(
2
x
8
−
5
)
7
112
+
c
correct
incorrect
y
=
x
8
(
2
x
8
−
5
)
7
42
+
c
correct
incorrect
y
=
x
8
(
2
x
8
−
5
)
7
112
+
c
correct
incorrect
*
not completed
.
Using integration by substitution, find:
y
=
∫
x
2
4
x
3
−
7
d
x
.
y
=
ln
4
x
−
x
3
14
+
c
correct
incorrect
y
=
1
4
x
2
−
7
x
+
c
correct
incorrect
y
=
ln
(
4
x
3
)
−
3
x
3
7
+
c
correct
incorrect
y
=
ln
(
4
x
3
−
7
)
12
+
c
correct
incorrect
*
not completed
.
Using integration by substitution, find:
y
=
∫
cos
(
x
)
x
d
x
.
y
=
sin
(
x
)
+
c
correct
incorrect
y
=
2
sin
(
x
)
+
c
correct
incorrect
y
=
1
sin
(
x
)
+
c
correct
incorrect
y
=
2
sin
(
x
)
+
c
correct
incorrect
*
not completed
.
Using integration by backward substitution, find:
y
=
∫
x
x
+
5
d
x
.
y
=
(
x
+
5
)
+
c
correct
incorrect
y
=
ln
(
(
x
+
5
)
)
+
c
correct
incorrect
y
=
2
3
(
x
+
5
)
3
+
c
correct
incorrect
y
=
2
3
(
(
x
+
5
)
3
−
15
x
+
5
)
+
c
correct
incorrect
*
not completed
.
Calculate the following integral:
y
=
∫
1
x
2
+
4
d
x
.
y
=
1
2
t
a
n
(
2
x
)
+
c
correct
incorrect
y
=
1
2
arctan
(
x
2
)
+
c
correct
incorrect
y
=
−
1
2
cot
(
2
x
)
+
c
correct
incorrect
y
=
1
2
ln
(
x
2
+
4
)
+
c
correct
incorrect
*
not completed
.
Calculate the following integral:
y
=
∫
0
∞
x
3
e
−
4
x
d
x
.
y
=
3
128
correct
incorrect
y
=
3
256
correct
incorrect
y
=
1
2
π
4
correct
incorrect
y
=
π
2
correct
incorrect
*
not completed
.
Calculate the following integral:
y
=
∫
0
π
2
sin
(
4
x
)
sin
(
6
x
)
d
x
.
y
=
π
2
correct
incorrect
y
=
3
π
4
correct
incorrect
y
=
π
4
correct
incorrect
y
=
0
correct
incorrect
Previous Question
Submit Quiz
Next Question
Reset
Exit Quiz
Review all Questions
Submit Quiz
Are you sure?
You have some unanswered questions. Do you really want to submit?
Back to top
Printed from , all rights reserved. © Oxford University Press, 2025
Select your Country