Quiz Content

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
(A ∨ B) ⊃ C
C ⊃ ~D / D ⊃ A

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
E ⊃ F
G ⊃ ~F / ~G ∨ ~E

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
H ≡ (~I ∨ J)
H ∨ ~J / ~I

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
(K · L) ⊃ M
N ⊃ ~M
N ∨ K / L ⊃ K

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
P ⊃ (Q ∨ R)
(Q · S) ⊃ ~P
~(~Q ∨ R) / ~P

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
(T · ~U) ⊃ ~W
~W ⊃ X
~Z ⊃ W
~(X · Z) / T ⊃ U

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
A ⊃ (~B ≡ C)
B ≡ D
~C ≡ ~D / ~A

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
E ⊃ (F ∨ ~G)
F ⊃ (~E ∨ ~G) / ~(E ≡ F)

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
H ≡ (I · ~J)
K ≡ ~H
~(K ⊃ J) / I ≡ J

not completed
. Use indirect truth tables to determine whether the following argument is valid. If the argument is invalid, choose an option which presents a counterexample. (There may be other counterexamples as well.)
L ⊃ [(M ∨ ~N) ⊃ O]
(N ⊃ O) ⊃ (~P ⊃ Q)
R ⊃ ~Q / L ⊃ (R ⊃ P)

not completed
. Use indirect truth tables to determine whether each set of propositions is consistent. If the set is consistent, choose an option with a consistent valuation. (There may be other consistent valuations.)
(A ∨ B) ∨ C
~C
~A ⊃ B

not completed
. Use indirect truth tables to determine whether each set of propositions is consistent. If the set is consistent, choose an option with a consistent valuation. (There may be other consistent valuations.)
D ≡ E
F ∨ D
~E · ~F

not completed
. Use indirect truth tables to determine whether each set of propositions is consistent. If the set is consistent, choose an option with a consistent valuation. (There may be other consistent valuations.)
(G ≡ H) ⊃ H
~H ∨ I
G · ~I

not completed
. Use indirect truth tables to determine whether each set of propositions is consistent. If the set is consistent, choose an option with a consistent valuation. (There may be other consistent valuations.)
~(J ∨ ~K)
L ⊃ M
(J ∨ L) ⊃ (K · M)

not completed
. Use indirect truth tables to determine whether each set of propositions is consistent. If the set is consistent, choose an option with a consistent valuation. (There may be other consistent valuations.)
~N ≡ (O · P)
~O ⊃ Q
N · ~Q

not completed
. Use indirect truth tables to determine whether each set of propositions is consistent. If the set is consistent, choose an option with a consistent valuation. (There may be other consistent valuations.)
P ≡ Q
~Q ≡ R
R ≡ P
S ≡ ~P
S ≡ R

not completed
. Use indirect truth tables to determine whether each set of propositions is consistent. If the set is consistent, choose an option with a consistent valuation. (There may be other consistent valuations.)
(T ⊃ U) ⊃ (W ⊃ U)
T ⊃ ~(U ⊃ X)
(T ⊃ ~X) ⊃ W

not completed
. Use indirect truth tables to determine whether each set of propositions is consistent. If the set is consistent, choose an option with a consistent valuation. (There may be other consistent valuations.)
A ⊃ (~B ∨ C)
C ⊃ D
A ∨ (B · ~D)
A ≡ (B ⊃ D)

not completed
. Use indirect truth tables to determine whether each set of propositions is consistent. If the set is consistent, choose an option with a consistent valuation. (There may be other consistent valuations.)
(E ⊃ F) ⊃ G
(~E ∨ F) ≡ (H ∨ I)
I ⊃ (J ⊃ ~H)
~G ⊃ ~J

Back to top