Skip to main content
United States
Jump To
Support
Register or Log In
Support
Register or Log In
Instructors
Browse Products
Getting Started
Students
Browse Products
Getting Started
Return to Introduction to Formal Logic Student Resources
Section 4.08 Self Quiz
Quiz Content
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)(Ax ⊃ Bx)
2. (∃x)(Ax • ~Cx) / (∃x)(Bx • ~Cx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: True Ba: False Ca: False
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: True Ba: False Ca: True
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: False Ba: False Ca: True
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: False Ba: False Ca: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)(Hx ⊃ Ix)
2. (∃x)(Hx • ~Jx)
3. Ja / (∃x)(Jx • ~Hx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Ha: True Ia: True Ja: False
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Ha: True Ia: True Ja: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ha: False Ia: False Ja: True
Hb: True Ib: True Jb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ha: True Ia: True Ja: True
Hb: True Ib: True Jb: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)[Gx ⊃ (Hx ∨ Ix)]
2. (∃x)(Gx • ~Hx) / (∀x)(Gx ⊃ Ix)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ha: False Ia: False Ga: True
Hb: True Ib: True Gb: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ha: True Ia: False Ga: True
Hb: True Ib: True Gb: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ha: True Ia: False Ga: True
Hb: False Ib: True Gb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ha: False Ia: False Ga: True
Hb: False Ib: True Gb: True
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)[Dx ⊃ (Ex ∨ Fx)]
2. (∀x)(Dx ⊃ ~Ex) / (∀x)(Dx ⊃ Fx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Da: False Ea: False Fa: True
Db: False Eb: True Fb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Da: False Ea: False Fa: True
Db: False Eb: False Fb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Da: False Ea: True Fa: True
Db: False Eb: True Fb: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Da: False Ea: False Fa: True
Db: True Eb: False Fb: True
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)(Fx ⊃ Gx)
2. (∀x)(Gx ⊃ ~Hx)
3. (∃x)Fx / (∃x)(Fx • ~Hx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Fa: False Ga: False Ha: False
Fb: True Gb: False Hb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Fa: False Ga: False Ha: True
Fb: False Gb: False Hb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Fa: False Ga: False Ha: True
Fb: True Gb: True Hb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Fa: False Ga: True Ha: True
Fb: True Gb: False Hb: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)(Ax ⊃ Bx)
2. (∀x)(Dx ⊃ Bx) / (∃x)(Ax • Dx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: False Ba: False Da: False
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: True Ba: False Da: False
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: True Ba: False Da: True
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: False Ba: False Da: True
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)(Nx ⊃ ~Ox)
2. (∀x)(Px ⊃ Ox) / ~(∃x)(Nx • Px)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Na: False Oa: False Pa: False
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Na: True Oa: False Pa: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Na: True Oa: False Pa: False Nb: True Ob: True Pb: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Na: False Oa: False Pa: False
Nb: False Ob: False Pb: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)(Kx ⊃ ~Lx)
2. (∃x)(Mx • Lx) / (∀x)(Kx ⊃ ~Mx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ka: False La: False Ma: True
Kb: False Lb: True Mb: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ka: True La: True Ma: True
Kb: False Lb: False Mb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ka: True La: False Ma: True
Kb: False Lb: True Mb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ka: False La: False Ma: True
Kb: False Lb: False Mb: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∃x)(Ax • Bx)
2. (∀x)(Bx ⊃ Cx)
3. (∀x)(Cx ⊃ ~Dx)
4. (∀x)(Ex ⊃ Dx) / (∃x)(Ax • ~Ex)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: True Ba: False Ca: True Da: True Ea: True
correct
incorrect
Invalid. Counterexample in a domain of 1 member, in which:
Aa: True Ba: True Ca: True Da: False Ea: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Aa: True Ba: True Ca: True Da: True Ea: True
Ab: True Bb: False Cb: True Db: True Eb: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Aa: True Ba: True Ca: True Da: True Ea: True
Ab: False Bb: False Cb: True Db: False Eb: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∃x)(Px • Qx)
2. (∃x)(Qx • Rx)
3. (∃x)(Sx • ~Qx)
4. (∀x)(Rx ⊃ Px) / (∃x)(Rx • Sx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: True Ra: False Sa: True
Pb: True Qb: True Rb: False Sb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: True Ra: True Sa: False
Pb: False Qb: False Rb: False Sb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: False Qa: False Ra: False Sa: False
Pb: False Qb: False Rb: True Sb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: True Ra: True Sa: False
Pb: True Qb: False Rb: False Sb: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. Pa • Qa
2. (∃x)(Px • Rx)
3. (∀x)(Qx ⊃ ~Rx) / (∀x)(Sx ⊃ Px)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: True Ra: False Sa: False
Pb: True Qb: False Rb: True Sb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: True Ra: False Sa: True
Pb: True Qb: False Rb: True Sb: False
correct
incorrect
Invalid. Counterexample in a domain of 3 members, in which:
Pa: True Qa: True Ra: False Sa: False
Pb: True Qb: False Rb: True Sb: False
correct
incorrect
Pc: False Qc: False Rc: True Sc: True
correct
incorrect
Invalid. Counterexample in a domain of 3 members, in which:
Pa: True Qa: True Ra: False Sa: True
Pb: True Qb: False Rb: True Sb: False
Pc: False Qc: True Rc: True Sc: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. Ed • Fd
2. (∀x)(Ex ⊃ Gx)
3. (∀x)(Fx ⊃ Hx) / ~(∀x)(Gx ⊃ ~Hx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ed: True Fd: True Gd: True Hd: True
Ed: True Fd: True Gd: False Hd: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ed: True Fd: True Gd: True Hd: True
Ed: False Fd: True Gd: False Hd: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ed: True Fd: True Gd: True Hd: True
Ed: True Fd: False Gd: False Hd: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Ed: True Fd: True Gd: True Hd: True
Ed: False d: True Gd: True Hd: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)(Px ⊃ Qx)
2. (∃x)(Px • Rx)
3. Ra / Ra • Qa
Valid
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: False Ra: False
Pb: True Qb: True Rb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: False Qa: False Ra: True
Pb: True Qb: False Rb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: False Qa: False Ra: True
Pb: True Qb: True Rb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: False Qa: False Ra: True
Pb: False Qb: True Rb: True
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)[(Px • Qx) ⊃ Rx]
2. (∃x)(Qx • ~Rx)
3. (∃x)(Px • ~Rx) / (∃x)(~Px • ~Qx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: False Ra: False
Pb: True Qb: True Rb: True
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: False Ra: False
Pb: False Qb: False Rb: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: False Ra: False
Pb: False Qb: True Rb: False
correct
incorrect
Invalid. Counterexample in a domain of 2 members, in which:
Pa: True Qa: False Ra: True
Pb: True Qb: True Rb: False
correct
incorrect
*
not completed
.
Determine whether the given proposition is a logical truth of M or not. If it is not a logical truth, select a false valuation.
~(∀x)(Bx ⊃ ~Cx) ≡ (∃x)(Bx • Cx)
Logical truth
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Ba: True Ca: False
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Ba: True Ca: True
correct
incorrect
Not a logical truth. False valuation in a domain of 2 members, in which:
Ba: True Ca: True
Bb: False Cb: True
correct
incorrect
Not a logical truth. False valuation in a domain of 2 members, in which:
Ba: True Ca: True
Bb: True Cb: False
correct
incorrect
*
not completed
.
Determine whether the given proposition is a logical truth of M or not. If it is not a logical truth, select a false valuation.
(∀x)[Dx ⊃ (Ex ∨ Fx)] ⊃ (∀x)(Dx ⊃ Ex)
Logical truth
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Da: False Ea: True Fa: True
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Da: True Ea: False Fa: True
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Da: True Ea: False Fa: False
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Da: False Ea: False Fa: True
correct
incorrect
*
not completed
.
Determine whether the given proposition is a logical truth of M or not. If it is not a logical truth, select a false valuation.
(∃x)[Gx • (Hx ∨ Jx)] ∨ ~(∃x)(Gx • Hx)
Logical truth
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Ga: True Ha: False Ja: False
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Ga: False Ha: False Ja: False
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Ga: True Ha: True Ja: True
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
Ga: False Ha: True Ja: True
correct
incorrect
*
not completed
.
Determine whether the given proposition is a logical truth of M or not. If it is not a logical truth, select a false valuation.
(∃x)[(Lx • Mx) • Nx] ⊃ ~(∀x)[~(Lx • Mx) ⊃ Nx]
Logical truth
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
La: True Ma: True Na: True
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
La: False Ma: True Na: True
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
La: True Ma: False Na: True
correct
incorrect
Not a logical truth. False valuation in a domain of 1 member, in which:
La: True Ma: True Na: False
correct
incorrect
Previous Question
Submit Quiz
Next Question
Reset
Exit Quiz
Review all Questions
Submit Quiz
Are you sure?
You have some unanswered questions. Do you really want to submit?
Back to top
Printed from , all rights reserved. © Oxford University Press, 2025
Select your Country