Skip to main content
United States
Jump To
Support
Register or Log In
Support
Register or Log In
Instructors
Browse Products
Getting Started
Students
Browse Products
Getting Started
Return to Introduction to Formal Logic Student Resources
Section 5.03 Self-Quiz
Quiz Content
*
not completed
.
Which of the following propositions is an immediate (one-step) consequence in F of the given premises?
1. (∀x)[Lx ⊃ (Oxy ≡ ~Oyx)]
2. (∀x)[(∃y)~Oyx ⊃ ~Mx]
3. (Pa • La) • Oab
La ⊃ (Oay ≡ ~Oya)
correct
incorrect
Pa
correct
incorrect
(∃y)~Oya ⊃ ~Mx
correct
incorrect
La ⊃ (Oya ≡ ~Oay)
correct
incorrect
Lb ⊃ (Oby ≡ ~Oyx)
correct
incorrect
*
not completed
.
Which of the following propositions is derivable from the given premises in F?
1. (∀x)[Lx ⊃ (Oxy ≡ ~Oyx)]
2. (∀x)[(∃y)~Oyx ⊃ ~Mx]
3. (Pa • La) • Oab
~Mb
correct
incorrect
Pa • ~Ma
correct
incorrect
La • Lb
correct
incorrect
Oba
correct
incorrect
~Oba • ~Mb
correct
incorrect
*
not completed
.
Which of the following propositions is an immediate (one-step) consequence in F of the given premises?
1. (∀x){[Mx • (∃y)Pxy] ⊃ Pxo}
2. (∀x)[(∃y)Qxy ≡ Pxa]
3. (∀x)(Mx ⊃ Nx)
4. (∀x)(Nx ⊃ Qxb)
Na ⊃ Qbb
correct
incorrect
(∃y)Qyy ≡ Pya
correct
incorrect
[Mo • (∃y)Poy] ⊃ Pxo
correct
incorrect
(∀x)(Qxo ≡ Pxa)
correct
incorrect
[Mx • (∃y)Pxy] ⊃ Pxo
correct
incorrect
*
not completed
.
Which of the following propositions is derivable from the given premises in F?
1. (∀x){[Mx • (∃y)Pxy] ⊃ Pxo}
2. (∀x)[(∃y)Qxy ≡ Pxa]
3. (∀x)(Mx ⊃ Nx)
4. (∀x)(Nx ⊃ Qxb)
(∀x)[Nx ⊃ (∃y)Pyx]
correct
incorrect
(∀x)[Nx ⊃ Pxo]
correct
incorrect
(∀x)[Mx ⊃ (∃y)Pxy]
correct
incorrect
(∀x)[(Mx • Nx) ⊃ ~(∀y)Pxy]
correct
incorrect
(∀x)[Mx ≡ Pxo]
correct
incorrect
*
not completed
.
Which of the following propositions is an immediate (one-step) consequence in F of the given premises?
1. (∀x)[Ix ⊃ (∃y)Jyx]
2. (∀x)[Jxa ⊃ (Kx ∨ Lx)]
3. (∃x)Ix • (∀x)~Kx
Jxa ⊃ (Ka ∨ La)
correct
incorrect
(∃x)Ix
correct
incorrect
Ix ⊃ (∃y)Jxy
correct
incorrect
~Ka
correct
incorrect
Jaa ⊃ (Kx ∨ Lx)
correct
incorrect
*
not completed
.
Which of the following propositions is derivable from the given premises in F?
1. (∀x)[Ix ⊃ (∃y)Jyx]
2. (∀x)[Jxa ⊃ (Kx ∨ Lx)]
3. (∃x)Ix • (∀x)~Kx
(∀x)Lx
correct
incorrect
La
correct
incorrect
~Ka
correct
incorrect
(∃x)Lx
correct
incorrect
Jaa
correct
incorrect
*
not completed
.
Which of the following propositions is an immediate (one-step) consequence in F of the given premises?
1. (∀x)(∀y)(Mxy ≡ ~Myx)
2. (∃x)(Kx • Mxa)
3. (∀x)(∀y)(~Mxy ⊃ Mxd)
~Mab ⊃ Mad
correct
incorrect
Mab ≡ ~Mba
correct
incorrect
~Mdd ⊃ Mdd
correct
incorrect
Kb • Mba
correct
incorrect
Kb • Maa
correct
incorrect
*
not completed
.
Which of the following propositions is derivable from the given premises in F?
1. (∀x)(∀y)(Mxy ≡ ~Myx)
2. (∃x)(Kx • Mxa)
3. (∀x)(∀y)(~Mxy ⊃ Mxd)
Mad
correct
incorrect
Mdd
correct
incorrect
Mbb
correct
incorrect
Mda
correct
incorrect
Maa
correct
incorrect
*
not completed
.
Which of the following propositions is an immediate (one-step) consequence in F of the given premises?
1. (∀x)(Ax ⊃ ~Bx) ⊃ (∃x)Dx
2. (∀x)[Dx ⊃ (∃y)(Ey • Fxy)]
3. (∀x)[(∃y)Fyx ⊃ Gx]
4. ~(∃x)(Ax • Bx)
~(Aa • Ba)
correct
incorrect
(∃y)Fyy ⊃ Gy
correct
incorrect
Dx ⊃ (∃y)(Ey • Fay)
correct
incorrect
Ax ⊃ ~Bx
correct
incorrect
(∀x)~(Ax • Bx)
correct
incorrect
*
not completed
.
Which of the following propositions is derivable from the given premises in F?
1. (∀x)(Ax ⊃ ~Bx) ⊃ (∃x)Dx
2. (∀x)[Dx ⊃ (∃y)(Ey • Fxy)]
3. (∀x)[(∃y)Fyx ⊃ Gx]
4. ~(∃x)(Ax • Bx)
(∀x)(Ex ⊃ Gx)
correct
incorrect
(∃x)(Ex • Gx)
correct
incorrect
(∃x)(Dx • Gx)
correct
incorrect
(∀x)(Dx ≡ Gx)
correct
incorrect
(∃x)(Ex • Dx)
correct
incorrect
*
not completed
.
Consider assuming '(∀x)[Px ⊃ (∃y)(Qy • Rxy)]' for a conditional proof of the above logical truth. Which of the following propositions is a legitimate second step in that proof?
(∀x)[Px ⊃ (∃y)(Qy • Rxy)] ⊃ (∃x)(∃y)Rxy
Pa ⊃ (Qa • Raa)
correct
incorrect
Pa ⊃ (Qb • Rab)
correct
incorrect
Assume '~(∃x)(∃y)Rxy' for a nested indirect proof.
correct
incorrect
Assume '~(∃x)(∃y)Rxy' for a nested conditional proof.
correct
incorrect
(∃x)(∃y)Rxy
correct
incorrect
*
not completed
.
Which of the following propositions is also derivable in F?
(∀x)[Px ⊃ (∃y)(Qy • Rxy)] ⊃ (∃x)(∃y)Rxy
(∀x)[Px ⊃ (∃y)(Qy • Rxy)] ⊃ (∀x)(∀y)Ryx
correct
incorrect
(∀x)[Px ⊃ (∃y)(Qy • Rxy)] ⊃ (∃x)(∃y)Ryx
correct
incorrect
(∀x)[Px ⊃ (∃y)(Qy • Rxy)] ⊃ (∀x)(∀y)~Rxy
correct
incorrect
(∀x)[Px ⊃ (∃y)(Qy • Rxy)] ⊃ ~(∀x)(∀y)Rxy
correct
incorrect
(∀x)[Px ⊃ (∃y)(Qy • Rxy)] ⊃ ~(∀x)(∀y)~Rxy
correct
incorrect
*
not completed
.
Consider assuming '(∀x)(∀y)[(Px • Py) ⊃ Qxy]' for a conditional proof of the above logical truth. Which of the following propositions is a legitimate second step in that proof?
(∀x)(∀y)[(Px • Py) ⊃ Qxy] ⊃ (∃x)(∃y)Qxy
(∀y)[(Px • Py) ⊃ Qxy]
correct
incorrect
(∀x)[(Px • Py) ⊃ Qxy]
correct
incorrect
Assume '(∃x)(∃y)Qxy' for a nested indirect proof.
correct
incorrect
Px • Py
correct
incorrect
(Px • Py) ⊃ Qxy
correct
incorrect
*
not completed
.
Which of the following propositions is also derivable in F?
(∀x)(∀y)[(Px • Py) ⊃ Qxy] ⊃ (∃x)(∃y)Qxy
(∀x)(∀y)Qxy ⊃ (∃x)(∃y)[(Px • Py) • Qxy]
correct
incorrect
(∀x)(∀y)~Qxy ⊃ (∃x)(∃y)~[(Px • Py) • Qxy]
correct
incorrect
(∀x)(∀y)~Qxy ⊃ (∃x)(∃y)[(Px • Py) • ~Qxy]
correct
incorrect
(∀x)(∀y)Qxy ⊃ ~(∃x)(∃y)[(Px • Py) • Qxy]
correct
incorrect
(∀x)(∀y)Qxy ⊃ (∃x)(∃y)[(Px • Py) ⊃ ~Qxy]
correct
incorrect
*
not completed
.
Consider assuming '(∀x)[Px ⊃ (∀y)(Qy ⊃ Rxy)]' for a conditional proof of the above logical truth. Which of the following propositions is a legitimate second step in that proof?
(∀x)[Px ⊃ (∀y)(Qy ⊃ Rxy)] ⊃ [(∃x)(Px • Qx) ⊃ (∃x)Rxx]
Px
correct
incorrect
Assume '(∃x)(Px • Qx)' for a nested conditional proof.
correct
incorrect
Assume '~(∃x)Rxx' for a nested indirect proof.
correct
incorrect
Assume '(∃x)(Px • Qx) ⊃ (∃x)Rxx' for a nested indirect proof.
correct
incorrect
Pa ⊃ (Qa ⊃ Raa)
correct
incorrect
*
not completed
.
Which of the following propositions is also derivable in F?
(∀x)[Px ⊃ (∀y)(Qy ⊃ Rxy)] ⊃ [(∃x)(Px • Qx) ⊃ (∃x)Rxx]
(∀x)[(∀y)(Qy ⊃ Rxy) ⊃ Px] ⊃ [(∀x)(~Px ⊃ ~Qx) ∨ (∃x)Rxx]
correct
incorrect
(∀x)[Px ⊃ (∀y)(Qy ⊃ Rxy)] ⊃ [(∀x)(Px ⊃ ~Qx) ∨ (∃x)Rxx]
correct
incorrect
(∀x)[Px ⊃ ~(∃y)(Qy • Rxy)] ⊃ [(∀x)(Px ⊃ ~Qx) ∨ (∃x)Rxx]
correct
incorrect
(∀x)[Px ⊃ (∀y)(Qy ⊃ Rxy)] ⊃ [(∀x)(~Px ⊃ Qx) ∨ (∃x)Rxx]
correct
incorrect
(∀x)[Px ⊃ ~(∃y)(Qy • Rxy)] ⊃ [(∀x)(~Px ⊃ Qx) ∨ (∃x)Rxx]
correct
incorrect
*
not completed
.
Consider assuming '(∀x)(∀y)(Pxy ≡ Pyx)' for a conditional proof of the above logical truth. Which of the following propositions is a legitimate second step in that proof?
(∀x)(∀y)(Pxy ≡ Pyx) ⊃ [(∃x)Pax ⊃ (∃x)Pxa]
Assume '(∃x)Pax' for a nested conditional proof.
correct
incorrect
(∀x)(Pxy ≡ Pyx)
correct
incorrect
Pab ≡ Pba
correct
incorrect
Assume '~(∃x)Pxa' for a nested indirect proof.
correct
incorrect
Assume ~(∃x)Pax' for a nested indirect proof.
correct
incorrect
*
not completed
.
Which of the following propositions is also derivable in F?
(∀x)(∀y)(Pxy ≡ Pyx) ⊃ [(∃x)Pax ⊃ (∃x)Pxa]
(∀x)(∀y)(Pxy ≡ Pyx) ⊃ [(∀x)Pxa ⊃ (∀x)Pax]
correct
incorrect
(∀x)(∀y)(Pxy ≡ Pyx) ⊃ [(∃x)~Pxa ⊃ (∃x)~Pax]
correct
incorrect
[(∀x)~Pxa ⊃ (∀x)~Pax] ⊃ (∀x)(∀y)(Pxy ≡ Pyx)
correct
incorrect
(∀x)(∀y)(~Pxy ≡ Pyx) ⊃ [(∀x)Pax ⊃ (∀x)Pxa]
correct
incorrect
(∀x)(∀y)(Pxy ≡ Pyx) ⊃ [(∀x)~Pxa ⊃ (∀x)~Pax]
correct
incorrect
*
not completed
.
Which of the following is a good assumption for an indirect proof of the above logical truth?
~[(∀x)Pxa • (∀x)~Pbx]
(∃x)Pxa ∨ (∃x)Pbx
correct
incorrect
Pxa • Pbx
correct
incorrect
~(∀x)Pxa ∨ ~(∀x)~Pbx
correct
incorrect
~(∀x)Pxa
correct
incorrect
(∀x)Pxa • (∀x)~Pbx
correct
incorrect
*
not completed
.
Which of the following is a good assumption for a conditional proof of the above logical truth?
~[(∀x)Pxa • (∀x)~Pbx]
(∀x)Pxa
correct
incorrect
(∃x)Pbx
correct
incorrect
~(∃x)Pbx
correct
incorrect
~(∀x)Pxa
correct
incorrect
(∃x)(Pxa • Pbx)
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∃x)Bxa
2. (∃x)Cxa / (∃x)(Bxa • Cxa)
Valid
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Baa: True Caa: False
Bba: False Cba: True
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Baa: False Caa: True
Bba: False Cba: True
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Baa: True Caa: True
Bba: False Cba: False
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Baa: False Caa: False
Bba: True Cba: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)[Ax ⊃ (∃y)(Ay • Fxy)]
2. Aa • ~Faa / (∀x)~Fxx
Valid
correct
incorrect
Invalid. Counterexample in a domain of one member, in which:
Aa: True Faa: False
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Aa: True Faa: False Fba: True
Ab: True Fab: True Fbb: True
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Aa: True Faa: False Fba: False
Ab: False Fab: True Fbb: False
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Aa: True Faa: False Fba: True
Ab: False Fab: True Fbb: True
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x)[Px ⊃ (∀y)(Ry ⊃ Txy)]
2. (∀x)[Qx ⊃ (∀y)(Ry ⊃ ~Txy)]
3. (∃x)Rx / ~(∃x)(Px • Qx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of one member, in which:
Pa: False Qa: True Ra: True Taa: False
correct
incorrect
Invalid. Counterexample in a domain of one member, in which:
Pa: True Qa: False Ra: True Taa: True
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Pa: True Qa: True Ra: True Taa: False Tba: True
Pb: False Qb: True Rb: True Tab: False Tbb: False
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Pa: True Qa: False Ra: True Taa: False Tba: True
Pb: False Qb: True Rb: False Tab: True Tbb: False
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∃x)Faxb • (∃x)Fabx
2. (∀x)[(Faxb • Fabx) ⊃ Gx] / (∃x)Gx
Valid
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Ga: False Faab: True Faba: False
Gb: False
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Ga: False Faab: False Faba: True
Gb: False
correct
incorrect
Invalid. Counterexample in a domain of three members, in which:
Ga: False Faab: True Fabc: True
Gb: False Faba: False Facb: False
Gc: False Fabb: False
correct
incorrect
Invalid. Counterexample in a domain of three members, in which:
Ga: False Faab: False Fabc: False
Gb: False Faba: True Facb: True
Gc: False Fabb: True
correct
incorrect
*
not completed
.
Determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
1. (∀x){(Hx ⊃ (∃y)[Iy • (∀z)(Jz ⊃ Lxzy)]}
2. (∃x)(Hx • Jx)
3. (∀x)[(∃y)Lxxy ⊃ Kx] / (∃x)(Hx • Kx) • (∃x)(Jx • Kx)
Valid
correct
incorrect
Invalid. Counterexample in a domain of one member, in which:
Ha: True Ja: True Laaa: True
Ia: True Ka: False
correct
incorrect
Invalid. Counterexample in a domain of one member, in which:
Ha: True Ja: False Laaa: False
Ia: False Ka: True
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Ha: True Ja: True Laaa: True Lbaa: True
Hb: False Jb: True Laab: False Lbab: True
Ia: True Ka: True Laba: True Lbba: False
Ib: True Kb: False Labb: True Lbbb: False
correct
incorrect
Invalid. Counterexample in a domain of two members, in which:
Ha: True Ja: False Laaa: True Lbaa: False
Hb: True Jb: True Laab: False Lbab: True
Ia: True Ka: True Laba: False Lbba: False
Ib: True Kb: False Labb: True Lbbb: True
correct
incorrect
Previous Question
Submit Quiz
Next Question
Reset
Exit Quiz
Review all Questions
Submit Quiz
Are you sure?
You have some unanswered questions. Do you really want to submit?
Back to top
Printed from , all rights reserved. © Oxford University Press, 2025
Select your Country