Skip to main content
United States
Jump To
Support
Register or Log In
Support
Register or Log In
Instructors
Browse Products
Getting Started
Students
Browse Products
Getting Started
Return to Introduction to Formal Logic Student Resources
Section 5.02 Self-Quiz
Quiz Content
*
not completed
.
Consider the following domain, assignment of objects in the domain, and interpretations of predicates.
Domain = {Integers}
a: 0
b: 5
c: 4
d: 2
Ex: x is even
Ox: x is odd
Px: x is a prime number
Gxy: x is greater than y
Given the customary truth tables, which of the following theories is modeled by the above interpretation?
(Ea • Ed) • (Eb • Ec)
Gca • (∃x)Gxd
correct
incorrect
(Ea • Ed) • (Ob • Ec)
Gba • (∃x)Gxb
correct
incorrect
(Ea • Od) • (Ob • Ec)
Gda • (∃x)Gbx
correct
incorrect
(Ea • Ec) • (Ed • Ob)
Gdb • (∃x)Gax
correct
incorrect
(Ea • Ec) • (Ed • Ob)
Gcb • (∃x)Gac
correct
incorrect
*
not completed
.
Consider the following domain, assignment of objects in the domain, and interpretations of predicates.
Domain = {Integers}
a: 0
b: 5
c: 4
d: 2
Ex: x is even
Ox: x is odd
Px: x is a prime number
Gxy: x is greater than y
Given the customary truth tables, which of the following theories is modeled by the above interpretation?
(Gdc • Gbc) • Gca
(∀x)[Ox ⊃ (∃y)(Ey • ~Gyx)]
correct
incorrect
(Gba • Gbc) ∨ Gda
(∀x)[Ox ⊃ (∃y)(~Ey • Gxy)]
correct
incorrect
(Gdc • Gda) ∨ Gcb
(∀x)[Ox ⊃ (∃y)(Ey • ~Gxy)]
correct
incorrect
(Gac • Gad) ∨ Gaa
(∀x)[Ox ⊃ ~(∃y)(Ey • Gxy)]
correct
incorrect
(Gba • Gda) ∨ Gac
(∀x)[Ox ⊃ (∃y)(Ey • Gyx)]
correct
incorrect
*
not completed
.
Consider the following domain, assignment of objects in the domain, and interpretations of predicates.
Domain = {Integers}
a: 0
b: 5
c: 4
d: 2
Ex: x is even
Ox: x is odd
Px: x is a prime number
Gxy: x is greater than y
Given the customary truth tables, which of the following theories is modeled by the above interpretation?
Pc ∨ Pd
(∃x)(Px • Gxd)
(∀x)[Ox ⊃ (∃y)(Py • Gyx)]
correct
incorrect
Pb ∨ Pd
(∃x)(Px • Gdx)
(∀x)[Ox ⊃ (∃y)(Py • Gxy)]
correct
incorrect
Pa ∨ Pc
(∃x)(Px • Gxb)
(∀x)[~Ox ⊃ ~(∃y)(Py • Gyx)]
correct
incorrect
Pa ∨ Pb
(∃x)(Px • Gbx)
(∀x)[Ox ⊃ ~(∃y)(Py • Gxy)]
correct
incorrect
Pb ∨ Pc
(∃x)(Px • Gax)
(∀x)[~Ox ⊃ (∃y)(Py • Gyx)]
correct
incorrect
*
not completed
.
Consider the following domain, assignment of objects in the domain, and interpretations of predicates.
Domain = {Integers}
a: 0
b: 5
c: 4
d: 2
Ex: x is even
Ox: x is odd
Px: x is a prime number
Gxy: x is greater than y
Given the customary truth tables, which of the following theories is modeled by the above interpretation?
~Gcb • Gbc
(∀x)(∃y)Gxy
(∀x)(∀y)(Gxy ⊃ Gyx)
correct
incorrect
~Gdb • Gbd
(∀x)(∀y)Gxy
(∀x)(∀y)(~Gxy ⊃ Gyx)
correct
incorrect
~Gba • Gab
(∃x)(∃y)Gxy
(∀x)(∀y)(~Gyx ⊃ Gxy)
correct
incorrect
~Gab • Gba
(∀x)(∃y)Gyx
(∀x)(∀y)(Gxy ⊃ âŒGyx)
correct
incorrect
~Gbd • Gdb
(∃x)(∀y)Gyx
(∀x)(∀y)(Gxy ≡ ~Gyx)
correct
incorrect
*
not completed
.
Consider the following domain, assignment of objects in the domain, and interpretations of predicates.
Domain = {Integers}
a: 0
b: 5
c: 4
d: 2
Ex: x is even
Ox: x is odd
Px: x is a prime number
Gxy: x is greater than y
Given the customary truth tables, which of the following theories is modeled by the above interpretation?
(∃x)[(Ex • Px) • ~Gcx]
(∀x)[(Px • Gdx) ⊃ Ex]
correct
incorrect
(∃x)[(Ox • Px) • ~Gxc]
(∀x)[(Px • Gbx) ⊃ Ox]
correct
incorrect
(∃x)[(Ox • Px) • ~Gcx]
(∀x)((Px • Gxb) ⊃ Ex]
correct
incorrect
(∃x)[(Ex • Px) • âŒGxc]
(∀x)[(Px • Gxd) ⊃ ~Ex]
correct
incorrect
(∃x)[(Ex • Ox) • ~Gxc]
(∀x)[(Px • Gxb) ⊃ Ox]
correct
incorrect
*
not completed
.
Select a counterexample for the given invalid argument.
Aa ∨ (∃x)Bxa / (∃x)Bxx
Counterexample in a domain of a member, in which:
Aa: True Baa: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Aa: False Baa: False
Bba: False
correct
incorrect
Counterexample in a domain of 2 members, in which:
Aa: True Baa: False
Bba: False Bbb: True
correct
incorrect
Counterexample in a domain of a member, in which:
Aa: False Baa: False
correct
incorrect
Counterexample in a domain of a member, in which:
Aa: True Baa: False
correct
incorrect
*
not completed
.
Select a counterexample for the given invalid argument.
1. (∀x)(Dx ⊃ Exa)
2. (∃x)(Eax • Dx) / (∀x)(Dx ⊃ Eax)
Counterexample in a domain of a member, in which:
Da: True Eaa: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Da: True Eaa: True
Db: True Eab: False
Eba: True
correct
incorrect
Counterexample in a domain of a member, in which:
Da: False Eaa: False
correct
incorrect
Counterexample in a domain of 2 members, in which:
Da: True Eaa: True
Db: False Eab True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Da: True Eaa: False
Db: True Eab: True
Eba: True
correct
incorrect
*
not completed
.
Select a counterexample for the given invalid argument.
1. (∀x)[Hx ⊃ (∃y)(Hy • Ixy)]
2. Ha / Iaa
Counterexample in a domain of a member, in which:
Ha: True Iaa: False
correct
incorrect
Counterexample in a domain of 2 members, in which:
Ha: True Iaa: False Iba: True
Hb: False Iab: True Ibb: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Ha: True Iaa: False Iba: True
Hb: True Iab: True Ibb: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Ha: True Iaa: False Iba: False
Hb: True Iab: False Ibb: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Ha: True Iaa: True Iba: True
Hb: False Iab: True Ibb: False
correct
incorrect
*
not completed
.
Select a counterexample for the given invalid argument.
1. (∃x)[Px • (∀y)Qxy]
2. (∃x)[(∃y)Qyx • Rx] / (∀x)(Px ⊃ Rx)
Counterexample in a domain of 2 members, in which:
Pa: True Qaa: True
Pb: True Qab: True
Ra: False Qba: True
Rb: True Qbb: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Pa: True Qaa: True
Pb: False Qab: False
Ra: True Qba: False
Rb: True Qbb: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Pa: False Qaa: False
Pb: True Qab: True
Ra: True Qba: True
Rb: True Qbb: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Pa: False Qaa: False
Pb: False Qab: True
Ra: True Qba: True
Rb: True Qbb: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Pa: True Qaa: True
Pb: True Qab: False
Ra: True Qba: False
Rb: False Qbb: False
correct
incorrect
*
not completed
.
Select a counterexample for the given invalid argument.
1. (∃x)[Dx • (∃y)(Dy • Fyx)]
2. (∀x)(Dx ⊃ Ex) / (∀x)[Ex ⊃ (∃y)(Ey • Fyx)]
Counterexample in a domain of 2 members, in which:
Da: True Faa: True
Db: True Fab: False
Ea: False Fba: True
Eb: False Fbb: True
correct
incorrect
Counterexample in a domain of 2 members, in which:
Da: True Faa: False
Db: False Fab: False
Ea: True Fba: True
Eb: False Fbb: False
correct
incorrect
Counterexample in a domain of 2 members, in which:
Da: True Faa: True
Db: True Fab: True
Ea: True Fba: True
Eb: True Fbb: False
correct
incorrect
Counterexample in a domain of 2 members, in which:
Da: False Faa: False
Db: True Fab: True
Ea: False Fba: False
Eb: False Fbb: False
correct
incorrect
Counterexample in a domain of 2 members, in which:
Da: True Faa: False
Db: True Fab: False
Ea: True Fba: False
Eb: True Fbb: True
correct
incorrect
Previous Question
Submit Quiz
Next Question
Reset
Exit Quiz
Review all Questions
Submit Quiz
Are you sure?
You have some unanswered questions. Do you really want to submit?
Back to top
Printed from , all rights reserved. © Oxford University Press, 2025
Select your Country