Amack, J. D. 2021. Cellular dynamics of EMT: Lessons from live in vivo imaging of embryonic development. Cell Commun. Signal.19: 79.
PubMed Link

Anlas, K. and V. Trivedi. 2021. Studying evolution of the primary body axis in vivo and in vitro. Elife 10: e69066.
PubMed Link

Arendt, D., E. Benito-Gutierrez, T. Brunet and H. Marlow. 2015. Gastric pouches and the mucociliary sole: Setting the stage for nervous system evolution. Philos. Trans. R Soc. Lond. B 370: 20150286.
PubMed Link

Balinsky, B. I. 1975. Introduction to Embryology, 4th Ed. Saunders: Philadelphia.

Bertocchini, F., C. Alev, Y. Nakaya and G. Sheng. 2013. A little winning streak: The reptilian-eye view of gastrulation in birds. Dev. Growth Differ. 55: 52–59.
PubMed Link

Blackiston, D., E. Lederer, S. Kriegman, S. Garnier, J. Bongard and M. Levin. 2021. A cellular platform for the development of synthetic living machines. Sci. Robot. 6: eabf1571.
PubMed Link

Blankenship, J. T., S. T. Backovic, J. S. Sanny, O. Weitz and J. A. Zallen. 2006. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11: 459–470.
PubMed Link

Bruce, A. E. E. and C. P. Heisenberg. 2020. Mechanisms of zebrafish epiboly: A current view. Curr. Top. Dev. Biol. 136: 319–341.
PubMed Link

Brunet, T. and N. King. 2017. The origin of animal multicellularity and cell differentiation. Dev. Cell 43: 124–140.
PubMed Link

Brunet, T., B. T. Larson, T. A. Linden, M. J. A. Vermeij, K. McDonald and N. King. 2019. Light-regulated collective contractility in a multicellular choanoflagellate. Science 366: 326–334.
PubMed Link

Brunet, T., M. Albert, W. Roman, M. C. Coyle, D. C. Spitzer and N. King. 2021. A flagellate-to-amoeboid switch in the closest living relatives of animals. Elife 10: e61037.
PubMed Link

Capuron, A. 1968. Marquage autoradiographique et conditions de l’organogenèse générale d’embryons induits par de la greffe de la lèvre dorsale du blastopore chez l’amphibien urodèle Pleurodeles waltii Michah. Ann. Embryol. Morphol. 1: 271–293.

Christodoulou, N., A. Weberling, D. Strathdee, K. I. Anderson, P. Timpson and M. Zernicka-Goetz, 2019. Morphogenesis of extraembryonic tissues directs the remodelling of the mouse embryo at implantation. Nat. Commun. 10: 3557.
PubMed Link

Collinet, C., and T. Lecuit. 2021. Programmed and self-organized flow of information during morphogenesis. Nat. Rev. Mol. Cell Biol. 22: 245–265.
PubMed Link

Davidson, E. H. and D. H. Erwin. 2009. An integrated view of Precambrian eumetazoan evolution. Cold Spring Harb. Symp. Quant. Biol. 74: 65–80.
PubMed Link

Davies, J. A. 2013. Invagination and evagination: The making and shaping of folds and tubes. In J. A. Davies (Ed.), Mechanisms of Morphogenesis, 2nd ed., pp. 217–233. New York: Academic Press.
Link

DuBuc, T. Q., T. B. Stephenson, A. Q. Rock and M. Q. Martindale. 2018. Hox and Wnt pattern the primary body axis of an anthozoan cnidarian before gastrulation. Nat. Commun. 9: 2007.
PubMed Link

Edgar, B. A. and P. H. O’Farrell. 1989. Genetic control of cell division patterns in the Drosophila embryo. Cell 57: 177–187.
PubMed Link

Ettensohn, C. A. 2020. The gene regulatory control of sea urchin gastrulation. Mech. Dev. 162: 103599.
PubMed Link

Gaunt, S. J. 2018. Hox cluster genes and collinearities throughout the tree of animal life. Int. J. Dev. Biol. 62: 673–683.
PubMed Link

Gimlich, R. L. and J. Cooke. 1983. Cell lineage and the induction of second nervous systems in amphibian development. Nature 306: 471–473.

Goldstein, B. and J. Nance. 2020. Caenorhabditis elegans gastrulation: A model for understanding how cells polarize, change shape, and journey toward the center of an embryo. Genetics 214: 265–277.
PubMed Link

Guirao, B. and Y. Bellaïche. 2017. Biomechanics of cell rearrangements in Drosophila. Curr. Opin. Cell Biol. 48: 113–124.
PubMed Link

Haeckel, E. 1877. Anthropogenie oder Entwickelungsgeschichte des Menschen. Wilhelm Engelmann, Leipzig
Link

Haeckel, E. 1866. Generelle Morphologie der Organismen (2 volumes). G. Reimer.

Haeckel, E. 1872. Monographie der Kalkschwämme (3 volumes). G. Reimer.

Haeckel, E. 1905. The Evolution of Man. Vol. I Human Embryology or Ontogeny. Translated from the 5th edition by Joseph McCabe. New York: Putnam’s Sons; London: Watts & Co.

Heisenberg, C.P. and 8 others. 2000. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405: 76–81.
PubMed Link

Henry, J. Q. 2014. Spiralian model systems. Int. J. Dev. Biol. 58: 389–401.
PubMed Link

Huebner, R.J. and J. B. Wallingford. 2018. Coming to consensus: A unifying model emerges for convergent extension. Dev. Cell 46: 389–396.
PubMed Link

Hyman, L. H. 1940. The Invertebrates: Protozoa Through Ctenophora. New York: McGraw-Hill.

Johannsen, O. A. and F. H. Butt. 1941. Embryology of Insects and Myriapods. New York: McGraw-Hill.

Karpov, S. A. 2016. Flagellar apparatus structure of choanoflagellates. Cilia 5: 11.
PubMed Link

Keller, R.E. 1981. An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J. Exp. Zool. 216: 81–101.

Kriegman, S., D. Blackiston, M. Levin and J. Bongard. 2021. Kinematic self-replication in reconfigurable organisms. Proc. Natl. Acad. Sci. USA 118: e2112672118.
PubMed Link

Larson, B. T., T. Ruiz-Herrero, S. Lee, S. Kumar, L. Mahadevan and N. King. 2020. Biophysical principles of choanoflagellate self-organization. Proc. Natl. Acad. Sci. USA 117: 1303–1311.
PubMed Link

Laundon, D., B. T. Larson, K. McDonald, N. King and P. Burkhardt. 2019. The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLoS Biol. 12;17(4): e3000226.
PubMed Link

Lee, J. Y. and R. M. Harland. 2007. Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells. Dev. Biol. 311: 40–52.
PubMed Link

Lee, J. Y., D. J. Marston, T. Walston, J. Hardin, A. Halberstadt and B. Goldstein. 2006. Wnt/ Frizzled signaling controls C. elegans gastrulation by activating actomyosin contractility. Curr. Biol. 16: 1986–1997.
PubMed Link

Leptin M. 2005. Gastrulation movements: The logic and the nuts and bolts. Dev. Cell 8: 305–320.
PubMed Link

Leptin, M. and B. Grunewald. 1990 Cell shape changes during gastrulation in Drosophila. Development 110: 73–84.
PubMed Link

Levin, M. and 25 others. 2016. The mid-developmental transition and the evolution of animal body plans. Nature 531: 637–641.
PubMed Link

Levit, G. S., U. Hossfeld, B. Naumann, P. Lukas and L. Olsson. 2021. The biogenetic law and the Gastraea theory: From Ernst Haeckel's discoveries to contemporary views. J. Exp. Zool. B: Mol. Dev. Evol. 338: 13–27.
PubMed Link

Manning, A.J. and S. L. Rogers. 2014. The Fog signaling pathway: Insights into signaling in morphogenesis. Dev. Biol. 394: 6–14.
PubMed Link

Marikawa, Y., D. A. Tamashiro, T. C. Fujita and V. B. Alarcón. 2009. Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis 47(2): 93–106.
PubMed Link

Martin, A. C. 2020. The physical mechanisms of Drosophila gastrulation: Mesoderm and endoderm invagination. Genetics 214: 543–560.
PubMed Link

Martin, A. C. and B. Goldstein. 2014. Apical constriction: Themes and variations on a cellular mechanism driving morphogenesis. Development 141: 1987–1998.
PubMed Link

Martindale, M. Q. 2005. The evolution of metazoan axial properties. Nat. Rev. Genet. 6: 917–927.
PubMed Link

Martindale, M. Q., K. Pang and J. R. Finnerty. 2004. Investigating the origins of triploblasty: “Mesodermal” gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum Cnidaria, class Anthozoa). Development 131: 2463–2474.
PubMed Link

Martin-Durán, J. M., R. Janssen, S. Wennberg, G. E. Budd and A. Hejnol. 2012. Deuterostomic development in the protostome Priapulus caudatus. Curr. Biol. 22: 2161–2166.
PubMed Link

Matus, D. Q., K. Pang, H. Marlow, C. W. Dunn, G. H. Thomsen and M. Q. Martindale. 2006. Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc. Natl. Acad. Sci. USA 103: 11195−11200.
PubMed Link

Metchnikoff, É. 1886. Embryologische Studien an Medusen. Ein Beitrag zur Genealogie der Primitiv-Organe. (Embryological Studies on Medusae: On the Evolutionary Origins of the Primary Tissues) Wien, IV.

Moris, N. and 8 others. 2020. An in vitro model of early anteroposterior organization during human development. Nature 582: 410–415.
PubMed Link

Nakanishi, N., S. Sogabe and B. M. Degnan. 2014. Evolutionary origin of gastrulation: Insights from sponge development. BMC Biol. 12: 26.
PubMed Link

Newman, S. A. 2022 (in press). Form, function, agency: Sources of natural purpose in animal evolution. In Evolution “on Purpose”: Teleonomy in Living Systems, P. Corning et al. (Eds.). MIT Press, Cambridge, MA.

Nielsen, C. 2008. Six major steps in animal evolution: Are we derived sponge larvae? Evol. Dev. 10: 241–257.
PubMed Link

Nielsen, C. 2019. Early animal evolution: A morphologist's view. R Soc. Open Sci. 6(7): 190638.
PubMed Link

Nosenko, T. and 12 others. 2013. Deep metazoan phylogeny: When different genes tell different stories. Mol. Phylogenet. Evol. 67: 223–233.
PubMed Link

Pinheiro, D. and C. P. Heisenberg.2020. Zebrafish gastrulation: Putting fate in motion. Curr. Top. Dev. Biol. 136: 343–375.
PubMed Link

Recanzone, G. and W. A. Harris. 1985. Demonstration of neural induction using nuclear markers in Xenopus. Wilhelm Roux Arch. Dev. Biol. 194: 344–354.

Redmond, A. K. and A. McLysaght. 2021. Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat. Commun. 12: 1783.
PubMed Link

Reynolds, A. S. 2019. Ernst Haeckel and the philosophy of sponges. Theory Biosci.138: 133–146.
PubMed Link

Reynolds, A. S. and N. Hülsmann. 2008. Ernst Haeckel's discovery of Magosphaera planula: A vestige of metazoan origins? Hist. Philos. Life Sci. 30: 339–386.
PubMed Link

Roh-Johnson, M. and 9 others. 2012 Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335: 1232–1235.
PubMed Link

Roth, S. 2004. Gastrulation in other insects. In C. D. Stern (Ed), Gastrulation. New York: Cold Spring Harbor Laboratory Press.

Saadaoui, M., D. Rocancourt, J. Roussel, F. Corson and J. Gros. 2020. A tensile ring drives tissue flows to shape the gastrulating amniote embryo. Science 367: 453–458.
PubMed Link

Schauer, A., D. Pinheiro, R. Hauschild and C. P. Heisenberg. 2020. Zebrafish embryonic explants undergo genetically encoded self-assembly. Elife 9: e55190.
PubMed Link

Serrano Nájera, G. and C. J. Weijer. 2020. Cellular processes driving gastrulation in the avian embryo. Mech. Dev. 163: 103624.
PubMed Link

Shahbazi, M. N., E. D. Siggia and M. Zernicka-Goetz. 2019. Self-organization of stem cells into embryos: A window on early mammalian development. Science 364: 948–951.
PubMed Link

Sheng, G., A. Martinez-Arias and A. Sutherland. 2021. The primitive streak and cellular principles of building an amniote body through gastrulation. Science 374: abg1727.
PubMed Link

Shindo, A. 2018. Models of convergent extension during morphogenesis. Wiley Interdiscip. Rev. Dev. Biol. 7: e293.
PubMed Link

Shook, D. R., C. Majer and R. Keller. 2002. Urodeles remove mesoderm from the superficial layer by subduction through a bilateral primitive streak. Dev. Biol. 248: 220–239.
PubMed Link

Simion, P. And 14 others. 2017. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. 27: 958–967.
PubMed Link

Smith, J. C. and J. M. W. Slack. 1983. Dorsalization and neural induction: Properties of the organizer in Xenopus laevis. J. Embryol. Exp. Morphol. 78: 299–317.

Spemann, H. 1938. Embryonic Development and Induction. Yale University Press, New Haven, CT.

Steinmetz, P. R. H., A. Aman, J. E. M. Kraus and U. Technau. 2017. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nat. Ecol. Evol. 1: 1535–1542.
PubMed Link

Steventon, B., L. Busby and A. Martinez-Arias. 2021. Establishment of the vertebrate body plan: Rethinking gastrulation through stem cell models of early embryogenesis. Dev. Cell 56: 2405–2418.
PubMed Link

Stower, M. J. and 8 others. 2015. Bi-modal strategy of gastrulation in reptiles. Dev. Dyn. 244: 1144–1157.
PubMed Link

Stower, M. J. and F. Bertocchini. 2017. The evolution of amniote gastrulation: the blastopore-primitive streak transition. Wiley Interdiscip. Rev. Dev. Biol. 6.
PubMed Link

Sullivan-Brown, J. L. and 10 others. 2016. Identifying regulators of morphogenesis common to vertebrate neural tube closure and Caenorhabditis elegans gastrulation. Genetics 202: 123–139.
PubMed Link

Sweeton, D., S. Parks, M. Costa and E. Wieschaus, 1991 Gastrulation in Drosophila: The formation of the ventral furrow and posterior midgut invaginations. Development 112: 775–789.
PubMed Link

Thowfeequ, S., M. J. Stower and S. Srinivas. 2022. Epithelial dynamics during early mouse development. Curr. Opin. Genet. Dev. 72: 110–117.
PubMed Link

Trivedi, V., T. Fulton, A. Attardi, K. Anlas, C. Dingare, A. Martinez-Arias and B. Steventon. 2019. Self-organised symmetry breaking in zebrafish reveals feedback from morphogenesis to pattern formation. Cold Spring Harbor bioRx (preprint).
Link

Urbansky, S., P. González Avalos, M. Wosch and S. Lemke. 2016. Folded gastrulation and T48 drive the evolution of coordinated mesoderm internalization in flies. Elife 5: e18318.
PubMed Link

van den Brink, S. C. and A. van Oudenaarden. 2021. 3D gastruloids: A novel frontier in stem cell-based in vitro modeling of mammalian gastrulation. Trends Cell Biol. 31: 747–759.
PubMed Link

van den Brink, S. C., P. Baillie-Johnson, T. Balayo, A. K. Hadjantonakis, S, Nowotschin, D. A. Turner and A. Martinez-Arias. 2014. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141: 4231–4242.
PubMed Link

Wallingford, J. B., B. A. Rowning, K. M. Vogeli, U. Rothbächer, S. E. Fraser and R. M. Harland. 2000. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405: 81–85.
PubMed Link

Williams, M. L. K. and L. Solnica-Krezel. 2020. Cellular and molecular mechanisms of convergence and extension in zebrafish. Curr. Top. Dev. Biol. 136: 377-407.
PubMed Link

Yang, X., D. Dormann, A. E. Münsterberg and C. J. Weijer. 2002. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by Fgf4 and Fgf8. Dev. Cell 3: 425–437.
PubMed Link

Yasui, K. 2017. Early development of amphioxus links evolutionary events with vertebrates. Int. J. Dev. Biol. 61: 591–600.
PubMed Link

Back to top