Adams, D. 1980. The Restaurant at the End of the Universe. Crown Publishers, New York.

Aguirre, A., M. E. Rubio and V. Gallo. 2010. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467: 323–327.
PubMed Link

Ahn, Y. 2015. Signaling in tooth, hair, and mammary placodes. Curr. Top. Dev. Biol. 111: 421–452.
PubMed Link

Ahn, Y., C. Sims, J. M. Logue, S. D. Weatherbee and R. Krumlauf. 2013. Lrp4 and wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development 140: 583–593.
PubMed Link

Ahtiainen, L. and 7 others. 2014. Directional cell migration, but not proliferation, drives hair placode morphogenesis. Dev. Cell 28: 588–602.
PubMed Link

Alié, A. and 7 others. 2018. Developmental evolution of the forebrain in cavefish, from natural variations in neuropeptides to behavior. eLife 7: e32808.
PubMed Link

An, Z., M. Sabalic, R. F. Bloomquist, T. E. Fowler, T. Streelman and P. T Sharpe. 2018. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Comm. 9: 378.
PubMed Link

Bailey, A. P., S. Bhattacharyya, M. Bronner-Fraser and A. Streit. 2006. Lens specification is the ground state of all sensory placodes, from which FGF promotes olfactory identity. Dev. Cell 11: 505–516.
PubMed Link

Bailey, T. J., H. El-Hodiri, L. Zhang, R. Shah, P. H. Mathers and M. Jamrich. 2004. Regulation of vertebrate eye development by Rx genes. Int. J. Dev. Biol. 48: 761–770.
PubMed Link

Baker, C. V. and M. Bronner-Fraser. 2001. Vertebrate cranial placodes. I. Embryonic induction. Dev. Biol. 232: 1–61.
PubMed Link

Baker, C. V., M. Bronner-Fraser, N. M. Le Douarin and M. A. Teillet. 1997. Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo. Development 124: 3077–3087.
PubMed Link

Bakkers, J., M. Hild, C. Kramer, M. Furutani-Seiki and M. Hammerschmidt. 2002. Zebrafish DeltaNp63 is a direct target of BMP signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev. Cell 2: 617–627.
PubMed Link

Balinsky, B. I. 1952. On the developmental processes in mammary glands and other epidermal structures. Trans. R. Soc. Edinb. 62: 1–31.
Link

Basch, M. L., R. M. Brown II, H. I. Jen and A. K. Groves. 2016. Where hearing starts: the development of the mammalian cochlea. J. Anat. 228: 233–254.
PubMed Link

Bazin-Lopez, N., L. E. Valdivia, S. W. Wilson and G. Gestri. 2015. Watching eyes take shape. Curr. Opin. Genet. Dev. 32: 73–79.
PubMed Link

Beazley, K. E., J. P. Canner and T. F. Linsenmayer. 2009. Developmental regulation of the nuclear ferritoid-ferritin complex of avian corneal epithelial cells: roles of systemic factors and thyroxine. Exp. Eye Res. 89: 854–862.
PubMed Link

Begbie, J. and A. Graham. 2001. Integration between the epibranchial placodes and the hindbrain. Science 294: 595–598.
PubMed Link

Bhattacharyya, S. and M. Bronner-Fraser. 2004. Hierarchy of regulatory events in sensory placode development. Curr. Opin. Genet. Dev. 14: 520–526.
PubMed Link

Bhattacharyya, S., A. P. Baily, M. Bronner-Fraser and A. Streit. 2004. Segregation of lens and olfactory precursors from a common territory: Cell sorting and reciprocity of Dlx5 and Pax6 expression. Dev. Biol. 271: 403–414.
PubMed Link

Biggs, L. C. and M. L. Mikkola. 2014. Early inductive events in ectodermal appendage morphogenesis. Semin. Cell Dev. Biol. 26: 11–21.
PubMed Link

Blanpain, C. and E. Fuchs. 2009. Epidermal homeostasis: A balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10: 207–217.
PubMed Link

Bok, J., S. Raft, K. A. Kong, S. K. Koo, U. C. Dräger and D. K. Wu. 2011. Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proc. Natl. Acad. Sci. USA 108: 161–166.
PubMed Link

Breau, M. A. and S. Schneider-Maunoury. 2014. Mechanisms of cranial placode assembly. Int. J. Dev. Biol. 58: 9–19.
PubMed Link

Brown, A. S. and D. J. Epstein. 2011. Otic ablation of smoothened reveals direct and indirect requirements for hedgehog signaling in inner ear development. Development 138: 3967–3976.
PubMed Link

Brown, A. S., S. M. Rakowiecki, J. Y. Li and D. J. Epstein. 2015. The cochlear sensory epithelium derives from Wnt responsive cells in the dorsomedial otic cup. Dev. Biol. 399: 177–187.
PubMed Link

Brown, K. E., P. J. Keller, M. Ramialison, M. Rembold, E. H. Stelzer, F. Loosli and J. Wittbrodt. 2010. Nlcam modulates midline convergence during anterior neural plate morphogenesis. Dev. Biol. 339: 14–25.
PubMed Link

Brugmann, S. A., P. D. Pandur, K. L. Kenyon, F. Pignoni and S. A. Moody. 2004. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 131: 5871–5881.
PubMed Link

Burmeister, M. and 13 others. 1996. Ocular retardation mouse caused by Chx10 homeobox null allele: Impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet. 12: 376–384.
PubMed Link

Chauhan, B. K., M. Lou, Y. Zheng and R. A. Lang. 2011. Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. Proc. Natl. Acad. Sci. USA 108: 18289–18294.
PubMed Link

Chen, C. C. and 7 others. 2014. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. J. Invest. Dermatol. 134: 2086–2096.
PubMed Link

Chen, J. and 6 others. 2017. A systems-level approach reveals new gene regulatory modules in the developing ear. Development 144: 1531–1543.
PubMed Link

Chen, P. and N. Segil. 1999. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126: 1581–1590.
PubMed Link

Chiang, C., Y. and 6 others. 1996. Cyclopia and axial patterning in mice lacking sonic hedgehog gene function. Nature 383: 407–413.
PubMed Link

Chuahan, B. K. and 8 others. 2009. Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development 136: 3657–3667.
PubMed Link

Clevers, H. 2015. What is an adult stem cell? Science 350: 1319–1320.
PubMed Link

Cooper, M. K., J. A. Porter, K. E. Young and P. A. Beachy. 1998. Teratogen-mediated inhibition of target tissue response to hedgehog signaling. Science 280: 1603–1607.
PubMed Link

Cotsarelis, G., S. Z. Cheng, G. Dong, T. T. Sun and R. M. Lavker. 1989. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell 57: 201–209.
PubMed Link

Cotsarelis, G., T.-T. Sun and R. M. Lavker. 1990. Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle and skin carcinogenesis. Cell 61: 1329–1337.
PubMed Link

Daudet, N. and J. Lewis. 2005. Two contrasting roles for Notch activity in chick inner ear development: Specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 132: 541–551.
PubMed Link

Daudet, N., R. Gibson, J. Shang, A. Bernard, J. Lewis and J. Stone. 2009. Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds. Dev. Biol. 326: 86–100.
PubMed Link

Donner, A. L., S. A. Lachke and R. L. Maas. 2006. Lens induction in vertebrates: Variations on a conserved theme of signaling events. Semin. Cell Dev. Biol. 17: 676–685.
PubMed Link

Dürnberger, H., B. Heuberger, P. Schwartz, G. Wasner and K. Kratochwil. 1978. Mesenchyme-mediated effect of testosterone on embryonic mammary epithelium. Cancer Res. 38: 4066–4070.
PubMed Link

Dutta, S. and 6 others. 2005. pitx3 defines an equivalence domain for lens and anterior pituitary placode. Development 132: 1579–1590.
PubMed Link

Eddison, M., I. Le Roux and J. Lewis. 2000. Notch signaling in the development of the inner ear: Lessons from Drosophila. Proc. Natl. Acad. Sci. USA 97: 11692–11699.
PubMed Link

Eiraku, M. and 8 others. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472: 51–56.
PubMed Link

Ezratty, E. J., N. Stokes, S. Chai, A. S. Shah, S. E. Williams and E. Fuchs. 2011. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145: 1129–1141.
PubMed Link

Faber, S. C., M. L. Robinson, H. P. Makarenkova and R. A. Lang. 2002. BMP signaling is required for development of primary lens fiber cells. Development 129: 3727–3737.
PubMed Link

Freter, S., S. J. Fleenor, R. Freter, K. J. Liu and J. Begbie. 2013. Cranial neural crest cells form corridors prefiguring sensory neuroblast migration. Development 140: 3595–3600.
PubMed Link

Fuchs, E. and V. Horsley. 2008. More than one way to skin... Genes Dev. 22: 976–985.
PubMed Link

Fuhrmann, S. 2010. Eye morphogenesis and patterning of the optic vesicle. Curr. Top. Dev. Biol. 93: 61–84.
PubMed Link

Furuta, Y. and B. L. Hogan. 1998. BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 12: 3764–3775.
PubMed Link

Gage, P. J., W. Rhoades, S. K. Prucka and T. Hjalt. 2005. Fate maps of neural crest and mesoderm in the mammalian eye. Invest. Ophthalmol. Vis. Sci. 46: 4200–4208.
PubMed Link

Garza, L. A. and 10 others. 2011. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J. Clin. Invest. 121: 613–622.
PubMed Link

Garza, L. A. and 14 others. 2012. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci. Transl. Med .4: 126ra34.
PubMed Link

Glaser, T., L. Jepeal, J. G. Edwards, S. R. Young, J. Favor and R. L. Maas. 1994. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat. Genet. 7: 463–471.
PubMed Link

Golding, J. P. and 6 others. 2004. Roles of erbB4, rhombomere-specific, and rhombomere-independent cues in maintaining neural crest-free zones in the embryonic head. Dev. Biol. 266: 361–372.
PubMed Link

Graham, A., A. Blentic, S. Duque and J. Begbie. 2007. Delamination of cells from neurogenic placodes does not involve an epithelial-to-mesenchymal transition. Development 134: 4141–4145.
PubMed Link

Grainger, R. M. 1992. Embryonic lens induction: Shedding light on vertebrate tissue determination. Trends Genet. 8: 349–356.
PubMed Link

Groves, A. K. and C. LaBonne. 2014. Setting appropriate boundaries: Fate, patterning and competence at the neural plate border. Dev. Biol. 389: 2–12.
PubMed Link

Halder, G., P. Callaerts and W. J. Gehring. 1995. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267: 1788–1792.
PubMed Link

Hamburger, V. 1961. Experimental analysis of the dual origin of the trigeminal ganglion in the chick embryo. J. Exp. Zool. 148: 91–123.
PubMed Link

Hemond, S. G. and D. K. Morest. 1991. Ganglion formation from the otic placode and the otic crest in the chick embryo: Mitosis, migration, and the basal lamina. Anat. Embryol. 184: 1–13.

Hilfer, S. R. and J.-J. W. Yang. 1980. Accumulation of CPC-precipitable material at apical cell surfaces during formation of the optic cup. Anat. Rec. 197: 423–433.
PubMed Link

Hintze, M. and 6 others. 2017. Cell interactions, signals and transcriptional hierarchy governing placode progenitor induction. Development 144: 2810–2823.
PubMed Link

Hogg, N. A. S., D. J. Harrison and C. Tickle. 1983. Lumen formation in the mammary gland. J. Embryol. Exp. Morph. 73: 39–57.
PubMed Link

Hsu, Y. C. and E. Fuchs. 2012. A family business: Stem cell progeny join the niche to regulate homeostasis. Nat. Rev. Mol. Cell Biol. 13: 103–114.
PubMed. Link

Hsu, Y. C., H. A. Pasolli and E. Fuchs. 2011. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144: 92–105.
PubMed Link

Hsu, Y. C., L. Li and E. Fuchs. 2014. Emerging interactions between skin stem cells and their niches. Nat. Med. 20: 847–856.
PubMed Link

Huh, S. H. 2013. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev. 27: 450–458.
PubMed Link

Huh, S.-H., M. E. Warchol and D. M. Ornitz. 2015. Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. eLife 4: e05921.
PubMed Link

Jacobson, A. G. 1963. The determination and positioning of the nose, lens, and ear III. Effects of reversing the anterior-posterior axis of the epidermis, neural plate, and neural fold. J. Exp. Zool. 154: 293–303.
PubMed Link

Jacobson, A. G. 1966. Inductive processes in embryonic development. Science 152: 25–34.
PubMed Link

Janesick, A., J. Shiotsugu, M. Taketani and B. Blumberg. 2012. RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm. Development 139: 1213–1224.
PubMed Link

Järvinen, E., I. Salazar-Ciudad, W. Birchmeier, M. M. Taketo, J. Jernvall, and I. Thesleff. 2006. Continuous tooth generation in mouse is induced by activated epithelial Wnt/b-catenin signaling. Proc. Natl. Acad. Sci. USA 103: 18627–18632.
PubMed Link

Jernvall, J., T. Aberg, P. Kettunen, S. Keränen and I. Thesleff. 1998. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125: 161–169.
PubMed Link

Johansson, J. A. and D. J. Headon. 2014. Regionalisation of the skin. Semin. Cell Dev. Biol. 26: 3–10.
PubMed Link

Johnston, M. C., D. M. Noden, R. D. Hazelton, J. L. Coulombre and A. J. Coulombre. 1979. Origins of avian ocular and periocular tissues. Exp. Eye Res. 29: 27–43.
PubMed Link

Johnstone, M. A. and D. M. Albert. 2002. Prostaglandin-induced hair growth. Surv. Ophthalmol. 47: S185–S202.
PubMed Link

Jordan, T., I. Hanson, D. Zaletayev, S. Hodgson, J. Prosser, A. Seawright, N. Hastie and V. van Heyningen. 1992. The human PAX6 gene is mutated in two patients with aniridia. Nat. Genet. 1: 328–332.
PubMed Link

Jussila, M. and I. Thesleff. 2012. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineage. Cold Spring Harbor Persp. Biol. 4: a008425.
PubMed Link

Kanakubo, S., T. Nomura, K. Yamamura, J. Miyazaki, M. Tamai and N. Osumi. 2006. Abnormal migration and distribution of neural crest cells in Pax6 heterozygous mutant eye, a model for human eye diseases. Genes Cells 11: 919–933.
PubMed Link

Kelley, R. I. and 7 others. 1996. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of Sonic hedgehog? Am. J. Med. Genet. 66: 478–484.
PubMed Link

Kim, J. E. and 6 others. 2016. Interaction of Wnt5a with Notch1 is critical for the pathogenesis of psoriasis. Ann. Dermatol. 28: 45–54.
PubMed Link

Kollar, E. J. 1970. The induction of hair follicles by embryonic dermal papillae. J. Invest. Derm. 55: 374–378.
PubMed Link

Kollar, E. J. and G. R. Baird. 1970. Tissue interactions in embryonic mouse tooth germs II. The inductive role of the dental papilla. J. Embryol. Exp. Morphol. 24: 173–186.
PubMed Link

Kondoh, H., M. Uchikawa and Y. Kamachi. 2004. Interplay of Pax6 and Sox2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. Int. J. Dev. Biol. 48: 819–827.
PubMed Link

Kondoh, H., M. Uchikawa, H. Yoda, H. Takeda, M. Furutani-Seiki and R. O. Karlstrom. 2000. Zebrafish mutations in Gli-mediated hedgehog signaling lead to lens transdifferentiation from the adenohypophysis anlage. Mech. Dev. 96: 165–174.
PubMed Link

Koontz, A., H. A. Urrutia and M. E. Bronner. 2022. Making a head: Neural crest and ectodermal placodes in cranial sensory development. Semin. Cell Dev. Biol. 138: 15–27.
PubMed Link

Kozlowski, D. J., T. Murakami, R. K. Ho and E. S. Weinberg. 1997. Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem. Cell Biol. 75: 551–562.
PubMed Link

Kratochwil, K. 1985. Tissue combination and organ culture studies in the development of the embryonic mammary gland. Dev. Biol. 4: 315–333.
PubMed Link

Kratochwil, K. and P. Schwartz. 1976. Tissue interaction in androgen response of embryonic mammary rudiment of mouse: Identification of target tissue for testosterone. Proc. Natl. Acad. Sci. USA 73: 4041–4044.
PubMed Link

Ladher, R. K. 2017. Changing shape and shaping change: Inducing the inner ear. Semin. Cell. Dev. Biol. 65: 39–46.
PubMed Link

Ladher, R. K., K. U. Anakwe, A. L. Gurney, G. C. Schoenwolf and P. H. Francis-West. 2000. Identification of synergistic signals initiating inner ear development. Science 290: 1965–1967.
PubMed Link

Ladher, R. K., P. O’Neill and J. Begbie. 2010. From shared lineage to distinct functions: The development of the inner ear and epibranchial placodes. Development 137: 1777–1785.
PubMed Link

Ladher, R. K., T. J. Wright, A.M. Moon, S. L. Mansour and G. C. Schoenwolf. 2005. FGF8 initiates inner ear induction in chick and mouse. Genes Dev. 19: 603–613.
PubMed Link

Lay, K., T. Kume and E. Fuchs. 2016. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc. Natl. Acad. Sci. USA 113: 201601569.
PubMed Link

Lechler, T. and E. Fuchs. 2005. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437: 275­–280.
PubMed Link

Lee, Y. S., F. Liu and N. Segil. 2006. A morphogenetic wave of p27Kip1 transcription directs cell cycle exit during organ of Corti development. Development 133: 2817–2826.
PubMed Link

Levy, V., C. Lindon, Y. Zheng, B. D. Harfe and B. A. Morgan. 2007. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 21: 1358–1366.
PubMed Link

Lewis, W. H. 1904. Experimental studies on the development of the eye in amphibia. I. On the origin of the lens. Rana palustris. Am. J. Anat. 3: 505–536.

Lilleväli, K., T. Matilainen, A. Karis and M. Salminen. 2004. Partially overlapping expression of Gata2 and Gata3 during inner ear development. Dev. Dyn. 231: 775–781.
PubMed Link

Lin, Z., R. Cantos, M. Patente and D. K. Wu. 2005. Gbx2 is required for the morphogenesis of the mouse inner ear: A downstream candidate of hindbrain signaling. Development 132: 2309–2318.
PubMed Link

Litsiou, A., S. Hanson and A. Streit. 2005. A balance of FGF, BMP and WNT signaling positions the future placode territory in the head. Development 132: 4051–4062.
PubMed Link

Liu, E. Y. and 14 others. 2008. Wnt/β-catenin signaling directs multiple stages of tooth morphogenesis. Dev. Biol. 313: 210–224.
PubMed Link

Liu, Z. and 6 others. 2022. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche. Nat. Immunol. 23: 1086–1097.
PubMed Link

Lleras-Forero, L., M. Tambalo, N. Christophorou, D. Chambers, C. Houart and A. Streit. 2013. Neuropeptides: Developmental signals in placode progenitor formation. Dev. Cell 26: 195–203.
PubMed Link

Mack, J. A., S. Anand and E. V. Maytin. 2005. Proliferation and cornification during development of the mammalian epidermis. Birth Def. Res. C Embryol. Today 75: 314–329.
PubMed Link

Magarinos, M., J. Contreras, M. R. Aburto and I. Varela-Nieto. 2012. Early development of the vertebrate inner ear. Anat. Rec. Hob. 295: 1775–1790.
PubMed Link

Mailleux, A. A., B. Spencer-Dene, C. Dillon and S. Bellusci. 2002. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 129: 53–60.
PubMed Link

Majo, F., A. Rochat, M. Nicolas, G. A. Jaoudé and Y. Barrandon. 2008. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 456: 250–254.
PubMed Link

Mammoto, T. and 10 others. 2011. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell 21: 758–769.
PubMed Link

Manley, G. A. 2012. Evolutionary paths to mammalian cochleae. J. Assoc. Res. Otolaryngol. 13: 733–743.
PubMed Link

Manley, G. A. 2017. Comparative auditory neuroscience: Understanding the evolution and function of ears. J. Assoc. Res. Otolaryngol. 18: 1–24.
PubMed Link

Mascré, G. and 7 others. 2012. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489: 257–262.
PubMed Link

Meier, S. and E. D. Hay. 1974. Control of corneal differentiation by extracellular materials: Collagen as a promoter and stabilizer of epithelial stroma production. Dev. Biol. 38: 249–270.
PubMed Link

Mesa, K. R. and 9 others. 2015. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522: 94–97.
PubMed Link

Mikkola, M. L. 2008. TNF superfamily in skin appendage development. Cytokine Growth Factor Rev. 19: 219–230.
PubMed Link

Mina, M. and E. J. Kollar. 1987. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch. Oral Biol. 32: 123–127.
PubMed Link

Montell, D. J. 2008. Morphogenetic cell movements: Diversity from modular mechanical properties. Science 322: 1502–1505.
PubMed Link

Moody, S. A. and A. S. LaMantia. 2015. Transcriptional regulation of cranial sensory placode development. Curr. Top. Dev. Biol. 111: 301–350.
PubMed Link

Morris, R. J. and C. S. Potten. 1999. Highly persistent lanbel-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermat. 112: 470–475.
PubMed Link

Munne, P. M., M. Tummers, E. Järvinen, I. Thesleff and J. Jernvall. 2009. Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction. Development 136: 393–402.
PubMed Link

Nakajima, Y. 2015. Signaling regulating inner ear development: Cell fate determination, patterning, morphogenesis, and defects. Congenital Anom. 55: 17–25.
PubMed Link

Närhi, K., E. Järvinen, W. Birchmeier, M. M. Taketo, M. L. Mikkola and I. Thesleff. 2008. Sustained epithelial beta-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development 135: 1019–1028.
PubMed Link

Närhi, K., M. Tummers, L. Ahtiainen, N. Itoh, I. Thesleff and M. L. Mikkola. 2012. Sostdc1 defines the size and number of skin appendage placodes. Dev. Biol. 364: 149–161.
PubMed Link

Nelson, A. M. and 12 others. 2015. dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell 17: 139–151.
PubMed Link

Neubüser, A., H. Peters, R. Balling and G. R. Martin. 1997. Antagonistic interactions between FGF and BMP signaling pathways: A mechanism for positioning the sites of tooth formation. Cell 90: 247–255.
PubMed Link

Nguyen, B. and 14 others. 2006. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20: 1028–1042.
PubMed Link

Nguyen, M. and H. Arnheiter. 2000. Signaling and transcriptional regulation in early mammalian eye development: A link between FGF and MITF. Development 127: 3581–3591.
PubMed Link

Nishimura, E. K. and 9 others. 2002. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416: 854–860.
PubMed Link

O’Connell, D. J. and 10 others. 2012. A Wnt-BMP feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Sci. Signal 5: ra4.
PubMed Link

Oakes, S. R., H. N. Hilton and C. J. Ormandy. 2006. The alveolar switch: Coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 8: 207.
PubMed Link

Ogino, H., H. Ochi, H. M. Reza and K. Yasuda. 2012. Transcription factors involved in lens development from the preplacodal ectoderm. Dev. Biol. 363: 333–347.
PubMed Link

Ogino, H., M. Fisher and R. M. Grainger. 2008. Convergence of a head-field selector Otx2 and Notch signaling: A mechanism for lens specification. Development 135: 249–258.
PubMed Link

Osborne, N. J., J. Begbie, J. K. Chilton, H. Schmidt and B. J. Eickholt. 2005. Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick. Dev. Dyn. 232: 939–949.
PubMed Link

Panousopoulou, E. and J. B. A. Green. 2016. Invagination of ectodermal placodes is driven by intercalation-mediated contraction of the suprabasal tissue canopy. PLOS Biol. 14: e1002405.
PubMed Link

Pieper, M., G. W. Eagleson, W. Wosniok and G. Schlosser. 2011. Origin and segregation of cranial placodes in Xenopus laevis. Dev. Biol. 360: 257–275.
PubMed Link

Pispa, J. and I. Thesleff. 2003. Mechanisms of ectodermal organogenesis. Dev. Biol. 262: 195–205.
PubMed Link

Plageman, T. F. Jr. and 6 others. 2010. Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development 137: 405–415.
PubMed Link

Platt, J. B. 1896. Ontogenetic differentiation of the ectoderm in Necturus. Study II: Development of the peripheral nervous system. Q. J. Micro. Sci. 38: 911–966.

Plikus, M. V. and 6 others. 2008. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451: 340–344.
PubMed Link

Pottin, K., H. Hinaux and S. Rétaux. 2011. Restoring eye size in Astyanax mexicanus blind cavefish embryos through modulation of the Shh and Fgf8 forebrain organising centres. Development 138: 2467–2476.
PubMed Link

Propper, A. and L. Gomot. 1967. Tissue interactions during organogenesis of the mammary gland in the rabbit embryo. (Article in French). C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 264: 2573–2575.

Quiring, R., U. Walldorf, U. Kloter and W. J. Gehring. 1994. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265: 785–789.
PubMed Link

Rajendran, R. L. and 11 others. 2020. Macrophage-derived extracellular vesicle promotes hair growth. Cells 9: 856.
PubMed Link

Rendl, M., L. Polak and E. Fuchs. 2008. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 22: 543–557.
PubMed Link

Rétaux, S., K. Pottin and A. Alunni. 2008. Shh and forebrain evolution in the blind cavefish Astyanax mexicanus. Bio. Cell 100: 139–147.
PubMed Link

Reza, H. M., H. Nishi, K. Kataoka, Y. Takahashi and K. Yasuda. 2007. L-Maf regulates p27kip1 expression during chick lens fiber differentiation. Differentiation 75: 737–744.
PubMed Link

Riccomagno, M. M., S. Takada and D. J. Epstein. 2005. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev. 19: 1612–1623.
PubMed Link

Rinn, J. L. and 10 others. 2008. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev. 22: 303–307.
PubMed Link

Rios, A. C., N. Y. Fu, G. J. Lindeman and J. E. Visvader. 2014. In situ identification of bipotent stem cells in the mammary gland. Nature 506: 322–327.
PubMed Link

Roessler, E., E. and 7 others. 1996. Mutations in the human Sonic hedgehog gene cause holoprosencephaly. Nat. Genet. 14: 357–360.
PubMed Link

Rojas-Munoz, A., R. Dahm and C. Nüsslein-Volhard. 2005. chokh/rx3 specifies the retinal pigment epithelium fate independently of eye morphogenesis. Dev. Biol. 288: 348–362.
PubMed Link

Rompolas, P., K. R. Mesa and V. Greco. 2013. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502: 513–518.
PubMed Link

Saha, M. S., C. L. Spann and R. M. Grainger. 1989. Embryonic lens induction: More than meets the optic vesicle. Cell Diff. Dev. 28: 153–172.
PubMed Link

Sai, X. and R. K. Ladher. 2008. FGF signaling regulates cytoskeletal remodeling during epithelial morphogenesis. Curr. Biol. 18: 976–981.
PubMed Link

Sai, X. and R. K. Ladher. 2015. Early steps in inner ear development: Induction and morphogenesis of the otic placode. Front. Pharmacol. 6: 19.
PubMed Link

Sasaki, S., Y. Hozumi and S. Kondo. 2005. Influence of prostaglandin F2a and its analogues on hair regrowth and follicular melanogenesis in a murine model. Exp. Dermatol. 14: 323–328.
PubMed Link

Schimmang, T. and U. Pirvola. 2013. Coupling the cell cycle to development and regeneration of the inner ear. Semin. Cell Dev. Biol. 24: 507–513.
PubMed Link

Schlosser, G. 2005. Evolutionary origins of vertebrate placodes: Insights from developmental studies and from comparisons with other deuterostomes. J. Exp. Zool. 304B: 347–399.
PubMed Link

Schlosser, G. 2010. Making senses: Development of vertebrate cranial placodes. Int. Rev. Cell Molec. Biol. 283: 129–234.
PubMed Link

Schlosser, G. 2014. Early embryonic specification of vertebrate cranial placodes. Wiley Interdiscip. Rev. Dev. Biol. 3: 349–363.
PubMed Link

Schlosser, G. 2017. From so simple a beginning: What amphioxus can teach us about placode evolution. Int. J. Dev. Biol. 61: 633–648.
PubMed Link

Schlosser, G. and K. Ahrens. 2004. Molecular anatomy of placode development in Xenopus laevis. Dev. Biol. 271: 439–466.
PubMed Link

Schwarz, Q., J. M. Vieira, B. Howard, B. J. Eickholt and C. Ruhrberg. 2008. Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development 135: 1605–1630.
PubMed Link

Sennett, R. and M. Rendl. 2012. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23: 917–927.
PubMed Link

Singh, S. and A. K. Groves. 2016. The molecular basis of craniofacial placode development. Wiley Interdiscip. Rev. Dev. Biol. 5: 363–376.
PubMed Link

Snippert, H. J. and 12 others. 2010. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327: 1385–1389.
PubMed Link

Spemann, H. 1901. Entwicklungsphysiologische Studien am Tritonei. Wilhelm Roux’ Arch. Entwicklungsmech. Org. 12: 224–264.

Sternlicht, M. D., H. Kouros-Meir, P. Liu and Z. Werb. 2006. Hormonal and local control of mammary branching morphogenesis. Differentiation 74: 365–381.
PubMed Link

Steventon, B., R. Mayor and A. Streit. 2014. Neural crest and placode interaction during the development of the cranial sensory system. Dev. Biol. 389: 28–38.
PubMed Link

Stigloher, C. and 9 others. 2006. Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3. Development 133: 2925–2935.
PubMed Link

Stöhr, P. 1903. Anat. Hefte 23: 1–66; quoted in A. Christiano 2004. Epithelial stem cells: Stepping out of their niche. Cell 118: 530–532.
PubMed Link

Streit, A. 2002. Extensive cell movements accompany formation of the otic placode. Dev. Biol. 249: 237–254.
PubMed Link

Streit, A. 2004. Early development of the cranial sensory nervous system: From a common field to individual placodes. Dev. Biol. 276: 1–15.
PubMed Link

Streit, A. 2007. The preplacodal region: An ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia. Int. J. Dev. Biol. 51: 447–461.
PubMed Link

Streit, A. 2008. The cranial sensory nervous system: Specification of sensory progenitors and placodes. StemBook.
Link

Streit, A. 2018. Specification of sensory placode progenitors: Signals and transcription factor networks. Int. J. Dev. Biol. 62: 195–205.
PubMed Link

Taylor, G., M. S. Lehrer, P. J. Jensen, T. T. Sun and R. M. Lavker. 2000. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102: 451–461.
PubMed Link

Tétreault, N., M. P. Champagne and G. Bernier. 2009. The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation. Dev. Biol. 327: 541–550.
PubMed Link

Thesleff, I. and M. Tummers. 2009. Tooth organogenesis and regeneration. StemBook.
PubMed Link

Trela, E. and 7 others. 2021. Cell influx and contractile actomyosin force drive mammary bud growth and invagination. J. Cell Biol. 220: e202008062.
PubMed Link

Trumpp, A., M. J. Depew, J. L. Rubenstein, J. M. Bishop and G. R. Martin. 1999. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 13: 3136–3148.
PubMed Link

Truong, A. B. and P. A. Khavari. 2007. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle 6: 295–299.
PubMed Link

Tsai, R. J., L. M. Li and J. K. Chen. 2000. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. New Engl. J. Med. 343: 86–93.
PubMed Link

Turner, D. L and C. L. Cepko. 1987. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328: 131-136.
PubMed Link

Vaahtokari, A., T. Aberg, J. Jernvall, S. Keränen and I. Thesleff. 1996. The enamel knot as a signaling center in the developing mouse tooth. Mech. Dev. 54: 39–43.
PubMed Link

Vaahtokari, A., T. Aberg, J. Jernvall, S. Keränen and I. Thesleff. 1996. The enamel knot as a signaling center in the developing mouse tooth. Mech. Dev. 54: 39–43.
PubMed Link

Vainio, S., I. Karavanova, A. Jowett and I. Thesleff. 1993. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75: 45–58.
PubMed Link

Van Genderen, R.M. and 6 others. 1994. Development of several organs that require inductive epithelial–mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8: 2691–2703.
PubMed Link

Veltmaat, J. M. and 10 others. 2006. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133: 2325–2335.
PubMed Link

Visvader, J. E. and J. Stingl. 2014. Mammary stem cells and the differentiation hierarchy: Current status and perspectives. Genes Dev. 28: 1143–1158.
PubMed Link

von Woellwarth, C. 1961. Die Rolle des Neuralleistenmaterials und der Temperatur bei der Determination der Augenlinse. Embryologia (Nagoya) 6: 219–242.

Wang, D. and 6 others. 2015. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517: 81–84.
PubMed Link

Wang, L., J. A. Siegenthaler, R. D. Dowell and R. Yi. 2016. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science 351: 613–617.
PubMed Link

Wang, T. and 8 others. 2015. Alpaca fiber growth is mediated by microRNA let-7b via down-regulation of target gene FgfF5. Genet. Mol. Res. 14: 13754–13763.
PubMed Link

Weston, J. and S. L. Butler. 1966. Temporal factors affecting localization of neural crest cells in the chicken embryo. Dev. Biol. 14: 246–266.
PubMed Link

Williams, S. E., S. Beronja, H. A. Pasolli and E. Fuchs E. 2011. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470: 353–358.
PubMed Link

Wu, P. and 10 others. 2013. Specialized stem cell niche enables repetitive renewal of alligator teeth. Proc. Natl. Acad. Sci. USA 110: E2009–2018.
PubMed Link

Xu, H., C. M. Dude and C. V. Baker. 2008. Fine-grained fate maps for the ophthalmic and maxillomandibular trigeminal placodes in the chick embryo. Dev. Biol. 317: 174–186.
PubMed Link

Yamamoto, Y., D. W. Stock and W. R. Jeffery. 2004. Hedgehog signaling controls eye degeneration in blind cavefish. Nature 431: 844–847.
PubMed Link

Yamamoto, Y., M. S. Byerly, W. R. Jackman and W. R. Jeffery. 2009. Pleiotropic functions of embryonic Sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev. Biol. 330: 200–211.
PubMed Link

Yang, J., M. V. Plikus and N. L. Komarova. 2015. The role of symmetric stem cell divisions in tissue homeostasis. PLoS Comput. Biol. 11: e1004629.
PubMed Link

Yang, X.-J. 2004. Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin. Cell Dev. Biol. 15: 91–103.
PubMed Link

Zhang, Y. and 12 others. 2008. Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135: 2161–2172.
PubMed Link

Zhengwen, A., M. Sabalic, R. F. Bloomquist, T. E. Fowler, T. Streelman and P. T. Sharpe. 2018. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun. 9: 378.
PubMed Link

Zimm, R., D. Oberdick, A. Gnetneva, P. Schneider, J. Cebra-Thomas and J. E. Moustakas-Verho. 2022. Turing's turtles all the way down: A conserved role of EDAR in the carapacial ridge suggests a deep homology of prepatterns across ectodermal appendages. Anat. Rec. 306.
PubMed Link

Zuber, M. E. 2010. Mechanisms regulating eye field specification and early eye formation. Curr. Topics Dev. Biol. 93: 48–53.
PubMed Link

Zuber, M. E., G. Gestri, A. S. Viczian, G. Barsacchi and W. A. Harris. 2003. Specification of the vertebrate eye by a network of eye field transcription factors. Development 130: 5155–5167.
PubMed Link

Back to top