Agassiz, A. and C. O. Whitman. 1884. On the development of some pelagic fish eggs—Preliminary notice. Proc. Am. Acad. Arts Sci. 20: 23–75.
Link

Agathon, A., C. Thisse and B. Thisse. 2003. The molecular nature of the zebrafish tail organizer. Nature 424: 448–452.
PubMed Link

Agius, E., M. Oelgeschläger, O. Wessely, C. Kemp and E. M. De Robertis. 2000. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127: 1173–1183.
PubMed Link

Ancel, P. and P. Vintenberger. 1948. Recherches sur le determinisme de la symmetrie bilatérale dans l’oeuf des amphibiens. Bull. Biol. Fr. Belg. 31: 1–182.

Appel, T. A. 1987. The Cuvier-Geoffroy Debate: French Biology in the Decades before Darwin. Oxford University Press, New York.

Armon, R. 2012. Between biochemists and embryologists: The biochemical study of embryonic induction in the 1930s. J. Hist. Biol. 45: 65–108.
PubMed Link

Bae, S, C. D. Reid and D. S. Kessler. 2011. Siamois and Twin are redundant and essential in formation of the Spemann organizer. Dev. Biol. 352: 367–381.
PubMed Link

Beams, H. W. and R. G. Kessel. 1976. Cytokinesis: A comparative study of cytoplasmic division in animal cells. Am. Sci. 64: 279–290.
PubMed Link

Beetschen, J. C. 2001. Amphibian gastrulation: History and evolution of a 125-year-old concept. Int. J. Dev. Biol. 45: 771–795.
PubMed Link

Behrndt, M., G. Salbreux, P. Campinho, R. Hauschild, F. Oswald, J. Roensch, S. W. Grill and C. P. Heisenberg. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science 338: 257–260.
PubMed Link

Bhattacharya, D., J. Zhong, S. Tavakoli, A. Kabla and P. Matsudaira. 2021. Strain maps characterize the symmetry of convergence and extension patterns during zebrafish gastrulation. Sci. Rep. 11: 19357.
PubMed Link

Bier, E. and E. M. De Robertis. 2015. BMP gradients: A paradigm for morphogen-mediated developmental patterning. Science 348: 5838.
PubMed Link

Bïjtel, J. H. 1931. Über die Entwicklung des Schwanzes bei Amphibien. Wilhelm Roux Arch. Entwicklungsmech. Org. 125: 448–486.

Birsoy, B., M. Kofron, K. Schaible, C. Wylie and J. Heasman. 2006. Vg 1 is an essential signaling molecule in Xenopus development. Development 133: 15–20.
PubMed Link

Blader, P. and U. Strähle 1998. Ethanol impairs migration of the prechordal plate in the zebrafish embryo. Dev. Biol. 201: 185–201.
PubMed Link

Blitz, I. L. and K. W. Y. Cho. 1995. Anterior neurectoderm is progressively induced during gastrulation: The role of the Xenopus homeobox gene orthodenticle. Development 121: 993–1004.
PubMed Link

Blum, M., A. Schweickert, P. Vick, C. V. Wright and M. V. Danilchik. 2014. Symmetry breakage in the vertebrate embryo: When does it happen and how does it work? Dev. Biol. 393: 109–123.
PubMed Link

Blum, M., T. Beyer, T. Weber, P. Vick, P. Andre, E. Bitzer and A. Schweickert. 2009. Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev. Dyn. 238: 1215–1225.
PubMed Link

Blythe, S. A., S. W. Cha, E. Tadjuidje, J. Heasman and P. S. Klein. 2010. Beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev. Cell 19: 220–231.
PubMed Link

Boucaut, J.-C., T. D’Arribère, T. J. Poole, H. Aoyama, K. M. Yamada and J.-P. Thiery. 1984. Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibition of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J. Cell Biol. 99: 1822–1830.
PubMed Link

Bouwmeester, T., S.-H. Kim, Y. Sasai, B. Lu and E. M. De Robertis. 1996. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601.
PubMed Link

Bradbury, J. 2004. Small fish, big science. PLOS Biology 2: e148.
PubMed Link

Brannon, M. and D. Kimelman. 1996. Activation of siamois by the Wnt pathway. Dev. Biol. 180: 344–347.
PubMed Link

Braukmann, S. and S. F. Gilbert. 2005. Sucking in the gut: A history of early gastrulation research. In C. D. Stern (ed.), Gastrulation: From Cells to Embryo. Cold Spring Harbor Press, Cold Spring Harbor, NY, 1–20.

Bruce, A. E. E. 2016. Zebrafish epiboly: Spreading thin over the yolk. Dev. Dyn. 245: 244–258.
PubMed Link

Caneparo, L., P. Pantazis , W. Dempsey, and S. E. Fraser. 2011. Intercellular bridges in vertebrate gastrulation. PLOS ONE 6: e20230.
PubMed Link

Carmany-Rampey, A. and A. F. Schier. 2001. Single-cell internalization during zebrafish gastrulation. Curr. Biol. 11: 1261–1265.
PubMed Link

Carnac, G., L. Kodjabachian, J. B. Gurdon and P. Lemaire. 1996. The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 122: 3055–3065.
PubMed Link

Carron, C. and D. L. Shi. 2016. Specification of anterioposterior axis by combinatorial signaling during Xenopus development. Wiley Interdiscip. Rev. Dev. Biol. 5: 150–168.
PubMed Link

Carvalho, L. and C. P. Heisenberg. 2010. The yolk syncytial layer in early zebrafish development. Trends Cell Biol. 20: 586–592.
PubMed Link

Cha, B. J. and D. L. Gard. 1999. XMAP230 is required for the organization of cortical microtubules and patterning of the dorsoventral axis in fertilized Xenopus eggs. Dev. Biol. 205: 275–286.
PubMed Link

Chea, H. K., C. V. Wright and B. J. Swalla. 2005. Nodal signaling and the evolution of deuterostome gastrulation. Dev. Dyn. 234: 269–278.
PubMed Link

Chien, Y. H., S. Srinivasan, R. Keller and C. Kintner. 2018. Mechanical strain determines cilia length, motility, and planar position in the left-right organizer. Dev. Cell 45: 316–330.e4.
PubMed Link

Cho, K. W. Y. 2012. Enhancers. Wiley Interdiscip. Rev. Dev. Biol. 1: 469–478.
PubMed Link

Chu, L. T., S. H. Fong, I. Kondrychyn, S. L. Loh, Z. Ye, and V. Korzh. 2012. Yolk syncytial layer formation is a failure of cytokinesis mediated by Rock1 function in the early zebrafish embryo. Biol Open 1: 747–753.
PubMed Link

Cooper, M. S. and L. A. D’Amico. 1996. A cluster of noninvoluting endocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev. Biol. 180: 184–198.
PubMed Link

Cuykendall, T. N. and D. W. Houston. 2009. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development 136: 3057–3065.
PubMed Link

Darken, R. S., A. M. Scola, A. S. Rakeman, G. Das, M. Mlodzik and P. A. Wilson. 2002. The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J. 21: 976–85.
PubMed Link

Davidson, L. A., B. D. Dzamba, R. Keller and D. W. DeSimone. 2008. Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev. Dyn. 237: 2684–2692.
PubMed Link

De Robertis, E. M. and J Aréchaga (eds.). 2001. The Spemann-Mangold organizer: 75 years on. Int. J. Dev. Biol. 45 1–373.

De Robertis, E. M. and Y. Moriyama. 2016. The chordin morphogenetic pathway. Curr. Top. Dev. Biol. 116: 231–246.
PubMed Link

De Robertis, E. M. and Y. Sasai. 1996. A common plan for dorsoventral patterning in Bilateria. Nature 380: 37–40.
PubMed Link

De Robertis, E. M., J. Larraín, M. Oelgeschläger and O. Wessley. 2000. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1: 171–181.
PubMed Link

Domingos, P. M., N. Itasaki, C. M. Jones, S. Mercurio, M. G. Sargent, J. C. Smith and R. Krumlauf. 2001. The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev. Biol. 239: 148–160.
PubMed Link

Dosch, R., D. S. Wagner, K. A. Mintzer, G. Runke, A. P. Wiemelt and M. C. Mullins. 2004. Maternal control of vertebrate development before the midblastula transition: Mutants from the zebrafish I. Dev. Cell 6: 771–780.
PubMed Link

Dosch, R., V. Gawantka, H. Delius, C. Blumenstock and C. Niehrs. 1997. BMP-4 acts as a morphogen in dorsolateral mesoderm patterning in Xenopus. Development 124: 2325–2334.
PubMed Link

Driever, W. 1995. Axis formation in zebrafish. Curr. Opin. Genet. Dev. 5: 610–618.
PubMed Link

Driever, W. and 11 others. 1996. A genetic screen for mutations affecting development in zebrafish. Development 123: 37–46.
PubMed Link

Du, S., B. W. Draper, M. Mione, C. B. Moens and A. Bruce. 2012. Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Dev. Biol. 362: 11–23.
PubMed Link

Dumortier, J. G., S. Martin, D. Meyer, F. M. Rosa and N. B. David. 2012. Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc. Natl. Acad. Sci. USA 109: 16945–16950.
PubMed Link

Durston, A. J., H. J. Jansen and S. A. Wacker. 2010a. Time-space translation: A developmental principle. ScientificWorld 10: 2207–2214.
Link

Durston, A. J., H. J. Jansen and S. A. Wacker. 2010b. Time-space translation regulates trunk axial patterning in the early vertebrate embryo. Genomics 95: 250–255.
PubMed Link

Elinson, R. P. and B. Rowning. 1988. A transient array of parallel microtubules in frog eggs: Potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128: 185–197.
PubMed Link

Elinson, R. P. and E. M. del Pino. 2012. Developmental diversity of amphibians. Wiley Interdiscip. Rev. Dev. Biol. 1: 345–369.
PubMed Link

Engleka, M. J. and D. S. Kessler. 2001. Siamois cooperates with TGFb signals to induce the complete function of the Spemann-Mangold organizer. Int. J. Dev. Biol. 45: 241–250.
PubMed Link

Essner, J. J., J. D. Amack, M. K. Nyholm, E. B. Harris and H. J. Yost. 2005. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132: 1247–1260.
PubMed Link

Essner, J. J., K. J. Vogan, M. K. Wagner, C. J. Tabin, H. J. Yost and M. Brueckner. 2002. Conserved function for embryonic nodal cilia. Nature 418: 37–38.
PubMed Link

Ewald, A. J., H. McBride, M. Reddington, S. Fraser and R. Kerschmann. 2002. Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev. Dynam. 225: 369–375.
PubMed Link

Fan, M. J. and S. Y. Sokol. 1997. A role for Siamois in Spemann organizer formation. Development 124: 2581–2589.
PubMed Link

Fauny, J. D., B. Thisse and C. Thisse. 2009. The entire zebrafish blastula-gastrula margin acts as an organizer dependent on the ratio of Nodal to BMP activity. Development 136: 3811–3819.
PubMed Link

Fluck, R. A., K. L. Krok, B. A. Bast, S. E. Michaud and C. E. Kim. 1998. Gravity influences the position of the dorsoventral axis in medaka fish embryos (Oryzias latipes). Dev. Growth Diff. 40: 509–518.
PubMed Link

Fukazawa, C., C. Santiago, K. M. Park, W. J. Deery, S. Gomez de la Torre Canny, C. K. Holterhoff and D. S. Wagner. 2010. poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis. Dev. Biol. 346: 272–283.
PubMed Link

Fukuda, M., S. Takahashi, Y. Haramoto, Y. Onuma, Y. J. Kim, C. Y. Yeo, S. Ishiura and M. Asashima. 2010. Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin. Int. J. Dev. Biol. 54: 81–92.
PubMed Link

Funayama, N., F. Fagotto, P. McCrea and B. M. Gumbiner. 1995. Embryonic axis induction by the armadillo repeat domain of b-catenin: Evidence for intracellular signalling. J. Cell Biol. 128: 959–968.
PubMed Link

Fürthauer, M., J. van Celst, C. Thisse and B. Thisse. 2004. FGF signaling controls the dorsoventral patterning of the zebrafish embryo. Development 131: 2853–2864.
PubMed Link

Gawantka, V., H. Delius, K. Hirschfeld, C. Blumenstock and C. Niehrs. 1995. Antagonizing the Spemann organizer: Role of the homeobox gene Xvent-1. EMBO J. 14: 6268–6279.
PubMed Link

Genikhovich, G., P. Fried, M. M. Prünster, J. B. Schinko, A. F. Gilles, D. Fredman, K. Meier, D. Iber and U. Technau. 2015. Axis patterning by BMPs: Cnidarian network reveals evolutionary constraints. Cell Rep. 10 :1646–1654.
PubMed Link

Gerhart, J. C., M. Danilchik, T. Doniach, S. Roberts, B. Rowning and R. Stewart. 1989. Cortical rotation of the Xenopus egg: Consequences for the anteroposterior pattern of embryonic dorsal development. Development 107: S37–S51.
PubMed Link

Germain, S., M. Howell, G. M. Esslemont and C. S. Hill. 2000. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14: 435–451.
PubMed Link

Gilbert, S. F. and L. Saxén. 1993. Spemann’s organizer: Models and molecules. Mech. Dev. 41: 73–89.
PubMed Link

Glinka, A., W. Wu, D. Onichtchouk, C. Blumenstock and C. Niehrs. 1997. Head induction by simultaneous repression of BMP and Wnt signalling in Xenopus. Nature 389: 517–519.
PubMed Link

Godsave, S. F. and J. M. W. Slack. 1989. Clonal analysis of mesoderm induction in Xenopus laevis. Dev. Biol. 134: 486–490.
PubMed Link

Gont, L. K., H. Steinbeisser, B. Blumberg and E. M. De Robertis. 1993. Tail formation as a continuation of gastrulation: The multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119: 991–1004.
PubMed Link

Gonzales, A. P. and J. R. Yeh. 2014. Cas9-based genome editing in zebrafish. Methods Enzymol. 546: 377–413.
PubMed Link

Goto, T., L. Davidson, M. Asashima and R. Keller. 2005. Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr. Biol. 15: 787–793.
PubMed Link

Granato, M. and C. Nüsslein-Volhard. 1996. Fishing for genes controlling development. Curr. Opin. Genet. Dev. 6: 461–468.
PubMed Link

Gritsman, K., W. S. Talbot and A. F. Schier. 2000. Nodal signaling patterns the organizer. Development 127: 921–932.
PubMed Link

Grunz, H. 1997. Neural induction in amphibians. Curr. Topics Dev. Biol. 35: 191–228.
PubMed Link

Grunz, H. and L. Tacke. 1989. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducers. Cell Diff. Dev. 28: 211–217.
PubMed Link

Guger, K. A. and B. M. Gumbiner. 1995. b-Catenin has wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev. Biol. 172: 115–125.
PubMed Link

Haffter, P. and 16 others. 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36.
PubMed Link

Hamburger, V. 1988. The Heritage of Experimental Embryology: Hans Spemann and the organizer. Oxford University Press, Oxford.

Hardin, J. D. and R. Keller. 1988. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103: 211–230.
PubMed Link

Hawley, S. H. B., K. Wünnenberg-Stapleton, C. Hashimoto, M. N. Laurent, T. Watabe, B. W. Blumberg and K. W. Y. Cho. 1995. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9: 2923–2935.
PubMed Link

He, X., J.-P. Saint-Jeannet, J. R. Woodgett, H. E. Varmus and I. B. Dawid. 1995. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374: 617–622.
PubMed Link

Heasman, J., A. Crawford, K. Goldstone, P. Garner-Hamrick, B. Gumbiner, P. McCrea, C. Kinter, C. Y. Noro and C. Wylie. 1994a. Overexpression of cadherins and underexpression of b-catenin inhibit dorsal mesoderm induction in early Xenopusembryos. Cell 79: 791–803.
PubMed Link

Heasman, J., D. Ginsberg, K. Goldstone, T. Pratt, C. Yoshidanaro and C. Wylie. 1994b. A functional test for maternally inherited cadherin in Xenopus shows its importance in cell adhesion at the blastula stage. Development 120: 49–57.
PubMed Link

Helde, K. A., E. T. Wilson, C. J. Cretekos and D. J. Grunwald. 1994. Contribution of early cells to the fate map of the zebrafish gastrula. Science 265: 517–520.
PubMed Link

Hemmati-Brivanlou A. and D. A. Melton. 1997. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88: 13–17.
PubMed Link

Hemmati-Brivanlou, A. and D. A. Melton. 1992. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopusembryos. Nature 359: 609–614.
PubMed Link

Hemmati-Brivanlou, A. and D. A. Melton. 1994. Inhibition of activin signaling promotes neuralization in Xenopus. Cell 77: 273–281.
PubMed Link

Hemmati-Brivanlou, A. and G. H. Thomsen. 1995. Ventral mesodermal patterning in Xenopus embryos: Expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17: 78–89.
PubMed Link

Holley, S. A., P. D. Jackson, Y. Sasai, B. Lu, E. M. De Robertis, F. M. Hoffmann and E. L. Ferguson. 1995. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376: 249–253.
PubMed Link

Holtfreter, H. 1933. Die totale Exogastrulation, eine Selbststablösung des Ektoderms von Entomesoderm. Entwicklung und funktionelles Verhalten nervenloser Organe. Arch. Entwick. Mech. Org. 129: 669–793.

Houliston, E. and R. P. Elinson. 1991. Evidence for the involvement of microtubules, endoplasmic reticulum, and kinesin in cortical rotation of fertilized frog eggs. J. Cell Biol. 114: 1017–1028.
PubMed Link

Hurtado, C. and E. M. De Robertis. 2007. Neural induction in the absence of organizer in salamanders is mediated by MAPK. Dev. Biol. 307: 282–289.
PubMed Link

Ibrahim, H. and R. Winklbauer. 2001. Mechanisms of mesendoderm internalization in Xenopus gastrula: Lessons from the ventral side. Dev. Biol. 240: 108–122.
PubMed Link

Iemura, S.-I., T. S. Yamamoto, C. Takagi, H. Uchiyama, T. Natsume, S. Shimasaki, H. Sugino and N. Ueno. 1998. Direct binding of follistatin to a complex of bone morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc. Natl. Acad. Sci. USA 95: 9337–9342.
PubMed Link

Jessen, J. R., J. Topczewski, S. Bingham, D. S. Sepich, F. Marlow, A. Chandrasekhar and L. Solnica-Krezel. 2002. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat. Cell Biol. 4: 610–615.
PubMed Link

Kane, D. A. and C. B. Kimmel. 1993. The zebrafish midblastula transition. Development 119: 447–456.
PubMed Link

Kane, D. A., K. N. McFarland and R. M. Warga. 2005. Mutations in half baked/E-cadherin block cell behaviors that are necessary for teleost epiboly. Development 132: 1105–1116.
PubMed Link

Keller, P. J., A. D. Schmidt, J. Wittbrodt and E. H. K. Stelzer. 2008. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322: 1065–1069.
PubMed Link

Keller, R. E. 1975. Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42: 222–241.
PubMed Link

Keller, R. E. 1976. Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Dev. Biol. 51: 118–137.
PubMed Link

Keller, R. E. 1986. The cellular basis of amphibian gastrulation. In L. Browder (ed.), Developmental Biology: A Comprehensive Synthesis, Vol. 2. Plenum, New York, 241–327.

Keller, R. E. and G. C. Schoenwolf. 1977. An SEM study of cellular morphology, contact, and arrangement as related to gastrulation in Xenopus laevis. Wilhelm Roux Arch. Dev. Biol. 182: 165–186.

Keller, R. and M. Danilchik. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103: 193–209.
PubMed Link

Keller, R. and A. Sutherland. 2020. Convergent extension in the amphibian, Xenopus laevis. Curr. Top. Dev. Biol. 136: 271–317.
PubMed Link

Keller, R., L. A. Davidson and D. R. Shook. 2003. How we are shaped: The biomechanics of gastrulation. Differentiation 71: 171–205.
PubMed Link

Kelly, G. M., D. F. Erezyilmaz and R. T. Moon. 1995. Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of b-catenin. Mech. Dev. 53: 261–273.
PubMed Link

Kessler, D. S. 1997. Siamois is required for formation of Spemann’s organizer. Proc. Natl. Acad. Sci. USA 94: 13017–13022.
PubMed Link

Khokha, M. K., J. Yeh, T. C. Grammer and R. M. Harland. 2005. Depletion of three BMP antagonists from Spemann’s organizer leads to catastrophic loss of dorsal structures. Dev. Cell 8: 401–411.
PubMed Link

Kimmel, C. B. and R. D. Law. 1985. Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer. Dev. Biol. 108: 86–93.
PubMed Link

Kimmel, C. B. and R. M. Warga. 1987. Indeterminate cell lineage of the zebrafish embryo. Dev. Biol. 124: 269–280.
PubMed Link

Kimmel, C. B., W. W. Ballard, S. R. Kimmel, B. Ullmann and T. F. Schilling. 1995. Stages of embryonic development in the zebrafish. Dev. Dyn. 203: 253–310.
PubMed Link

Kishimoto, Y., S. Koshita, M. Furutani-Seiki and H. Kondoh. 2004. Zebrafish maternal-effect mutations causing cytokinesis defect without affecting mitosis or equatorial vasa deposition. Mech. Dev. 121: 79–89.
PubMed Link

Klein, S. L. and S. A. Moody. 2015. Early neural ectodermal genes are activated by Siamois and Twin during blastula stages. Genesis 53: 308–320.
PubMed Link

Kofron, M., T. Demel, J. Xanthos, J. Lohr, B. Sun, H. Sive, S. Osada, C. Wright, C. Wylie and J. Heasman. 1999. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFb growth factors. Development 126: 5759 –5770.
PubMed Link

Kornikova, E. S, E. G. Korvin-Pavlovskaya and L. V. Beloussov. 2009. Relocations of cell convergence sites and formation of pharyngula-like shapes in mechanically relaxed Xenopus embryos. Dev. Genes Evol. 219: 1–10.
PubMed Link

Koshida, S., M. Shinya, T. Mizuno, A. Kuroiwa and H. Takeda. 1998. Initial anteroposterior pattern of zebrafish central nervous system is determined by differential competence of the epiblast. Development 125: 1957–1966.
PubMed Link

Ku, M. and D. A. Melton. 1993. Xwnt-11: A maternally expressed Xenopus wntgene. Development 119: 1161–1173.
PubMed Link

Kubo, H., K. Shiga, Y. Harada and Y. Iwao. 2010. Analysis of a sperm surface molecule that binds to a vitelline envelope component of Xenopus laevis eggs. Mol. Reprod. Dev. 77: 728–735.
PubMed Link

Lamb, T. M. and 7 others. 1993. Neural induction by the secreted polypeptide noggin. Science 262: 713–718.
PubMed Link

Landström, U. and S. Løvtrup. 1979. Fate maps and cell differentiation in the amphibian embryo: An experimental study. J. Embryol. Exp. Morphol. 54: 113–130.
PubMed Link

Lane, M. C. and W. C. Smith. 1999. The origins of primitive blood in Xenopus: Implications for axial patterning. Development 126: 423–434.
PubMed Link

Langdon, Y. G. and M. C. Mullins. 2011. Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu. Rev. Genet. 45: 357–377.
PubMed Link

Langeland, J. and C. B. Kimmel. 1997. The embryology of fish. In S. F. Gilbert and A. M. Raunio (eds.), Embryology: Constructing the Organism. Sinauer Associates, Sunderland, MA, 383–407.

Larabell, C. A. and 7 others. 1997. Establishment of the dorsal-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin which are modulated by the Wnt signaling pathway. J. Cell Biol. 136: 1123–1136.
PubMed Link

Laurent, M. N., I. L. Blitz, C. Hashimoto, U. Rothbächer and K. W.-Y. Cho. 1997. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 124: 4905–4916.
PubMed Link

Lee, K. W., S. E. Webb and A. L. Miller. 2003. Ca2+ released via IP3 receptors is required for furrow deepening during cytokinesis in zebrafish embryos. Int. J. Dev. Biol. 47: 411–421.
PubMed Link

Lemaire, P., N. Garrett and J. B. Gurdon. 1995. Expression cloning of Siamois, aXenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81: 85–94.
PubMed Link

Lepage, S. E. and A. E. Bruce. 2010. Zebrafish epiboly: Mechanics and mechanisms. Int. J. Dev. Biol. 54: 1213–1228.
PubMed Link

Leslie, J. D. and R. Mayor. 2013. Complement in animal development: Unexpected roles of a highly conserved pathway. Semin. Immunol. 25: 39–46.
PubMed Link

Leung, C., S. E. Webb and A. L. Miller. 1998. Calcium transients accompany ooplasmic segregation in zebrafish embryos. Dev. Growth Diff. 40: 313–326.
PubMed Link

Leung, C., S. E. Webb and A. L. Miller. 2000. On the mechanism of ooplasmic segregation in single-cell zebrafish embryos. Dev. Growth Diff. 42: 29–40.
PubMed Link

Lobikin, M. G. Wang, J. Xu, Y. W. Hsieh, C. F. Chuang, J. M. Lemire and M. Levin. 2012. Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc. Natl. Acad. Sci. USA 109: 12586–12591.
PubMed Link

Long, S., N. Ahmad and M. Rebagliati. 2003. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130: 2303–2316.
PubMed Link

Lu, F. I., C. Thisse and B. Thisse. 2011. Identification and mechanism of regulation of the zebrafish dorsal determinant. Proc. Natl. Acad. Sci. USA 108: 15876–15880.
PubMed Link

Manes, M. E. and R. P. Elinson. 1980. Ultraviolet light inhibits gray crescent formation in the frog egg. Wilhelm Roux Arch. Dev. Biol. 189: 73–77.
PubMed Link

Mangold, O. 1933. Über die Induktionsfahigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21: 761–766.

Marsden, M. and D. W. DeSimone. 2001. Regulation of cell polarity, radial intercalation, and epiboly in Xenopus: Novel roles for integrin and fibronectin. Development 128: 3635–3647.
PubMed Link

McFarland, K. N., R. M. Warga and D. A. Kane. 2005. Genetic locus half baked is necessary for morphogenesis of the ectoderm. Dev. Dyn. 233: 390–406.
PubMed Link

McMahon, A. P. and R. T. Moon. 1989. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58: 1075–1084.
PubMed Link

Miller, J. R., B. A. Rowning, C. A. Larabell, J. A. Yang-Snyder, R. L. Bates and R. T. Moon. 1999. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of Disheveled that is dependent on cortical rotation. J. Cell Biol. 146: 427–437.
PubMed Link

Molenaar, M. and 8 others. 1996. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86: 391–399.
PubMed Link

Moon, R. T. and D. Kimelman. 1998. From cortical rotation to organizer gene expression: Toward a molecular explanation of axis specification in Xenopus. BioEssays 20: 536–545.
PubMed Link

Moosmann, J., A. Ershov, V. Altapova, T. Baumbach, M. S. Prasad, C. LaBonne, X. Xiao, J. Kashef and R. Hofmann. 2013. X-ray phase-contrast in vivo microtomography probes new aspects of Xenopus gastrulation. Nature 497: 574–377.
PubMed Link

Nagai, K. and 7 others. 2009. The sperm-surface glycoprotein SGP is necessary for fertilization in the frog Xenopus laevis. Dev. Growth Differ. 51: 499–510.
PubMed Link

Nakamura, O. and H. Takasaki. 1970. Further studies on the differentiation capacity of the dorsal marginal zone in the morula of Triturus pyrrhogaster. Proc. Jpn. Acad. 46: 700–705.

Newman, C. S. and P. A. Krieg. 1999. Specification and differentiation of the heart in amphibia. In S. A. Moody (ed.), Cell Lineage and Fate Determination. Academic Press, New York, 341–351.

Newport, J. W. and M. W. Kirschner. 1982a. A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at midblastula stage. Cell 30: 675–686.
PubMed Link

Newport, J. W. and M. W. Kirschner. 1982b. A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 30: 687–696.
PubMed Link

Niehrs, C. 2004. Regionally specific induction by the Spemann-Mangold organizer. Nat. Rev. Genet. 5: 425–434.
PubMed Link

Nieuwkoop, P. D. 1969. The formation of the mesoderm in urodele amphibians. I. Induction by the endoderm. Wilhelm Roux Arch. Entwicklungsmech. Org. 162: 341–373.
PubMed Link

Nieuwkoop, P. D. 1973. The “organisation center” of the amphibian embryo: Its origin, spatial organisation and morphogenetic action. Adv. Morphogenet. 10: 1–39.
PubMed Link

Nieuwkoop, P. D. 1977. Origin and establishment of embryonic polar axes in amphibian development. Curr. Top. Dev. Biol. 11: 115–132.
PubMed Link

Nieuwkoop, P. D. and P. A. Florschütz. 1950. Quelques caractèrer spéciaux de le gastrulation et de la neurulation de l’oeuf de Xenopus laevis, Daud. et de quelques autres anoures. Arch. Biol. 61: 113–150.

Northrop, J., A. Woods, R. Seger, A. Suzuki, N. Ueno, E. Krebs and D. Kimelman. 1995. BMP-4 regulates the dorsal-ventral differences in FGF/MAPK-mediated mesoderm induction in Xenopus. Dev Biol. 172: 242–252.
PubMed Link

Oelgeschläger, M., H. Kuroda, B. Reversade and E. M. De Robertis. 2003. Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev. Cell 4: 219–230.
PubMed Link

Okada, Y., S. Tanaka, Y. Tanaka, J.-C. Belmonte and N. Hirokawa. 2005. Mechanism of nodal flow: A conserved breaking event in left-right axis determination. Cell 121: 633–644.
PubMed Link

Onuma, Y., S. Takahashi, C. Yokota and M. Asashima. 2002. Multiple nodal-related genes act coordinately in Xenopus embryogenesis. Dev. Biol. 241: 94–105.
PubMed Link

Oppenheimer, J. M. 1936. Transplantation experiments on developing teleosts (Fundulus and Perca). J. Exp. Zool. 72: 409–437.

Ossipova, O., C. W. Chu, J. Fillatre, B. K. Brott, K. Itoh, and S. Y. Sokol. 2015. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev. Biol. 408: 316–327.
PubMed Link

Papan, C., B. Boulat, S. S. Velan, S. E. Fraser and R. E. Jacobs. 2007a. Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging. Dev. Biol. 305: 161–171.
PubMed Link

Papan, C., B. Boulat. S. Velan, S. E. Fraser, and R. E. Jacobs. 2007b. Two-dimensional and three-dimensional time-lapse microscopic magnetic resonance imaging of Xenopus gastrulation movements using intrinsic tissue-specific contrast. Dev. Dyn. 236: 494–501.
PubMed Link

Pera, E. M., H. Acosta, N. Gouignard, M. Climent and I. Arregi. 2014. Active signals, gradient formation, and regional specificity in neural induction. Exp. Cell Res. 321: 25–31.
PubMed Link

Pera, E. M., O. Wessely, S.-S. Li and E. M. De Robertis. 2001. Neural and head induction by insulin-like growth factor signals. Dev. Cell 1: 655–665.
PubMed Link

Petersen, C. P. and P. W. Reddien. 2009. Wnt signaling and the polarity of the primary body axis. Cell 139: 1056–1068.
PubMed Link

Pézeron, G., P. Mourrain, S. Courty, J. Ghislain, T. S. Becker, F. M. Rosa and N. B. David. 2008. Live analysis of endodermal layer formation identifies random walk as a novel gastrulation movement. Curr. Biol. 18: 276–281.
PubMed Link

Pfister, K., D. R. Shook, C. Chang, R. Keller and P. Skoglund. 2016. Molecular model for force production and transmission during vertebrate gastrulation. Development 143: 715–727.
PubMed Link

Piccolo, S., E. Agius, L. Leyns, S. Bhattacharyya, H. Grunz, T. Bouwmeester and E. M. DeRobertis. 1999. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP, and Wnt signals. Nature 397: 707–710.
PubMed Link

Piccolo, S., Y. Sasai, B. Lu and E. M. De Robertis. 1996. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598.
PubMed Link

Pierce, S. B. and D. Kimelman. 1995. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121: 755–765.
PubMed Link

Rankin, S. A., J. Kormish, M. Kofron, A. Jegga and A. M. Zorn. 2011. A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. Dev. Biol. 351: 297–310.
PubMed Link

Rebagliati, M. R., R. Toyama, C. Fricke, P. Haffter and I. B. Dawid. 1998. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev. Biol. 199: 261–272.
PubMed Link

Rex, M., E. Hilton and R. Old. 2002. Multiple interactions between maternally-activated signaling pathway control Xenopus nodal-related genes. Int. J. Dev. Biol. 46: 217–226.
PubMed Link

Richard-Parpaillon, L., C. Héligon, F. Chesnel, D. Boujard and A. Philpott. 2002. The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev. Biol. 244: 407–417.
PubMed Link

Rogers, C. D., N. Harafuji, T. Archer, D. D. Cunningham and E. S. Casey. 2009a. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Mech. Dev. 126: 42–55.
PubMed Link

Rogers, C. D., S. A. Moody and E. S. Casey. 2009b. Neural induction and factors that stabilize a neural fate. Birth Defects Res. C: Embryol. Today 87: 249–262.
PubMed Link

Rogers, C. D., T. C. Archer, D. D. Cunningham, T. C. Grammer and E. M. Casey. 2008. Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Dev. Biol. 313: 307–319.
PubMed Link

Rogers, K. W. and P. Müller. 2018. Nodal and BMP dispersal during early zebrafish development. Dev. Biol. 447: 14–23.
PubMed Link

Romeo, N., A. Hastewell, A. Mietke and J. Dunkel 2021. Learning developmental mode dynamics from single-cell trajectories. Elife 10:e68679.
PubMed Link

Roux, W. 1887. Beiträge zur Entwicklungsmechanik des Embryo. Arch. Mikrosk. Anat. 29: 157–212.

Royer, L. A., W. C. Lemon, R. K. Chhetri, Y. Wan, M. Coleman, E.. W. Myers and P. J. Keller. 2016. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotechnol. 34: 1267–1278.
PubMed Link

Rozario, T., B. Dzamba, G. F. Weber, L. A. Davidson and D. W. DeSimone. 2009. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev. Biol. 327: 386–398.
PubMed Link

Ryan, A. K. and 14 others. 1998. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394: 545–551.
PubMed Link

Saka, Y. and J. C. Smith. 2001. Spatial and temporal patterns of cell division during early Xenopus embryogenesis. Dev. Biol. 229: 307–318.
PubMed Link

Sampath, K., A. L. Rubinstein, A. M. Cheng, J. O. Liang, K. Fekany, L. Solnica-Krezel, V. Korzh, M. E. Halpern and C. V. Wright. 1998. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395: 185–189.
PubMed Link

Sander, K. and P. E. Faessler. 2001. Introducing the Spemann-Mangold organizer: Experiments and insights that generated a key concept in developmental biology. Int. J. Dev. Biol. 45: 1–11.
PubMed Link

Sasai, Y., B. Lu, H. Steinbeisser, D. Geissert, L. K. Gont and E. M. De Robertis. 1994. Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790.
PubMed Link

Sasai, Y., B. Lu, S. Piccolo and E. M. de Robertis. 1996. Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15: 4547–4555.
PubMed Link

Sato, S. M. and T. D. Sargent. 1989. Development of neural inducing capacity in dissociated Xenopus embryos. Dev. Biol. 134: 263–266.
PubMed Link

Saxén, L. 1961. Transfilter neural induction of amphibian ectoderm. Dev. Biol.3: 140–152.
PubMed Link

Saxén, L. 2001. Spemann’s heritage in Finnish developmental biology. Int. J. Dev. Biol. 45: 51–55.
PubMed Link

Saxén, L. and S. Toivonen. 1962. Embryonic Induction. Prentice-Hall, Englewood Cliffs, NJ.

Schier, A. F. 2001. Axis formation and patterning in zebrafish. Curr. Opin. Genet. Dev. 11: 393–404.
PubMed Link

Schier, A. F. and W. S. Talbot. 1998. The zebrafish organizer. Curr. Opin. Genet. Dev. 8: 464–471.
PubMed Link

Schier, A. F., S. C. Neuhauss, K. A. Held, W. S. Talbot and W. Driever. 1997 The one eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124: 327–342.
PubMed Link

Schmitz, B. and J. A. Campos-Ortega. 1994. Dorso-ventral polarity of the zebrafish embryo is distinguishable prior to the onset of gastrulation. Wilhelm Roux Arch. Dev. Biol. 203: 374–380.
PubMed Link

Schneider, S., H. Steinbeisser, R. M. Warga and P. Hausen. 1996. Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57: 191–198.
PubMed Link

Schroeder, K. E., M. L. Condic, L. M. Eisenberg and H. J. Yost. 1999. Spatially regulated translation in embryos: Asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev. Biol. 214: 288–297.
PubMed Link

Schweickert, A., T. Weber, T. Beyer, P. Vick, S. Bogusch, K. Feistel and M. Blum. 2007. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17: 60–66.
PubMed Link

Shah, G. and 8 others. 2019. Multi-scale imaging and analysis identify pan-embryo cell dynamics of germlayer formation in zebrafish. Nat. Commun. 10: 5753.
PubMed Link

Shimizu, T., T. Yabe, O. Muraoka, S. Yonemura, S. Aramaki, K. Hatta, Y. K. Bae, H. Nojima and M. Hibi. 2005a. E-cadherin is required for gastrulation cell movements in zebrafish. Mech. Dev. 122: 747–763.
PubMed Link

Shimizu, T., Y. K. Bae, O. Muraoka and M. Hibi. 2005b. Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev. Biol. 279: 125–141.
PubMed Link

Shindo, A. 2018. Models of convergent extension during morphogenesis. Wiley Interdiscip. Rev. Dev. Biol. 7: e293.
PubMed Link

Shindo, A. and J. B. Wallingford. 2014. PCP and septins compartmentalize cortical actomyosin to direct collective cell movement. Science 343: 649–652.
PubMed Link

Shindo, A., Y. Inoue, M. Kinoshita and J. B. Wallingford. 2019. PCP-dependent transcellular regulation of actomyosin oscillation facilitates convergent extension of vertebrate tissue. Dev. Biol. 446: 159–167.
PubMed Link

Shinya, M., M. Furutani-Seiki, A. Kuroiwa and H. Takeda. 1999. Mosaic analysis with oep mutant reveals a repressive interaction between floor-plate and non-floor-plate mutant cells in the zebrafish neural tube. Dev. Growth Diff. 41: 135–142.
PubMed Link

Shook, D. R., E. M. Kasprowicz, L. A. Davidson and R. Keller. 2018. Large, long-range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation. Elife 7: e26944.
PubMed Link

Siddiqui, M., H. Sheikh, C. Tran, A. E. Bruce. 2010. The tight junction component Claudin E is required for zebrafish epiboly. Dev. Dyn. 239: 715–722.
PubMed Link

Silva, A. C., M. Filipe, K.-M. Kuerner, H. Steinbeisser and J. A. Belo. 2003. Endogenous Cerberus activity is required for anterior head specification in Xenopus. Development 130: 4943–4953.
PubMed Link

Skirkanich, J., G. Luxardi, J. Yang, L. Kodjabachian and P. S. Klein. 2011. An essential role for transcription before the MBT in Xenopus laevis. Dev. Biol. 357: 478–491.
PubMed Link

Smith, J. C. and J. M. W. Slack. 1983. Dorsalization and neural induction: Properties of the organizer in Xenopus laevis. J. Embryol. Exp. Morphol. 78: 299–317.
PubMed Link

Smith, W. C. and R. M. Harland. 1991. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67: 753–765.
PubMed Link

Smith, W. C. and R. M. Harland. 1992. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell70: 829–840.
PubMed Link

Smith, W. C., A. K. Knecht, M. Wu and R. M. Harland. 1993. Secreted noggin mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361: 547–549.
PubMed Link

Smithers, L. E., C. M. Jones. 2002. Xhex-expressing endodermal tissues are essential for anterior patterning in Xenopus. Mech. Dev.119: 191–200.
PubMed Link

Sokol, S., J. L. Christian, R. T. Moon and D. A. Melton. 1991. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 67: 741–752.
PubMed Link

Solnica-Krezel, L. and W. Driever. 1994. Microtubule arrays of the zebrafish yolk cell: Organization and function during epiboly. Development 120: 2443–2455.
PubMed Link

Solnica-Krezel, L. and W. Driever. 2001. The role of the homeodomain protein Bozozok in zebrafish axis formation. Int. J. Dev. Biol. 45: 299–310.
PubMed Link

Sonavane, P. R., C. Wang, B. Dzamba, G. F. Weber, A. Periasamy and D. W. DeSimone. 2017. Mechanical and signaling roles for keratin intermediate filaments in the assembly and morphogenesis of Xenopus mesendoderm tissue at gastrulation. Development 144: 4363–4376.
PubMed Link

Stancheva, I., O. El-Maarri, J. Walter, A. Niveleau and R. R. Meehan. 2002. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev. Biol. 243: 155–165.
PubMed Link

Steinbeisser, H., A. Fainsod, C. Niehrs, Y. Sasai and E. M. De Robertis. 1995. The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: A loss-of-function study using antisense RNA. EMBO J. 14: 5230–5243.
PubMed Link

Strahle, U. and S. Jesuthasan. 1993. Ultraviolet irradiation impairs epiboly in zebrafish embryos: Evidence for a microtubule-dependent mechanism of epiboly. Development 119: 909–919.
PubMed Link

Szabó, A., I. Cobo, S. Omara, S. McLachlan, R. Keller and R. Mayor. 2016. The molecular basis of radial intercalation during tissue spreading in early development. Dev. Cell 37: 213–225.
PubMed Link

Tao, Q. and 9 others. 2005. Maternal wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120: 857–871.
PubMed Link

Taverner, N. V. and 8 others. 2005. Microarray-based identification of VegT targets in Xenopus. Mech. Dev. 122: 333–354.
PubMed Link

Thisse, B. and C. Thisse. 2015. Formation of the vertebrate embryo: Moving beyond the Spemann organizer. Semin. Cell Dev. Biol. 42: 94–102.
PubMed Link

Thisse, B., C. V. Wright and C. Thisse. 2000. Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403: 425–428.
PubMed Link

Toivonen, S. and J. Wartiovaara. 1976. Mechanism of cell interaction during primary induction studied in transfilter experiments. Differentiation 5: 61–66.
PubMed Link

Toivonen, S. and L. Saxén 1968. Morphogenetic interaction of presumptive neural and mesodermal cells mixed in different ratios. Science 159: 539–540.
PubMed Link

Toivonen, S. and L. Saxén. 1955. The simultaneous inducing action of liver and bone marrow of the guinea pig in implantation and explanation experiments with embryos of Triturus. Exp. Cell Res. 3: 346–357.
PubMed Link

Toivonen, S., D. Tarin, L. Saxén, P. J. Tarin and J. Wartiovaara. 1975. Transfilter studies on neural induction in the newt. Differentiation 4: 1–7.
PubMed Link

Trinkaus, J. P. 1984. Mechanisms of Fundulus epiboly: A current view. Am. Zool. 24: 673–688.

Trinkaus, J. P. 1992. The midblastula transition, the YSL transition, and the onset of gastrulation in Fundulus. Development 1992: 75–80.
PubMed Link

Trinkaus, J. P. 1993. The yolk syncitial layer of Fundulus: Its origin and history and its significance for early embryogenesis. J. Exp. Zool. 265: 258–284.
PubMed Link

Tsang, M., S. Maegawa, A. Kiang, R. Habas, E. Weinberg and I. B. Dawid. 2004. A role for MKP3 in axial patterning of the zebrafish embryo. Development 131: 2769–2779.
PubMed Link

Tuazon, F. B. and M. C. Mullins. 2015. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin. Cell Dev. Biol. 42: 118–133.
PubMed Link

Tucker, A. S. and J. M. Slack. 1995. Tail bud determination in the vertebrate embryo. Curr. Biol. 5: 807–813.
PubMed Link

Twitty, V. C. 1966. Of Scientists and Salamanders. Freeman, San Francisco, CA.

Valles, J. M., Jr., S. R. Wasserman, C. Schweidenback, J. Edwardson, J. M. Denegre and K. L. Mowry. 2002. Processes that occur before second cleavage determine third cleavage orientation in Xenopus. Exp. Cell Res. 274: 112–118.
PubMed Link

Varshney, G. K., R. Sood and S. M. Burgess. 2015. Understanding and editing the zebrafish genome. Adv. Genet. 92: 1–52.
PubMed Link

Vervenne, H. B., K. R. Crombez, K. Lambaerts, L. Carvalho, M. Köppen, C. P. Heisenberg, W. J. Van de Ven and M. M. Petit. 2008. Lpp is involved in Wnt/PCP signaling and acts together with Scrib to mediate convergence and extension movements during zebrafish gastrulation. Dev. Biol. 320: 267–277.
PubMed Link

Vincent, J. P., G. F. Oster and J. C. Gerhart. 1986. Kinematics of gray crescent formation in Xenopus eggs: The displacement of subcortical cytoplasm relative to the egg surface. Dev. Biol. 113: 484–500.
PubMed Link

Vorwald-Denholtz, P. P. and E. M. De Robertis. 2011. Temporal pattern of the posterior expression of Wingless in Drosophila blastoderm. Gene Expr. Patterns 11: 456–463.
PubMed Link

Wacker, S. A., C. L. McNulty, A. J. Durston. 2004. The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP4. Dev. Biol. 266: 123–137.
PubMed Link

Walentek, P., I. Schneider, A. Schweickert, and M. Blum. 2013. Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development. PLOS ONE 8: e73646.
PubMed Link

Warga, R. M. and C. B. Kimmel. 1990. Cell movements during epiboly and gastrulation in zebrafish. Development 108: 569–580.
PubMed Link

Weaver C., G. H. Farr III, W. Pan, B. A. Rowning, J. Wang, J. Mao, D. Wu, L. Li, C. A. Larabell and D. Kimelman. 2003. GBP binds kinesin light chains and translocates during cortical rotation in Xenopus eggs. Development 130: 5425–5436.
PubMed Link

Weaver, C. and D. Kimelman. 2004. Move it or lose it: Axis specification in Xenopus. Development 131: 3491–3499.
PubMed Link

Wen, J. W. and R. Winklbauer. 2017. Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula. Elife 6: 27190.
PubMed Link

Wessely, O., J. I. Kim, D. Geissert, U. Tran and E. M. De Robertis. 2004. Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays. Dev. Biol. 269: 552–566.
PubMed Link

White, J. A. and J. Heasman. 2008. Maternal control of pattern formation in Xenopus laevis. J. Exp. Zool. (MDE) 310B: 73–84.
PubMed Link

Wilson, P. A. and A. Hemmati-Brivanlou. 1995. Induction of epidermis and inhibition of neural fate by BMP-4. Nature 376: 331–333.
PubMed Link

Wilson, P. A. and R. Keller. 1991. Cell rearrangement during gastrulation of Xenopus: Direct observation of cultured explants. Development 112: 289–300.
PubMed Link

Winklbauer, R. and E. W. Damm. 2012. Internalizing the vegetal cell mass before and during amphibian gastrulation: Vegetal rotation and related movements. Wiley Interdiscip. Dev. Biol. 1: 301–306.
PubMed Link

Winklbauer, R. and M. Schürfeld. 1999. Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus. Development 126: 3703–3713.
PubMed Link

Xu, P. F., N. Houssin, K. F. Ferri-Lagneau, B. Thisse and C. Thisse. 2014. Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344: 87–89.
PubMed Link

Yang, J., C. Tan, R. S. Darken, P. A. Wilson and P. S. Klein. 2002. b-Catenin/Tcf-regulated transcription prior to the midblastula transition. Development 129: 5743–5752.
PubMed Link

Yao, J. and D. S. Kessler. 2001. Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann’s organizer. Development 128: 2975–2987.
PubMed Link

Yost, C., M. Torres, J. R. Miller, E. Huang, D. Kimelman and R. T. Moon. 1996. The axis-inducing ability, stability, and subcellular localization of b-catenin are regulated in Xenopus embryos by glycogen synthase kinase-3. Genes Dev. 10: 1443–1454.
PubMed Link

Zhang, J., D. W. Houston, M. L. King, C. Payne, C. Wylie and J. Heasman. 1998. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94: 515–524.
PubMed Link

Zimmerman, L. B., J. M. de Jesús-Escobar and R. M. Harland. 1996. The Spemann organizer signal noggin binds and inactivates bone morphogenesis protein 4. Cell 86: 599–606.
PubMed Link

Back to top