Abi Nahed, R. and 12 others. 2016. Progesterone-induced acrosome exocytosis requires sequential involvement of calcium-independent phospholipase A2β (iPLA2β) and group X secreted phospholipase A2 (sPLA2). J. Biol. Chem. 291: 3076–3089.
Afzelius, B. A. 1976. A human syndrome caused by immotile cilia. Science 193: 317–319.
Ajduk, A., M. A. Ciemerych, V. Nixon, K. Swann and M. Maleszewski. 2008. Fertilization differently affects the levels of cyclin B1 and M-phase promoting factor activity in maturing and metaphase II mouse oocytes. Reproduction 136: 741–752.
Arcelay, E., A. M. Salicioni, E. Wertheimer and P. E. Visconti. 2008. Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int. J. Dev. Biol. 52: 463–472.
Arnoult, C., I. G. Kazam, P. E. Visconti, G. Kopf, M. Villaz and H. Florman. 1999. Control of the low-voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. Proc. Natl. Acad. Sci. USA 96: 6757–6762.
Austin, C. R. 1952. The “capacitation” of mammalian sperm. Nature 170: 327.
Austin, C. R. 1960. Capacitation and the release of hyaluronidase. J. Reprod. Fertil. 1: 310–311.
Austin, C. R. 1965. Fertilization. Prentice-Hall, Englewood Cliffs, NJ.
Avella, M. A., B. Baibakov and J. Dean. 2014. A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. J. Cell Biol. 205: 801–880.
Avidor-Reiss, T. and E. L. Fishman. 2019. It takes two (centrioles) to tango. Reproduction 157: R33–R51.
Bahat, A. and M. Eisenbach. 2006. Sperm thermotaxis. Mol. Cell. Endocrinol. 252: 115–119.
Bahat, A., I. Tur-Kaspa, A. Gakamsky, L. C. Giojalas, H. Breitbart and M. Eisenbach. 2003. Thermotaxis of mammalian sperm cells: A potential navigation mechanism in the female genital tract. Nat. Med. 9: 149–150.
Bahat, A., S. R. Caplan and M. Eisenbach. 2012. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLOS ONE 7: e41915.
Baibakov, B., N. A. Boggs, B. Yauger, G. Baibakov and J. Dean. 2012. Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice. J. Cell Biol. 197: 897–905.
Baker, M. A., N. D. Smith, L. Hetherington, K. Taubman, M. E. Graham, P. J. Robinson and R. J. Aitken. 2010. Label-free quantitation of phosphopeptide changes during rat sperm capacitation. Proteome Res. 9: 718–729.
Benoff, S. 1993. Preliminaries to fertilization: The role of cholesterol during capacitation of human spermatozoa. Hum. Reprod. 8: 2001–2008.
Bentley, J. K., H. Shimomura and D. L. Garbers. 1986. Retention of a functional resact receptor in isolated sperm plasma membranes. Cell 45: 281–288.
Bertin, R. I. and C. M. Newman. 1993. Dichogamy in angiosperms. Bot. Rev. 59: 112–152.
Bianchi, E. and G. J. Wright. 2014. Izumo meets Juno: Preventing polyspermy in fertilization. Cell Cycle 13: 2019–2020.
Bianchi, E., B. Doe, D. Goulding and G. J. Wright. 2014. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508: 483–487.
Bleil, J. D. and P. M. Wassarman. 1980. Mammalian sperm and egg interaction: Identification of a glycoprotein in mouse-egg zonae pellucidae possessing receptor activity for sperm. Cell 20: 873–882.
Bleil, J. D. and P. M. Wassarman. 1983. Sperm-egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev. Biol. 95: 317–324.
Bogart, J. P., R. P. Elinson and L. E. Licht. 1989. Temperature and sperm incorporation in polyploid salamanders. Science 246: 1032–1034.
Bogart, J. P., J. Bartoszek, D. W. Noble and K. Bi. 2009. Sex in unisexual salamanders: Discovery of a new sperm donor with ancient affinities. Heredity 103: 483–493.
Bou Khalil, M. and 11 others. 2006. Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev. Biol. 290: 220–235.
Boveri, T. 1902. On multipolar mitosis as a means of analysis of the cell nucleus. [Translated by S. Gluecksohn-Waelsch.] In B. H. Willier and J. M. Oppenheimer (eds.), Foundations of Experimental Embryology. Hafner, New York 1974.
Boveri, T. 1907. Zellenstudien VI. Die Entwicklung dispermer Seeigeleier. Ein Beiträge zur Befruchtungslehre und zur Theorie des Kernes. Jena Z. Naturwiss. 43: 1–292.
Brewbaker, J. L. and B. H. Kwack. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot. 50: 859–865.
Burkart, A. D., B. Xiong, B. Baibakov, B. Jiménez-Movilla and J. Dean. 2012. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 197: 37–44.
Burnett, L. A., S. Boyles, C. Spencer, A. L. Bieber and D. E. Chandler. 2008. Xenopus tropicalis allurin: Expression, purification, and characterization of a sperm chemoattractant that exhibits cross-species activity. Dev. Biol. 316: 408–416.
Busa, W. B., J. E. Ferguson, S. K. Joseph, J. R. Williamson and R. Nuccitelli. 1985. Activation of frog (Xenopus laevis) eggs by inositol triphosphate. I. Characterization of Ca2+ release from intracellular stores. J. Cell Biol. 100: 677–682.
Calvin, H. I. and J. M. Bedford. 1971. Formation of disulfide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J. Reprod. Fertil. 13: 65–75.
Carroll, D. J., C. S. Ramarao, L. Mehlmann, S. Roche, M. Terasaki and L. A. Jaffe. 1997. Calcium release at fertilization in starfish eggs is mediated by phospholipase Cγ. J. Cell Biol. 138: 1303–1311.
Carroll, D. J., D. T. Albay, M. Terasaki, L. A. Jaffe and K. R. Foltz. 1999. Identification of PLCγ-dependent and independent events during fertilization of sea urchin eggs. Dev. Biol. 206: 232–247.
Carroll, D. J., D. T. Albay, K. M. Hoag, F. J. O’Neill, M. Kumano and K. R. Foltz. 2000. The relationship between calcium, MAP kinase, and DNA synthesis in the sea urchin egg at fertilization. Dev. Biol. 217: 179–191.
Carroll, E. J. and D. Epel. 1975. Isolation and biological activity of the proteases released by sea urchin eggs following fertilization. Dev. Biol. 44: 22–32.
Castellano, L. E., G. Martinez-Cadena, J. Lopez-Godinez, A. Obregon and J. Garcia-Soto. 1997. Subcellular localization of the GTP-binding protein Rho in the sea urchin sperm. Eur. J. Cell Biol. 74: 329–335.
Cerezales, S. P., S. Boryshpolets and M. Eisenbach. 2015. Behavioral mechanisms of mammalian sperm guidance. Asian J. Androl. 17: 628–632.
Chalbi, M. and 13 others. 2014. Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization. Development 141: 3732–3739.
Chambers, E. L., B. C. Pressman and B. Rose. 1974. The activation of sea urchin eggs by the divalent ionophores A23187 and X-537A. Biochem. Biophys. Res. Comm. 60: 126–132.
Chandler, D. E. and J. Heuser. 1979. Membrane fusion during secretion: Cortical granule exocytosis in sea urchin eggs as studied by quick-freezing and freeze fracture. J. Cell Biol. 83: 91–108.
Chang, M. C. 1951. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168: 697–698.
Chassé, H., J. Aubert, S. Boulben, G. Le Corguillé, E. Corre, P. Cormier and J. Morales. 2018. Translatome analysis at the egg-to-embryo transition in sea urchin. Nucleic Acids Res. 46: 4607–4621.
Chiu, P. C., K. K. Lam, R. C. Wong and W. S. Yeung. 2014. The identity of zona pellucida receptor on spermatozoa: an unresolved issue in developmental biology. Semin. Cell Dev. Biol. 30: 86–95.
Christen, R., R. W. Schackmann and B M. Shapiro. 1982. Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin Strongylocentrotus purpuratus. J. Biol. Chem. 257: 14881–14890.
Churchill, G. C., J. S. O’Neill, R. Masgrau, S. Patel, J. M. Thomas, A. A. Genazzani and A. Galione. 2003. Sperm deliver a new second messenger: NAADP. Curr. Biol. 13: 125–128.
Clark, G. F. 2011. The molecular basis of mouse sperm-zona pellucida binding: A still unresolved issue in developmental biology. Reproduction 142: 377–381.
Clark, T. 2018. HAP2/GCS1: Mounting evidence of our true biological EVE? PLOS Biol. 16: e3000007.
Clermont, Y. and C. P. Leblond. 1955. Spermiogenesis of man, monkey, and other animals as shown by the “periodic acid-Schiff” technique. Am. J. Anat. 96: 229–253.
Cohen-Dayag, A., I. Tur-Kaspa, J. Dor, S. Mashiach and M. Eisenbach. 1995. Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors. Proc. Natl. Acad. Sci. USA 92: 11039–11043.
Colwin, A. L. and L. H. Colwin. 1963. Role of the gamete membranes in fertilization in Saccoglossus kowalevskii (Enteropneustra). I. The acrosome reaction and its changes in early stages of fertilization. J. Cell Biol. 19: 477–500.
Conner, S. and G. M. Wessel. 1998. rab3 mediates cortical granule exocytosis in the sea urchin egg. Dev. Biol. 203: 334–344.
Conner, S., D. Leaf and G. M. Wessel. 1997. Members of the SNARE hypothesis are associated with cortical granule exocytosis in the sea urchin egg. Mol. Reprod. Dev. 48: 106–118.
Cook, S. P. and D. F. Babcock. 1993. Selective modulation by cGMP of the K+ channel activated by speract. J. Biol. Chem. 268: 22402–22407.
Cormier, P., S. Pyronnet, J. Morales, O. Mulner-Lorillon, N. Sonenberg and R. Bellé. 2001. eIF4E association with 4E-BP decreases rapidly following fertilization in sea urchin. Dev. Biol. 232: 275–283.
Correa, L. M. and E. J. Carroll, Jr. 1997. Characterization of the vitelline envelope of the sea urchin Strongylocentrotus purpuratus. Dev. Growth Diff. 39: 69–85.
Corselli, J. and P. Talbot. 1987. In vivo penetration of hamster oocyte-cumulus complexes using physiological numbers of sperm. Dev. Biol. 122: 227–242.
Cross, N. L. 1998. Role of cholesterol in sperm capacitation. Biol. Reprod. 59: 7–11.
Cross, N. L. and R. P. Elinson. 1980. A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev. Biol. 75: 187–198.
Cruden, R. W. and R. M. Lloyd. 1995. Embryophytes have equivalent sexual phenotypes and breeding systems: Why not a common terminology to describe them? Am. J. Bot. 82: 816–825.
Cummins, J. M., T. Wakayama and R. Yanagimachi. 1998. Fate of microinjected spermatid mitochondria in the mouse oocyte and embryo. Zygote 5: 301–308.
Dan, J. C. 1952. Studies on the acrosome. I. Reaction to egg-water and other stimuli. Biol. Bull. 103: 54–66.
da Silveira J. C., A. C. F. C. M. de Ávila, H. L. Garrett, J. E. Bruemmer, Q. A. Winger and G. J. Bouma. 2018. Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J. Endocrinol. 236: R15-R27.
de la Sancha, C. U., G. Martínez-Cadena, J. López-Godínez, L. E. Castellano, T. Nishigaki, A. Darszon and J. García-Soto. 2007. Rho-kinase (ROCK) in sea urchin sperm: Its role in regulating the intracellular pH during the acrosome reaction. Biochem. Biophys. Res. Comm. 364: 470–475.
Denninger, P., A. Bleckmann, A. Lausser, F. Vogler, T. Ott, D. W. Ehrhardt, W. B. Frommer, S. Sprunck, T. Dresselhaus and G. Grossmann. 2014. Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat. Commun. 5: 4645.
Domino, S. E. and Garbers, D. l. 1988. The fucose sulfate glycoconjugate that induces the acrosome reaction in spermatozoa stimulates inositol 1,4,5-trisphosphate accumulation. J. Biol. Chem. 263: 690–695.
Domino, S. E., S. B. Bocckino, and D. L. Garbers. 1989. Activation of phospholipase D by the fucose sulfate glycoconjugate that induces an acrosome reaction in spermatozoa. J. Biol. Chem. 264: 9412–9419.
Dresselhaus, T. and M. L. Marton. 2009. Micropylar pollen tube guidance and burst: adapted from defense mechanisms? Curr. Opin. Plant Biol. 12: 773–780.
Dresselhaus, T. and N. Franklin-Tong. 2013. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6: 1018–1036.
Dresselhaus, T., S. Sprunck., and G. M. Wessel. 2016. Fertilization mechanisms in flowering plants. Curr. Biol. 26: R125–R139.
Ducibella, T., D. Huneau, E. Angelichio, Z. Xu, R. M. Schultz, G. S. Kopf, R. Fissore, S. Madoux and J. P. Ozil. 2002. Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev. Biol. 250: 280–291.
Duncan, F. E., E. L. Que, N. Zhang, E. C. Feinberg, T. V. O'Halloran, and T. K. Woodruff. 2016. The zincspark is an inorganic signature of human egg activation. Sci. Rep. 6: 24737.
Edlund, A. F., R. Swanson, and D. Preuss. 2004. Pollen and stigma structure and function: The role of diversity in pollination. Plant Cell 16: S84–S97.
Edlund A. F., Q. Zheng, N. Lowe, S. Kuseryk, K. L. Ainsworth, R. H. Lyles, S. J. Sibener and D. Preuss. 2016. Pollen from Arabidopsis thaliana and other Brassicaceae are functionally omniaperturate. Am. J. Bot. 103: 1006–1019.
Edlund, A. F., K. Olsen, C. Mendoza, J. Wang, T. Buckley, M. Nguyen, B. Callahan and H. A. Owen. 2017. Pollen wall degradation in the Brassicaceae permits cell emergence after pollination. Am. J. Bot. 104: 1266–1273.
Eisen, A. and G. T. Reynolds. 1985. Sources and sinks for the calcium release during fertilization of single sea urchin eggs. J. Cell Biol. 100: 1522–1527.
Eisenbach, M. 1995. Sperm changes enabling fertilization in mammals. Curr. Opin. Endocrinol. Diabetes 2: 468–475.
Eisenbach, M. 2004. Towards understanding the molecular mechanisms of sperm chemotaxis. J. Gen. Physiol. 124: 105–108.
Eisenbach, M. and I. Tur-Kaspa. 1999. Do human eggs attract spermatozoa? BioEssays 21: 203–210.
Epel, D. 1977. The program of fertilization. Sci. Am. 237: 128–138.
Epel, D. 1980. Fertilization. Endeavour 4: 26–31.
Epel, D., C. Patton, R. W. Wallace and W. Y. Cheung. 1981. Calmodulin activates NAD kinase of sea urchin eggs: An early response. Cell 23: 543–549.
Ernesto, J. I. and 13 others. 2015. CRISP1 as a novel CatSper regulator that modulates sperm motility and orientation during fertilization. J. Cell Biol. 210: 1213–1224.
Ferris, C. D., R. L. Huganir, S. Supattapone and S. H. Snyder. 1989. Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342: 87–89.
Fisher, H. S. and H. E. Hoekstra. 2010. Competition drives cooperation among closely related sperm of deer mice. Nature 463: 801–803.
Fisher, H. S., L. Giomi, H. E. Hoekstra and L. Mahadevan. 2014. The dynamics of sperm cooperation in a competitive environment. Proc. Biol. Soc. 281: 20140296.
Fishman, E. L. and 12 others. 2018. A novel atypical sperm centriole is functional during human reproduction. Nat. Comm. 9: 2210.
Foerder, C. A. and B. M. Shapiro. 1977. Release of ovoperoxidase from sea urchin eggs hardens fertilization membrane with tyrosine crosslinks. Proc. Natl. Acad. Sci. USA 74: 4214–4218.
Foltz, K. R., J. S. Partin and W. J. Lennarz. 1993. Sea urchin egg receptor for sperm: Sequence similarity of binding domain and hsp 70. Science 259: 1421–1425.
Foster, K. R. and T. Pizzari. 2010. Cooperation: The secret society of sperm. Curr. Biol. 20: R314–R316.
Franklin-Tong, V. E., B. K. Drobak, A. C. Allan, P. A. C. Watkins, and A. J. Trewavas. 1996. Growth of pollen tubes in Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell 8: 1305–1321.
Franklin-Tong, V. E., T. L. Holdaway-Clarke, K. R. Straatman, J. G. Kunkel, and P. K. Hepler. 2002. Involvement of extracellular calcium influx in the self-incompatibility response of Papaver rhoeas. Plant J. 29: 333–345.
Fraser, R. and C-J. Lin. 2016. Epigenetic programming of the zygote in mice and men: On your marks, get set, go! Reproduction 152: R211–R222.
Friedman, W. E. 1998. The evolution of double fertilization and endosperm: An “historical” perspective. Sex. Plant Reprod. 11: 6–16.
Furuichi, T., S. Yoshikawa, A. Miyawaki, K. Wada, N. Maeda and K. Mikoshiba. 1989. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342: 32–38.
Gadella, B. M., P. S. Tsai, A. Boerke and I. A. Brewis. 2008. Sperm head membrane reorganisation during capacitation. Int. J. Dev. Biol. 52: 473–480.
Gage, S. L., S. Afonin, M. Grune and A. S. Ulrich. 2004. Interaction of the fusogenic peptide B18 in its amyloid state with lipid membranes studied by solid-state NMR. Chem. Phys. Lipids 132: 65–77.
Gahlay, G., L. Gauthier, B. Baibakov, O. Epifano and J. Dean. 2010. Gamete recognition in mice depends on the cleavage status of an egg’s zona pellucida protein. Science 329: 216–219.
Galantino-Homer, H. L., P. E. Visconti and G. S. Kopf. 1997. Regulation of protein tyrosine kinase phosphorylation during bovine capacitation by a cyclic adenosine 3,5-monophosphate-dependent pathway. Biol. Reprod. 56: 707–719.
Gardiner, D. M. and R. D. Grey. 1983. Membrane junctions in Xenopus eggs: Their distribution suggests a role in calcium regulation. J. Cell Biol. 96: 1159–1163.
Gardner, A. J. and J. P. Evans. 2006. Mammalian membrane block to polyspermy: New insights into how mammalian eggs prevent fertilisation by multiple sperm. Reprod. Fertil. Dev. 18: 53–61.
Gaude, T. and S. McCormick. 1999. Signaling in pollen-pistil interactions. Semin. Cell Dev. Biol. 10: 139–147.
Gilbert, S. and C. Pinto-Correia. 2017. Fear, Wonder, and Science in the New Age of Reproductive Biotechnology. Columbia University Press, New York.
Giusti, A. F., F. J. O’Neill, K. Yamasu, K. R. Foltz and L. A. Jaffe. 2003. Function of a sea urchin egg Src family kinase in initiating Ca2+ release at fertilization. Dev. Biol. 256: 367–378.
Glabe, C. G. and V. D. Vacquier. 1977. Species-specific agglutination of eggs by bindin isolated from sea urchin sperm. Nature 267: 836–838.
https://www.ncbi.nlm.nih.gov/pubmed/561310
Glabe, C. G. and V. D. Vacquier. 1978. Egg surface glycoprotein receptor for sea urchin sperm bindin. Proc. Natl. Acad. Sci. USA 75: 881–885.
Glabe, C. G. and W. J. Lennarz. 1979. Species-specific sperm adhesion in sea urchins: A quantitative investigation of bindin-mediated egg agglutination. J. Cell Biol. 83: 595–604.
Gould-Somero, M., L. A. Jaffe and L. Z. Holland. 1979. Electrically mediated fast polyspermy block in eggs of the marine worm, Urechis caupo. J. Cell Biol. 82: 426–440.
Guerrero, A., C. D. Wood, T. Nishigaki, J. Carneiro and A. Darszon. 2010. Tuning sperm chemotaxis. Biochem. Soc. Trans. 38: 1270–1274.
Guidobaldi, H. A., M. E. Teves, D. R. Uñates, A. Anastasía and L. C. Giojalas. 2008. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLOS ONE 3: e3040.
Guidobaldi, H. A., N. Hirohashi, M. Cubilla, M. G. Buffone, and L. C. Giojalas. 2017. An intact acrosome is required for the chemotactic response to progesterone in mouse spermatozoa. Mol. Reprod. Dev. 84: 310–315.
Guo, H., and 11 others. 2015. Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus reveals new candidates in egg activation. Proteomics 15: 4080–4095.
Gupta, S. K. 2015. Role of zona pellucida glycoproteins during fertilization in humans. J. Reprod. Immunol. 108: 90–97. PubMed Link
Gwathmey, T. M., G. G. Ignotz and S. S. Suarez. 2003. PDC-109 (BSP-A1/A2) promotes bull sperm binding to oviductal epithelium in vitro and may be involved in forming the oviductal sperm reservoir. Biol. Reprod. 69: 809–815.
Hafner, M., C. Petzelt, R. Nobiling, J. B. Pawley, D. Kramp and G. Schatten. 1988. Wave of free calcium at fertilization in the sea urchin egg visualized with Fura-2. Cell Motil. Cytoskel. 9: 271–277.
Haley, S. A. and G. M. Wessel. 1999. The cortical granule serine protease CGSP1 of the sea urchin, Strongylocentrotus purpuratus, is autocatalytic and contains a low-density lipoprotein receptor-like domain. Dev. Biol. 211: 1–10.
Haley, S. A. and G. M. Wessel. 2004. Proteolytic cleavage of the cell surface protein p160 is required for detachment of the fertilization envelope in the sea urchin. Dev. Biol. 272: 191–202.
Hamaguchi, M. S. and Y. Hiramoto. 1980. Fertilization process in the heart-urchin Clypaester japonicus, observed with a differential interference microscope. Dev. Growth Diff. 22: 517–530.
Harper, M. J. 1982. Sperm and egg transport. In C. R. Austin and R. V. Short (eds.), Germ Cells and Fertilization 1. Cambridge University Press, Cambridge, 102–127.
Heinecke, J. W. and B. M. Shapiro. 1989. Respiratory burst oxidase fertilization. Proc. Natl. Acad. Sci. USA 86: 1259–1263.
Hertwig, O. 1877. Beiträge zur Kenntniss der Bildung, Befruchtung, und Theilung des theirischen Eies. Morphol. Jahr. 1: 347–452.
Higashiyama, T. and H. Takeuchi. 2015. The mechanism and key molecules involved in pollen tube guidance. Annu. Rev. Plant. Biol. 66: 393–413.
Higashiyama, T., S. Yabe, N. Sasaki, Y. Nishimura, S. Miyagishima, H. Kuroiwa and T. Kuroiwa. 2001. Pollen tube attraction by the synergid cell. Science 293: 1480–1483.
Hirohashi, N. and V. D. Vacquier. 2002. Egg fucose sulfate polymer, sialoglycan, and speract all trigger the sea urchin sperm acrosome reaction. Biochem. Biophys. Res. Commun. 296: 833–839.
Hirohashi, N. and V. D. Vacquier. 2003. Store-operated calcium channels trigger exocytosis of the sea urchin sperm acrosomal vesicle. Biochem. Biophys. Res. Commun. 204: 285–292.
Hirohashi, N., A. C. Vilela-Silva, P. A. Mourao and V. D. Vacquier. 2002. Structural requirements for species-specific induction of the sperm acrosome reaction by sea urchin egg sulfated fucan. Biochem. Biophys. Res. Commun. 298: 403–407.
Holy, J. and G. Schatten. 1991. Spindle pole centrosomes of sea urchin embryos are partially composed of material recruited from maternal stores. Dev. Biol. 147: 343–353.
Huang, T., A. D. Fleming and R. Yanagimachi. 1981. Only acrosome-reacted spermatozoa can bind and penetrate into zona pellucida: A study using the guinea pig. J. Exp. Zool. 217: 286–290.
Hylander, B. L. and R. G. Summers. 1982. An ultrastructural and immunocytochemical localization of hyaline in the sea urchin egg. Dev. Biol. 93: 368–380.
Igarashi, H., J. G. Knott, R. M. Schultz and C. J. Williams. 2007. Alterations of PLC b1 in mouse eggs change calcium oscillatory behavior following fertilization. Dev. Biol. 312: 321–330.
Ikeuchi, M., Y. Ogawa, A. Iwase, and K. Sugimoto. 2016. Plant regeneration: Cellular origins and molecular mechanisms. Development 143:1442–1451.
Infante, A. A., R. Nauta, S. Gilbert, P. Hobart and W. Fishein. 1973. DNA synthesis in developing sea urchins: Role of a DNA-nuclear membrane complex. Nat. New Biol. 242: 5–8.
Inoue, N. 2017. Novel insights into the molecular mechanism of sperm-egg fusion via IZUMO1. J. Plant Res. 130: 475–478.
Inoue, N., M. Ikawa, A. Isotani and M. Okabe. 2005. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434: 234–238.
Iwao, Y., K. Shiga, A. Shiroshita, T. Yoshikawa, M. Sakiie, T. Ueno, S. Ueno, T. W. Ijiri and K. Sato. 2014. The need of MMP-2 on the sperm surface for Xenopus fertilization: Its role in a fast electrical block to polyspermy. Mech. Dev. 134: 80–95.
Jaffe, L. A. 1976. Fast block to polyspermy in sea urchins is electrically mediated. Nature 261: 68–71.
Jaffe, L. A. 1980. Electrical polyspermy block in sea urchins: Nicotine and low sodium experiments. Dev. Growth Diff. 22: 503–507.
Jaffe, L. F. 1983. Sources of calcium in egg activation: A review and hypothesis. Dev. Biol. 99: 265–277.
Jaffe, L. A. and N. L. Cross. 1983. Electrical properties of vertebrate oocyte membranes. Biol. Reprod. 30: 50–54.
Jaffe, L. A., M. H. Weisenseel, and L. F. Jaffe. 1975. Calcium accumulation within the growing tips of pollen tubes. J. Cell Biol. 67: 488–492.
Jaffe, L. A., A. F. Giusti, D. J. Carroll and K. R. Foltz. 2001. Ca2+ signaling during fertilization of echinoderm eggs. Semin. Cell Dev. Biol. 12: 45–51.
Jin, M., E. Fujiwara, Y. Kakiuchi, M. Okabe, Y. Satouh, S. A. Baba, K. Chiba and N. Hirohashi. 2011. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc. Natl. Acad. Sci. USA 108: 4892–4896.
Johnson, J., B. M. Bierle, G. I. Gallicano and D. G. Capco. 1998. Calcium/calmodulin-dependent protein kinase II and calmodulin: Regulators of the meiotic spindle in mouse eggs. Dev. Biol. 204: 464–477.
Just, E. E. 1919. The fertilization reaction in Echinarachinus parma. Biol. Bull. 36: 1–10.
Kachroo, A., C. R. Schopfer, M. E. Nasrallah, and J. B. Nasrallah. 2001. Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 293: 1824–1826.
Kaji, K., S. Oda, S. Miyazaki and A. Kudo. 2002. Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81: Polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev. Biol. 247: 327–334.
Kamei, N. and C. G. Glabe. 2003. The species-specific egg receptor for sea urchin sperm is ERB1, a novel ADAMTS protein. Genes Dev. 17: 2502–2507.
Kashir, J., M. Nomikos, and F. A. Lai. 2018. Phospholipase C zeta and calcium oscillations at fertilisation: The evidence, applications, and further questions. Adv. Biol. Regul. 67: 148–162.
Kaupp, U. B., J. Solzin, E. Hildebrand, J. E. Brown, A. Helbig, V. Hagen, M. Beyermann, F. Pampaloni and I. Weyand. 2003. The signal flow and motor response controlling chemotaxis of sea urchin sperm. Nat. Cell Biol. 5: 109–117.
Kerns, K., M. Zigo, E. Z. Drobnis, M. Sutovsky, and P. Sutovsky. 2018. Zinc ion flux during mammalian sperm capacitation. Nat. Commun. 9: 2061.
Kimura, M., E. Kim, W. Kang, M. Yamashita, M. Saigo, T. Yamazaki, T. Nakanishi, S. Kashiwabara and T. Baba. 2009. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol. Reprod. 81: 939–947.
Kimura, Y. and R. Yanagimachi. 1995. Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development 121: 2397–2405.
Kinsey, W. H. and S. S. Shen. 2000. Role of the Fyn kinase in calcium release during fertilization of the sea urchin egg. Dev. Biol. 225: 253–264.
Kirkman-Brown, J. C., K. A. Sutton and H. M. Florman. 2003. How to attract a sperm. Nat. Cell Biol. 5: 93–96.
Knott, J. G., M. Kurokawa, R. A. Fissore, R. M. Schultz and C. J. Williams. 2005. Transgenic RNA interference reveals role for mouse sperm phospholipase Cz in triggering Ca2+ oscillations during fertilization. Biol. Reprod. 72: 992–996.
Knox, K. B. and J. Heslop-Harrison. 1970. Pollen-wall proteins: Localization and enzymic activity. J. Cell Sci. 6: 1–27.
https://www.ncbi.nlm.nih.gov/pubmed/5417692
Kondrashov, A. S. 2018. Through sex, nature is telling us something important. Trends Genet. 34: 352–361.
Kvist, U., B. A. Afzelius and L. Nilsson. 1980. The intrinsic mechanism of chromatin decondensation and its activation in human spermatozoa. Dev. Growth Diff. 22: 543–554.
La Spina, F. A., L. C. Puga Molina, A. Romarowski, A. M. Vitale, T. L. Falzone, D. Krapf, N. Hirohashi and M. C. Buffone. 2016. Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev. Biol. 11: 172–182.
Lee, H.-S., S. Huang, and T.-H. Kao. 1994. S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367: 560–563.
Lee, S.-J. and S. S. Shen. 1998. The calcium transient in sea urchin eggs during fertilization requires the production of inositol 1,4,5-trisphosphate. Dev. Biol. 193: 195–208.
Lefebvre, R., P. J. Chenoweth, M. Drost, C. T. LeClear, M. MacCubbin, J. T. Dutton and S. S. Suarez. 1995. Characterization of the oviductal sperm receptor in cattle. Biol. Reprod. 53: 1066–1074.
Lete, M. G., R. D. Byrne, A. Alonso, D. Poccia, and B. Larijani. 2017. Vesicular PtdIns(3,4,5)P3 and Rab7 are key effectors of sea urchin zygote nuclear membrane fusion. J. Cell Sci. 130: 444–452.
Li, H.J., J.G. Meng and W. C. Yang. 2018. Multilayered signaling pathways for pollen tube growth and guidance. Plant Reprod. 31: 31-41.
Lillie, F. R. 1913. The mechanism of fertilization. Science 38: 524–528.
Lin, Y., K. Mahan, W. F. Lathrop, D. G. Myles and P. Primakoff 1994. A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. J. Cell Biol. 125: 1157–1163.
Lishko, P.V., I. L. Botchkina and Y. Kirichok. 2011. Progesterone activates the principal Ca2+ channel of human sperm. Nature 471: 387–391.
Loeb, J. 1899. On the nature of the processes of fertilization and the artificial production of normal larvae (plutei) from unfertilized eggs of the sea urchin. Am. J. Physiol. 3: 135–138.
Loeb, J. 1902. Maturation, natural death, and the prolongation of the life of unfertilized starfish eggs (Asterias forbesii) and their significance for the theory of fertilization. Biol. Bull. 3: 295–311.
Longo, F. J. and M. Kunkle. 1978. Transformation of sperm nuclei upon insemination. In A. A. Moscona and A. Monroy (eds.), Current Topics in Developmental Biology, vol. 12. Academic Press, New York, 149–184.
Longo, F. J., J. W. Lynn, D. H. McCulloh and E. L. Chambers. 1986. Correlative ultrastructural and electrophysiological studies of sperm-egg interactions of the sea urchin Lytechinus variegatus. Dev. Biol. 118: 155–167.
Lopez, L. C., E. M. Bayna, D. Litoff, N. L. Shaper, J. H. Shaper and B. D. Shur. 1985. Receptor function of mouse sperm surface galactosyltransferase during fertilization. J. Cell Biol. 101: 1501–1510.
Lord, E. M., L. L. Walling, and G. Y. Jauh. 1996. Cell adhesion in plants and its role in pollination. In M. Smallwood, J. P. Knox and D. J. Bowles (eds.), Membranes: Specialized Functions in Plants. Bios Scientific Publishers, Oxford.
Luttmer, S. and F. J. Longo. 1985. Ultrastructural and morphometric observations of cortical endoplasmic reticulum in Arbacia, Spisula, and mouse eggs. Dev. Growth Diff. 27: 349–359.
Martin-DeLeon, P. A. 2016. Uterosomes: Exosomal cargo during the estrus cycle and interaction with sperm. Front. Biosci. 8: 115–122.
Maruyama, D. and 12 others. Rapid elimination of the persistent synergid through a cell fusion mechanism. Cell 161: 907-918.
McCulloh, D. H. and E. L. Chambers. 1992. Fusion of membranes during fertilization. J. Gen. Physiol. 99: 137–175.
McInnis, S. M., D. C. Emery, R. Porter, R. Desikan, J. T. Hancock and S. J. Hiscock. 2006. The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). J. Exp. Bot. 57: 1835–1846.
McPherson, S. M., P. S. McPherson, L. Mathews, K. P. Campbell and F. J. Longo. 1992. Cortical localization of a calcium release channel in sea urchin eggs. J. Cell Biol. 116: 1111–1121.
Mead, K. S. and D. Epel. 1995. Beakers and breakers: How fertilisation in the laboratory differs from fertilisation in nature. Zygote 3: 95–99.
Metz, C. B. 1978. Sperm and egg receptors involved in fertilization. Curr. Top. Dev. Biol. 12: 107–148.
Metz, E. C. and S. R. Palumbi. 1996. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol. 13: 397–406.
Michael, K. L. and D. R. Walt. 1999. Combined imaging and chemical sensing of fertilization-induced acid release from single sea urchin eggs. Anal. Biochem. 273: 168–178.
Miki, K. and D. E. Clapham. 2013. Rheotaxis guides mammalian sperm. Curr. Biol. 23: 443–452.
Miller, B. S. and D. Epel. 1999. The roles of changes in NADPH and pH during fertilization and artificial activation of the sea urchin egg. Dev. Biol. 216: 394–405.
Miller, R. L. 1978. Site-specific agglutination and the timed release of a sperm chemoattractant by the egg of the leptomedusan, Orthopyxis caliculata. J. Exp. Zool. 205: 385–392.
Miller, R. L. 1985. Sperm chemo-orientation in the metazoa. In C. B. Metz, Jr., and A. Monroy (eds.), Biology of Fertilization, vol. 2. Academic Press, New York, 275–337.
Miyazaki, S.-I., M. Yuzaki, K. Nakada, H. Shirakawa, S. Nakanishi, S. Nakade and K. Mikoshiba. 1992. Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science 257: 251–255.
Mogie, M. 1992. The Evolution of Asexual Reproduction in Plants. Chapman and Hall, New York.
Mohri, T., P. I. Ivonnet and E. L. Chambers. 1995. Effect of sperm-induced activation current and increase of cytosolic Ca2+ by agents that modify the mobilization of [Ca2+]. I. Heparin and pentosan polysulfate. Dev. Biol. 172: 139–157.
Moller, C. C. and P. M. Wassarman. 1989. Characterization of a proteinase that cleaves zona pellucida glycoprotein ZP2 following activation of mouse eggs. Dev. Biol. 132: 103–112.
Morgan, A. J. and A. Galione. 2007. Fertilization and nicotinic acid adenine dinucleotide phosphate induce pH changes in acidic Ca(2+) stores in sea urchin eggs. J. Biol. Chem. 282: 37730–37737.
Mori, T., H. Kawai-Toyooka, T. Igawa and H. Nozaki. 2015. Gamete dialogs in green lineages. Mol Plant. 8: 1442–1454.
Morin, V., A. Sanchez-Rubio, A. Aze, C. Iribarren, C. Fayet, Y. Desdevises, J. Garcia-Huidobro, M. Imschenetzky, M. Puchi and A.-M. Genevière. 2012. The protease-degrading sperm histones postfertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development. PLOS ONE 7: e46850.
Moy, G. W. and V. D. Vacquier. 1979. Immunoperoxidase localization of bindin during the adhesion of sperm to sea urchin eggs. Curr. Top. Dev. Biol. 13: 31–44.
Mozingo, N. M. and D. E. Chandler. 1991. Evidence for the existence of two assembly domains within the sea urchin fertilization envelope. Dev. Biol. 146: 148–157.
Navarro, B., Y. Kirichok, D. E. Clapham. 2007. KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc. Natl. Acad. Sci. USA 104: 7688–7692.
Nishigaki, T., K. Chiba, and M. Hoshi. 2000. A 130-KdA. A 130-kDa membrane protein of sperm flagella is the receptor for asterosaps, sperm-activating peptides of starfish Asterias amurensis. Dev. Biol. 219: 154–162.
Nishizuka, Y. 1986. Studies and perspectives of protein kinase C. Science 233: 305–312.
Nozawa, K., Y. Satouh, T. Fujimoto, A. Oji and M. Ikawa. 2018. Sperm-borne phospholipase C zeta-1 ensures monospermic fertilization in mice. Sci. Rep. 8: 1315.
Ogawa, K., T. Mohri and H. Mohri. 1977. Identification of dynein as the outer arms of sea urchin sperm axonemes. Proc. Natl. Acad. Sci. USA 74: 5006–5010.
Okuda, S. and T. Higashiyama. 2010. Pollen tube guidance by attractant molecules: LUREs. Cell Struct. Funct. 35: 45–52.
Oulhen, N., P. Salaün, B. Cosson, P. Cormier and J. Morales. 2007. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E. J. Cell Sci. 120: 425–434.
Ozil, J. P., S. Markoulaki, S. Toth, S. Matson, B. Banrezes, J. G. Knott, R. M. Schultz, D. Huneau and T. Ducibella. 2005. Egg activation events are regulated by the duration of a sustained [Ca2+] cytoplasmic signal in the mouse. Dev. Biol. 282: 9–54.
Palanivelu, R. and T. Tsukamoto. 2012. Pathfinding in angiosperm reproduction: Pollen tube guidance by pistils ensures successful double fertilization. Wiley Interdiscip. Rev. Dev. Biol. 1: 96–113.
Palanivelu, R., L. Brass, A. F. Edlund and D. Preuss. 2003. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114: 47-59.
Parrington, J., L. C. Davis, A. Galione and G. Wessel. 2007. Flipping the switch: How a sperm activates the egg at fertilization. Dev. Dyn. 236: 2027–2038.
Poccia, D. and P. Collas. 1997. Nuclear envelope dynamics during male pronuclear development. Dev. Growth Diff. 39: 541–550.
Poccia, D. and B. Larijani. 2009. Phosphatidylinositol metabolism and membrane fusion. Biochem. J. 418: 233–246.
Qi, H., M. M. Moran, B. Navarro, J. A. Chong, G. Krapivinsky, L. Krapivinsky, Y. Kirichok, I. S. Ramsey, T. A. Quill and D. E. Clapham. 2007. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc. Natl. Acad. Sci. USA 104: 1219–1223.
Que, E. L. and 11 others. 2015. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nat. Chem. 7: 130–139.
Que. E. L., F. E. Duncan, A. R. Bayer, S. J. Philips, E. W. Roth, R. Bleher, S. C. Gleber, S. Vogt, T. K. Woodruff and T. V. O’Halloran. 2017. Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy. Integr. Biol. 9: 135–144.
Quill, T. A., S. A. Sugden, K. L. Rossi, L. K. Doolittle, R. E. Hammer, and D. L. Garbers. 2003. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc. Natl. Acad. Sci. USA 100: 14869–14874.
Raineri, M. and E. Tammiksaar. 2013. The first experiments in ascidian and sea urchin fertilization. In P. Pontarotti, ed., Evolutionary Biology: Exobiology and Evolutionary Mechanisms, Springer, New York, 3–20.
Ralt, D., M. Goldenberg, P. Fetterolf, D. Thompson, J. Dor, S. Mashiach, D. L. Garbers and M. Eisenbach. 1991. Sperm attraction to a follicular factor(s) correlates with human egg fertilizability. Proc. Natl. Acad. Sci. USA 88: 2840–2844.
Ramarao, C. S. and D. L. Garbers. 1985. Receptor-mediated regulation of guanylate cyclase activity in spermatozoa. J. Biol. Chem. 260: 8390–8397.
Rea, A. C. and J. B. Nasrallah. 2008. Self-incompatibility systems: Barriers to self-fertilization in flowering plants. Int. J. Dev. Biol. 52: 627–636.
Rees, B. B., C. Patton, J. L Grainger and D. Epel. 1995. Protein synthesis increases after fertilization of sea urchin eggs in the absence of an increase in intracellular pH. Dev. Biol. 169: 683–698.
Ren, D., B. Navarro, G. Perez, A. C. Jackson, S. Hsu, Q. Shi, J. L. Tilly and D. E. Clapham. 2001. A sperm ion channel required for sperm motility and male fertility. Nature 413: 603–609.
Runge, K. E., J. E. Evans, Z. Y. He, S. Gupta, K. L. McDonald, H. Stahlberg, P. Primakoff and D. G. Myles. 2006. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol. 304: 317–325.
Salaun, P., S. Pyronnet, J. Morlaes, O. Mulner-Lorillon, R. Belle, N. Sonenberg, and P. Cormier. 2003. eIF4E/4E-BP dissociation and 4E-BP degradation in the first mitotic division of the sea urchin embryo. Dev. Biol. 255: 428–439.
Salaun, P., M. Le Breton, J. Morales, R. Belle, S. Boulben, O. Mulner-Lorillon and P. Cormier. 2004. Signal transduction pathways that contribute to CDK1/cyclin B activation during the first mitotic division in sea urchin embryos. Exp. Cell Res. 296: 347–357.
Sargent, T. D. and R. A. Raff. 1976. Protein synthesis and messenger RNA stability in activated, enucleate sea urchin eggs are not affected by actinomycin D. Dev. Biol. 48: 327–335.
Satouh, Y., N. Inoue, M. Ikawa and M. Okabe. 2012. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J. Cell Sci. 125: 4985–4990.
Saunders, C. M., M. G. Larman, J. Parrington, L. J. Cox, J. Royse, L. M. Blayney, K. Swann and F. A. Lai. 2002. PLCz: A sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129: 3533–3544.
Schatten, G. and D. Mazia. 1976. The penetration of the spermatozoon through the sea urchin egg surface at fertilization: Observations from the outside on whole eggs and from the inside on isolated surfaces. Exp. Cell Res. 98: 325–337.
Schroeder, T. E. 1979. Surface area change at fertilization: Resorption of the mosaic membrane. Dev. Biol. 70: 306–327.
Schwartz, M. and J. Vissing. 2002. Paternal inheritance of mitochondrial DNA. New Engl. J. Med. 347: 576–580.
Seifert, R. and 17 others. 2015. The CatSper channel controls chemosensation in sea urchin sperm. EMBO J. 3: 379–392.
Sharma, U. and 18 others. 2016. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351: 391–396.
Shearer, J., C. D. Nadal, F. Emily-Fenouil, C. Gache, M. Whitaker and B. Ciapa. 1999. Role of phospholipase Cg at fertilization and during meiosis in sea urchin eggs and embryos. Development 126: 2273–2284.
Shen, S. S. and R. A. Steinhardt. 1978. Direct measurement of intracellular pH during metabolic depression of the sea urchin egg. Nature 272: 253–254.
Shimomura, H., L. J. Dangott and D. L. Garbers. 1986. Covalent coupling of a resact analogue to guanylate cyclase. J. Biol. Chem. 261: 15778–15782.
Shinyoji, C., H. Higuchi, M. Yoshimura, E. Katayama and T. Yanagida. 1998. Dynein arms are oscillating force generators. Nature 393: 711–714.
Shitara, H., J. I. Hayashi, S. Takahama, H. Kaneda and H. Yonekawa. 1998. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 148: 851–857.
Simerly, C., and 11 others. 1995. The paternal inheritance of the centrosome, the cell’s microtubule-organizing center, in humans, and the implications for infertility. Nat. Med. 1: 47–52.
Simerly, C., S. S. Zoran, C. Payne, T. Dominko, P. Sutovsky, C. S. Navara, J. L. Salisbury and G. Schatten. 1999. Biparental inheritance of gamma-tubulin during human fertilization: Molecular reconstitution of functional zygote centrosomes in inseminated human oocytes and in cell-free extracts nucleated by human sperm. Mol. Cell Biol. 10: 2955–2969.
Singer, S. 2006. An overview of plant development. In S. F. Gilbert (ed.), Developmental Biology, 8th ed. Sinauer Associates, Sunderland, MA.
Sluder, G., F. J. Miller, K. K. Lewis, E. D. Davison and C. L. Reider. 1989. Centrosome inheritance in starfish zygotes: Selective loss of the maternal centrosome after fertilization. Dev. Biol. 131: 567–579.
Sluder, G., F. J. Miller and K. Lewis. 1993. Centrosome inheritance in starfish zygotes. II. Selective suppression of the maternal centrosome during meiosis. Dev. Biol. 155: 58–67.
Smith, T. T. 1998. The modulation of sperm function by the oviductal epithelium. Biol. Reprod. 58: 1102–1104.
Southworth, D. 1996. Gametes and fertilization in flowering plants. Curr. Top. Dev. Biol. 34: 259–279.
Sprunck, S., T. Hackenberg, M. Englhart, and F. Vogler. 2014. Same but different: Sperm-activating EC1 and ECA1 gametogenesis related family proteins. Biochem. Soc. Trans. 42: 401–407.
Steinhardt, R. A. and D. Epel. 1974. Activation of sea urchin eggs by a calcium ionophore. Proc. Natl. Acad. Sci. USA 71: 1915–1919.
Steinhardt, R., R. Zucker and G. Schatten. 1977. Intracellular calcium release at fertilization in the sea urchin egg. Dev. Biol. 58: 185–197.
Steinhorst, L. and J. Kudla. 2013. Calcium - a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833: 1573-1581.
Stephens, S., B. Beyer, U. Balthazar-Stablein, R. Duncan, M. Kostacos, M. Lukoma, G. R. Green and D. Poccia. 2002. Two kinase activities are sufficient for sea urchin sperm chromatin decondensation in vitro. Mol. Reprod. Dev. 62: 496–503.
Stival, C. and 12 others. 2018. Disruption of protein kinase A localization induces acrosomal exocytosis in capacitated mouse sperm. J. Biol. Chem. 293: 9435–9447.
Storey, B. T. 1995. Interactions between gametes leading to fertilization: The sperm’s eye view. Reprod. Fertil. Dev. 7: 927–942.
Stricker, S. A. 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211: 157–176.
Strünker, T., N. Goodwin, C. Brenker, N. D. Kashikar, I. Weyand, R. Seifert and U. B. Kaupp. 2011. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471: 382–386.
Suarez, S. S. 1998. The oviductal sperm reservoir in mammals: Mechanisms of formation. Biol. Reprod. 58: 1105–1107.
Suarez, S. S. 2008a. Control of hyperactivation in sperm. Hum. Reprod. Update 14: 647–657.
Suarez, S. S. 2008b. Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52: 455–462.
Sugimoto, K., S. P. Gordon, and E. M. Meyerowitz. 2011. Regeneration in plants and animals: Dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 21: 212–218.
Summers, R. G. and B. L. Hylander. 1974. An ultrastructural analysis of early fertilization in the sand dollar, Echinarachnius parma. Cell Tissue Res. 150: 343–368.
Summers, R. G., B. L. Hylander, L. H. Colwin and A. L. Colwin. 1975. The functional anatomy of the echinoderm spermatozoon and its interaction with the egg at fertilization. Am. Zool. 15: 523–551.
Sun, F., A. Bahat, A. Gakamsky, E. Girsh, N. Katz, L. C. Giojalas, I. Tur-Kaspa and M. Eisenbach. 2005. Human sperm chemotaxis: Both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum. Reprod. 20: 761–767.
Svoboda, P. 2017. Mammalian zygotic genome activation. Semin. Cell Dev. Biol. https://doi.org/10.10.16/j.semcdb.2017.12.006.
Swann, K. and M. Whitaker. 1986. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J. Cell Biol. 103: 2333–2342.
Swann, K., C. M. Saunders, N. T. Rogers and F. A. Lai. 2006. PLCz: A sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin. Cell Dev. Biol. 17: 264–273.
Swanson, W. J. and V. D. Vacquier. 2002. The rapid evolution of reproductive proteins. Nat. Rev. Genet. 3: 137–144.
Tachibana, I. and M. E. Hemler. 1999. Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J. Cell Biol. 146: 893–904.
Talbot, P., C. Geiske and M. Knoll. 1999. Oocyte pickup by the mammalian oviduct. Mol. Biol. Cell 10: 5–8.
Tantikanjana, T., N. Rizvi, M. E. Nasrallah and J. B. Nasrallah. 2009. A dual role for the S-locus receptor kinase in self-incompatibility and pistil development revealed by an Arabidopsis rdr6 mutation. Plant Cell 21: 2642–2654.
Taylor, C. B. 1996. More arresting developments: S RNases and interspecific incompatibility. Plant Cell 8: 939–941.
Terasaki, M. and C. Sardet. 1991. Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum. J. Cell Biol. 115: 1031–1037.
Tilney, L. G., D. P. Kiehart, C. Sardet and M. Tilney. 1978. Polymerization of actin. IV. Role of Ca2+ and H+ in the assembly of actin and in membrane fusion in the acrosome reaction of echinoderm sperm. J. Cell Biol. 77: 536–560.
Töpfer-Petersen, E., A. Wagner, J. Friedrich, A. Petrunkina, M. Ekhlasi-Hundrieser, D. Waberski and W. Drommer. 2002. Function of the mammalian oviductal sperm reservoir. J. Exp. Zool. 292: 210–215.
Toth, S., D. Huneau, B. Banrezes and J. P. Ozil. 2006. Egg activation is the result of calcium signal summation in the mouse. Reproduction 131: 27–34.
Townley, I. K., E. Schuyler, M. Parker-Gür and K. R. Foltz. 2009. Expression of multiple Src family kinases in sea urchin eggs and their function in Ca2+ release at fertilization. Dev. Biol. 327: 465–477.
Tulsiani, D. P. and A. Abou-Haila. 2004. Is sperm capacitation analogous to early phases of Ca2+-triggered membrane fusion in somatic cells and viruses? BioEssays 26: 281–290.
Turner, P. R., L. A. Jaffe and A. Fein. 1986. Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein. J. Cell Biol. 102: 70–77.
Ulrich, A. S., W. Tichelaar, G. Forster, O. Zschornig, S. Weinkauf and H. W. Meyer. 1999. Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer. Biophys. J. 77: 829–841.
Uñates, D. R., H. A. Guidobaldi, L. V. Gatica, M. A. Cubilla, M. E. Teves, A. Moreno and L. C. Giojalas. 2014. Versatile action of picomolar gradients of progesterone on different sperm subpopulations. PLOS ONE 9: e91181.
Uzzell, T. M. 1964. Relations of the diploid and triploid species of the Ambystoma jeffersonianum complex. Copeia 1964: 257–300.
Vacquier, V. D. 1998. Evolution of gamete recognition proteins. Science 281: 1995–1998.
Vacquier, V. D. and J. E. Payne. 1973. Methods for quantitating sea urchin sperm-egg binding. Exp. Cell Res. 82: 227–235.
Vacquier, V. D. and G. W. Moy. 1977. Isolation of bindin: The protein responsible for adhesion of sperm to sea urchin eggs. Proc. Natl. Acad. Sci. USA 74: 2456–2460.
Vacquier, V. D., M. J. Tegner and D. Epel. 1973. Protease release from sea urchin eggs at fertilization alters the vitelline layer and aids in preventing polyspermy. Exp. Cell Res. 80: 111–119.
Vilela-Silva, A.-C., N. Hirohashi and P. A. S. Mourão. 2008. The structure of sulfated polysaccharides ensures a carbohydrate-based mechanism for species recognition during sea urchin fertilization. Int. J. Dev. Biol. 52: 551–559.
Visconti, P. E., G. D. Moore, J. L. Bailey, P. Leclerc, S. A. Connors, D. ;pan, P. Olds-Clarke and G. S. Kopf. 1995. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121: 1139–1150
Visconti, P. E., D. Krapf, J. L. de la Vega-Beltrán, J. J. Acevedo and A. Darszon. 2011. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J. Androl. 13: 395–405.
von Kolliker, A. 1841. Beiträge zur Kenntnis der Geschlectverhältnisse und der Samenflüssigkeit wirbelloser Thiere, nebst einem Versuch Über Wesen und die Bedeutung der sogenannten Samenthiere. Berlin.
Voronina, E. and G. M. Wessel. 2004. bg subunits of heterotrimeric G-proteins contribute to Ca2+ release at fertilization in the sea urchin. J. Cell Sci. 117: 5995–6005.
Wakai, T., N. Zhang, P. Vangheluwe and R. A. Fissore. 2013. Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs. J. Cell Sci. 126: 5714–5724.
Wang, Y., R. Storeng, P. O. Dale, T. Abyholm and T. Tanbo. 2001. Effects of follicular fluid and steroid hormones on chemotaxis and motility of human spermatozoa in vitro. Gynecol. Endocrinol. 15: 286–292.
Ward, G. E., C. J. Brokaw, D. L. Garbers and V. D. Vacquier. 1985. Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J. Cell Biol. 101: 2324–2329.
Wassarman, P. M. and E. S. Litscher. 2016. A bespoke coat for eggs: Getting ready for fertilization. Curr. Top. Dev. Biol. 117: 539–552.
Wassarman, P. M. and E. S. Litscher. 2018. The mouse egg's zona pellucida. Curr. Top. Dev. Biol. 130: 331-356.
https://www.ncbi.nlm.nih.gov/pubmed/29853182
Watanabe, H., R. Takeda, K. Hirota, and G. Kondoh. 2017. Lipid raft dynamics linked to sperm competency for fertilization in mice. Genes Cells 22: 493–500.
Watanabe, N., T. Hunt, Y. Ikawa and N. Sagata. 1991. Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs. Nature 352: 247–249.
Wessel, G. M. 2009. Eggs over easy—please. Mol. Reprod. Dev. 76: 1005.
Whitaker, M. and R. Steinhardt. 1982. Ionic regulation of egg activation. Q. Rev. Biophys. 15: 593–667.
Whitaker, M. and R. F. Irvine. 1984. Inositol 1,4,5-triphosphate microinjection activates sea urchin eggs. Nature 312: 636–639.
Whitaker, M. J. and R. A. Steinhardt. 1985. Ionic signalling in the sea urchin egg at fertilization. In C. Meetz and A. Monroy (eds.), Biology of Fertilisation, Vol. 3. Academic Press, London, 167–221.
Wilcox, A. J., C. R. Weinberg and D. D. Baird. 1995. Timing of sexual intercourse in relation to ovulation: Effects on the probability of conception, survival of pregnancy, and the sex of the baby. N. Engl. J. Med. 333: 1517–121.
Wilhelmi, L. K. and D. Preuss. 1996. Self-sterility in Arabidopsis due to defective pollen tube guidance. Science 274: 1535–1537.
Wilhelmi, L. K. and D. Preuss. 1999. The mating game: Pollination and fertilization in flowering plants. Curr. Opin. Plant Biol. 2: 18–22.
Williams, H. L. and 10 others. 2015. Specific loss of CatSper function is sufficient to compromise fertilizing capacity of human spermatozoa. Hum. Reprod. 30: 2737–4276.
Wilson, W. L. and G. Oliphant. 1987. Isolation and biochemical characterization of the subunits of the rabbit sperm acrosome stabilizing factor. Biol. Reprod. 37: 159–169.
Winkler, M. M., R. A. Steinhardt, J. L. Grainger and L. Minning. 1980. Dual ionic controls for the activation of protein synthesis at fertilization. Nature 287: 558–560.
Wong, J. L. and G. M. Wessel. 2004. Major components of a sea urchin block to polyspermy are structurally and functionally conserved. Evol. Dev. 6: 134–153.
Wong, J. L. and G. M. Wessel. 2006. Defending the zygote: Search for the ancestral block to polyspermy. Curr. Top. Dev. Biol. 72: 1–151.
Wong, J. L. and G. M. Wessel. 2008. Renovation of the egg extracellular matrix at fertilization. Int. J. Dev. Biol. 52: 545–550.
Wong, J. L. and G. M. Wessel. 2009. Extracellular matrix modifications at fertilization: Regulation of dityrosine crosslinking by transamidation. Development 136: 1835–1847.
Wong, J. L., R. Créton and G. M. Wessel. 2004. The oxidative burst at fertilization is dependent upon activation of the dual peroxidase Udx1. Dev. Cell 7: 801–814.
Wood, C. D., T. Nishigaki, T. Furata, S. A. Baba and A. Darszon. 2005. Real-time analysis of the role of Ca2+ in flagellar movment and motility in single sea urchin sperm. J. Cell Biol. 169: 725–731.
Yanagimachi, R. 1994. Mammalian fertilization. In E. Knobil and J. D. Neill (eds.), The Physiology of Reproduction, 2nd Ed. Raven Press, New York.
Yanagimachi, R. and Y. D. Noda. 1970. Electron microscope studies of sperm incorporation into the golden hamster egg. Am. J. Anat. 128: 429–462.
Yanagimachi, R. and D. M. Phillips. 1984. The status of acrosome caps of hamster spermatozoa immediately before fertilization in vivo. Gamete Res. 9: 1–19.
Yeste, M., C. Celine Jones, S. N. Amdani, and K. Coward. 2017. Oocyte activation and fertilisation: crucial contributors from the sperm and oocyte. Results Probl. Cell Differ. 59: 213–239.
Yoda, A., S. Oda, T. Shikano, Z. Kouchi, T. Awaji, H. Shirakawa, K. Kinoshita and S. Miyazaki. 2004. Ca2+ oscillation-inducing phospholipase C zeta expressed in mouse eggs is accumulated to the pronucleus during egg activation. Dev. Biol. 268: 245–257.
Yokota, N. and H. Sawada. 2007. Sperm proteasomes are responsible for the acrosome reaction and sperm penetration of the vitelline envelope during fertilization of the sea urchin Pseudocentrotus depressus. Dev. Biol. 308: 222–231.
Yoon, S. Y. and 11 others. 2008. Human sperm devoid of PLC, zeta 1 fail to induce Ca2+ release and are unable to initiate the first step of embryo development. J. Clin. Invest. 118: 3671–3681.
Yoshida, M., K. Inabar and M. Morisawa. 1993. Sperm chemotaxis during the process of fertilization in the ascidians Ciona savignyi and Ciona intestinalis. Dev. Biol. 157: 497–507.
Zheng, Y. Y., X. J. Lin, H. M. Liang, F. F. Wang and L. Y. Chen. 2018. The long journey of pollen tube in the pistil. Int. J. Mol. Sci. 19: E3529.