Abarca-Buis, R. F., M. Bustamante, R, Cuervo, D, Aguilar-Fernández-de-Lara and J. Chimal-Monroy. 2011. Smad8 is expressed in the anterior necrotic zone: evidence for a role of bone morphogenetic proteins/SMAD signaling in the activation of a molecular cascade that culminates in cell death. Dev. Growth Differ. 53: 780–792.
Abbasi, A. A. 2011. Evolution of vertebrate appendicular structures: Insight from genetic and palaeontological data. Dev. Dyn. 240: 1005–1016.
Adamska, M., B. T. MacDonald, Z. H. Sarmast, E. R. Oliver and M. H. Meisler. 2004. En1 and Wnt7a interact with Dkk1 during limb development in the mouse. Dev. Biol. 272: 134–144.
Agarwal, P., J. N. Wylie, J. Galceran, O. Arkhitko, C. Li, C. Deng, R. Grosschedl and B. G. Bruneau. 2003. Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development 130: 623–633.
Ahn, D. and R. K. Ho. 2008. Triphasic expression of posterior Hox genes during development of pectoral fins in zebrafish: Implications for the evolution of vertebrate paired appendages. Dev. Biol. 322: 220–233.
Ahn, K., Y. Mishina, M. C. Hanks, R. R. Behringer and E. B. Crenshaw. 2001. BMPR-IA signaling is required for the formation of the apical ectoderma ridge and dorso-ventral patterning of the limb. Development 128: 4449–4461.
Ahn, S. and A. L. Joyner. 2004. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118: 505–616.
Akiyama, H., M. C. Chaboissier, J. F. Martin, A. Schedl and B. de Crombrugghe. 2002. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16: 2813–2828.
Alberch, P. 1985. Developmental constraints: Why Saint Bernards often have an extra digit and poodles never do. Am. Nat. 126: 430–433.
Altabef, M. and C. Tickle. 2002. Initiation of dorso-ventral axis during chick limb development. Mech. Dev. 116: 19–27.
Alvarado, D. M., K. McCall, H. Aferol, M. J. Silva, J. R. Garbow, W. M. Spees, T. Patel, M. Siegel, M. B. Dobbs and C. A. Gurnett.2011. Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice. Hum. Mol. Genet. 20: 3943–3952.
Ballock, R. T. and R. J. O'Keefe. 2003. The biology of the growth plate. J. Bone Joint Surg. Am. 85A: 715–726.
Bellus, G. A., I McIntosh, E. A. Smith, A. S. Aylsworth, I. Kaitila, W. A. Horton, G. A. Greenhaw, J. T. Hecht and C. A. Francomano. 1995. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat. Genet. 10: 357–359.
Bénazet, J. D., M. Bischofberger, E. Tiecke, A. Gonçalves, J. F. Martin, A. Zuniga, F. Naef and R. Zeller. 2009. A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 323: 1050–1053.
Boulet, A. M., A. M. Moon, B. R. Arenkiel and M. R. Capecchi. 2004. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev. Biol. 273: 361–372.
Brunet, L. J., J. A. McMahon, A. P. McMahon and R. M. Harland. 1998. Noggin, cartilage, morphogenesis, and joint formation in the mammalian skeleton. Science 280: 1455–1457.
Burke, A. C., C. E. Nelson, B. A. Morgan and C. Tabin. 1995. Hox genes and the evolution of vertebrate axial morphology. Development 121: 333–346.
Capdevila, J. and R. L. Johnson. 1998. Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev. Biol. 197: 205–217.
Carrington, J. L. and J. F. Fallon. 1988. Initial limb budding is independent of apical ectodermal ridge activity: Evidence from a limbless mutant. Development 104: 361–367.
Chapman, D. L., N. Garvey, S. Hancock, M. Alexiou, S. I. Agulnik, J. J. Gibson-Brown, J. Cebra-Thomas, R. J. Bollag, L. M. Silver and V. E. Papaioannou. 1996. Expression of the T-box family genes Tbx1–Tbx5 during early mouse development. Dev. Dyn. 206: 379–390.
Charite, J., W. de Graaff, S. Shen and J. Deschamps. 1994. Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 78: 589–601.
Chaturvedi, R., C. Huang, B. Kazmierczak, T. Schneider, J. A. Izaguirre, T. Glimm, H. G. Hentschel, J. A. Glazier, S. A. Newman and M. S. Alber. 2005. On multiscale approaches to three-dimensional modelling of morphogenesis. J. R. Soc. Interface 2: 237–253.
Chen, H., Y. Lun, D. Ovchinnikov, H. Kokubo, K. C. Oberg, C. V. Pepicelli, L. Gan, B. Lee and R. L. Johnson. 1998. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat. Genet. 19: 51–55.
Cohn, M. J. and C. Tickle. 1999. Developmental basis of limblessness and axial patterning in snakes. Nature 399: 474–479.
Cooper, K. L., J. K. Hu, D. ten Berge, M. Fernandez-Teran, M. A. Ros and C. J. Tabin. 2011. Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science 332: 1083–1086.
Cooper, K. L., S. Oh, Y. Sung, R. R. Dasari, M. W. Kirschner and C. J. Tabin. 2013. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495: 375–378.
Cooper, L. N. 2009. Evolution and development of cetacean appendages. PhD Thesis, Kent State University.
Cooper, L. N., C. J. Cretekos and K. E. Seras. 2012. The evolution and development of mammalian flight. Wiley Interdiscip. Rev. Dev Bio. 1: 773–779.
Crawford, K. and D. L. Stocum. 1988a. Retinoic acid coordinately proximalizes regenerate pattern and blastema differential affinity in axolotl limbs. Development 102: 687–698.
Crawford, K. and D. L. Stocum. 1988b. Retinoic acid proximalizes level-specific properties responsible for intercalary regeneration in axolotl limbs. Development 104: 703–712.
Crossley, P. H., G. Monowada, C. A. MacArthur and G. R. Martin. 1996. Roles for Fgf8 in the induction, initiation, and maintenance of chick development of the tetrapod limb. Cell 84: 127–136.
Cunningham, T. J. and G. Duester. 2015. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat. Rev. Mol. Cell Biol. 16: 110–123.
Cunningham, T. J., C. Chatzi, L. L. Sandell, P. A. Trainor, and G. Duester. 2011. Rdh10 mutants deficient in limb field retinoic acid signaling exhibit normal limb patterning but display interdigital webbing. Dev. Dyn. 240: 1142–1150.
Cunningham, T. J., X. Zhao, L. L. Sandell, S. M. Evans, P. A. Trainor, and G. Duester. 2013. Antagonism between retinoic acid and fibroblast growth factor signaling during limb development. Cell Rep. 3: 1503–1511.
Dahn, R. D. and J. F. Fallon. 2000. Interdigital regulation of digit identity and homeotic transformation by modulating BMP signaling. Science 289: 438–441.
Davis, A. P., D. P. Witte, H. M. Hsieh-Li, S. S. Potter and M. R. Capecchi. 1995. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375: 791–795.
Davis, M. C., R. D. Dahn and N. H. Shubin. 2007. An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 447: 473–476.
Dealy, C. N., A. Roth, D. Ferrari, A. M. C. Brown and R. A. Kosher. 1993. Wnt-5a and Wnt-7a are expressed in the developing chick limb bud in a manner that suggests roles in pattern formation along the proximodistal and dorsoventral axes. Mech. Dev. 43: 175–186.
DeLaurier, A., R. Schweitzer and M. Logan. 2006. Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. Dev. Biol. 299: 22–34.
Deng, C., A. Wynshaw-Boris, F. Zhou, A. Kuo and P. Leder. 1996. Fibroblast growth factor receptor-3 is a negative regulator of bone growth. Cell 84: 911–921.
Detwiler, S. R. 1918. Experiments on the development of the shoulder girdle and the anterior limb of Amblystoma punctatum. J. Exp. Zool. 25: 499–538.
Dreyer, S. D., G. Zhou, A. Baldini, A. Winterpacht, B. Zabel, W. Cole, R. L. Johnson and B. Lee. 1998. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat. Genet. 19: 47–50.
Drossopoulou, G., K. E. Lewis, J. J. Sanz-Ezguerro, N. Nikbaklt, A. P. McMahon, C. Hofman and C. Tickle. 2000. A model for anteriorposterior patterning of the vertebrate limb based on sequential long-and short-range Shh signalling and BMP signalling. Development 127: 1337–1348.
Duboc, V. and M. P. Logan. 2011. Pitx1 is necessary for normal initiation of hindlimb outgrowth through regulation of Tbx4 expression and shapes hindlimb morphologies via targeted growth control. Development 138: 5301–5309.
Fallon, J. F. and G. M. Crosby. 1977. Polarizing zone activity in limb buds of amniotes. In D. A. Ede, J. R. Hinchliffe and M. Balls (eds.), Vertebrate Limb and Somite Morphogenesis. Cambridge University Press, Cambridge, 55–59.
Fernandez-Teran, M. and M. A. Ros. 2008. The apical ectodermal ridge: Morphological aspects and signaling pathways. Int. J. Dev. Biol. 52: 857–871.
Fondon, J. W. and H. R. Garner. 2004. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci. USA 101: 18058–18063.
Freitas, R., C. Gómez-Marín, J. M. Wilson, F. Casares, and J. L. Gómez-Skarmeta. 2012. Hoxd13 contribution to the evolution of vertebrate appendages. Dev. Cell 23: 1219–1229.
Freitas, R., J. L. Gómez-Skarmeta, and P. N. Rodrigues. 2014. New frontiers in the evolution of fin development. J. Exp. Zool. B. Mol. Dev. Evol. 322: 540–552.
Fromental-Ramain, C., X. Warot, N. Messadecq, M. LeMeur, P. Dollé and P. Chambon. 1996. Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122: 2997–3011.
Galli, A., D. Robay, M. Osterwalder, X. Bao, J. D. Bénazet, M. Tariq, R. Paro, S. Mackem and R. Zeller. 2010. Distinct roles of Hand2 in initiating polarity and posterior Shh expression during the onset of mouse limb bud development. PLOS Genet. 6: e1000901.
Gañan, Y., D. Macias, R. D. Basco, R. Merino and J. M. Hurle. 1998. Morphological diversity of the avian foot is related with the pattern of msx gene expression in the developing autopod. Dev. Biol. 196: 33–41.
Garrity, D. M., S. Childs, and M. C. Fishman. 2002. The heart-strings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 129: 4635–4645.
Gibson-Brown, J. J., S. I. Agulnik, D. L. Chapman, M. Alexiou, N. Garvey, L. M. Silver and V. E. Papaioannou. 1996. Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech. Dev. 56: 93–101.
Gingerich, P. D., S. M. Raza, M. Arif, M. Anwar and X. Zhou. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368: 844–847.
Gish, D. T. 1985. Evolution: The Challenge of the Fossil Record. Creation-Life Publishers, San Diego, CA.
Grandel, H. and M. Brand. 2011. Zebrafish limb development is triggered by a retinoic acid signal during gastrulation. Dev. Dyn. 240: 1116–1126.
Gros, J. and C. J. Tabin. 2014. Vertebrate limb bud formation is initiated by localized epithelial-to-mesenchymal transition. Science 343: 1253–1256.
Gros, J., J. K. Hu, C. Vinegoni, P. F. Feruglio, R. Weissleder and C. J. Tabin. 2010. WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Curr. Biol. 20: 1993–2002.
Grotewold, L. and U. Rüther. 2002. The Wnt antagonist Dicckopf-1 is regulated by BMP signaling and c-Jun and modulates programmed cell death. EMBO J. 21: 966–975.
Gurnett, C. A., A. M. Bowcock, F. R. Dietz, J. A. Morcuende, J. C. Murray and M. B. Dobbs. 2007. Two novel point mutations in the long-range SHH enhancer in three families with triphalangeal thumb and preaxial polydactyly. Am. J. Med. Genet. A 143: 27–32.
Hamburger, V. 1938. Morphogenetic and axial self-differentiation of transplanted limb primordia of 2-day chick embryos. J. Exp. Zool. 77: 379–400.
Harfe, B. D., P. J. Scherz, S. Nissim, H. Tian, A. P. McMahon and C. J. Tabin. 2004. Evidence for an expansion-based tempral Shh gradient in specifying vertebrate digit identities. Cell 118: 517–528.
Harrison, R. G. 1918. Experiments on the development of the forelimb of Ambystoma, a self-differentiating equipotential system. J. Exp. Zool. 25: 413–461.
Harrison, R. 1969. Harrison stages and description of normal development of the spotted salamander, Ambystoma punctatum (Linn). In S. Wilens (ed.) Organization and Development of the Embryo. Yale University Press, New Haven, CT, 44–66.
Hartmann, C. and C. J. Tabin. 2001. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104: 341–351.
Hentschel, H. G., T. Glimm, J. A. Glazier, and S. A. Newman. 2004. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. Biol. Sci. 271: 1713–1722.
Hertwig, O. 1925. Haploidkernige Transplante als Organisatoran diploidkeniger Extremitaten be Triton. Anat. Anz. 60: 112–118.
Hinchliffe, J. R. 1991. Developmental approaches to the problem of transformation of limb structure in evolution. In J. R. Hinchliffe (ed.), Developmental Patterning of the Vertebrate Limb. Plenum, New York, 313–323.
Honig, L. S. and D. Summerbell. 1985. Maps of strength of positional signaling activity in the developing chick wing bud. J. Embryol. Exp. Morphol. 87: 163–174.
Hornstein, E., J. H. Mansfield, S. Yekta, J. K. Hu, B. D. Harfe, M. T. McManus, S. Baskerville, D. P. Bartel and C. J. Tabin. 2005. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438: 671–674.
Iten, L. E. 1982. Pattern specification and pattern regulation in the embryonic chick limb bud. Am. Zool. 22: 117–129.
Itou, J., H. Kawakami, T. Quach, M. Osterwalder, S. M. Evans, R. Zeller, and Y. Kawakami. 2012. Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2-Shh morphoregulatory gene network in mouse embryos. Development 139: 1620–1629.
Izpisúa-Belmonte, J.-C., C. Tickle, P. Dollé, L. Wolpert and D. Duboule. 1991. Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350: 585–589.
Kahn, J. and 11 others. 2009. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev. Cell 16: 734–743.
Kawakami, Y., T. Ishikawa, M. Shimabara, N. Tanda, M. Enomoto-Iwamoto, M. Iwamoto, T. Kuwana, A. Ueki, S. Noji and T. Nohno. 1996. BMP signaling during bone pattern determination in the developing limb. Development 122: 3557–3566.
Kawakami, Y., J. Capdevila, D. Büscher, T. Itoh, C. Rodríguez Esteban and J. C. Izpisúa Belmonte. 2001. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 104: 891–900.
Kawakami, Y. and 12 others. 2011. Islet1-mediated activation of the beta-catenin pathway is necessary for hindlimb initiation in mice. Development 138: 4465–4473.
Kieny, M. 1960. Rôle inducteur du mésoderme dans la différenciation précoce du bourgeon de membre chez l’embryon de poulet. J. Embryol. Exp. Morphol. 8: 457–467.
Knezevic, V., R. De Santo, K. Schughart, U. Huffstadt, C. Chiang, K. A. Mahon, S. Mackem. 1997. Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic hedgehog in a positive feedback loop. Development 124: 4523–4536.
Kondo, S. and T. Miura. 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329: 1616–1620.
Kosher, R. A., M. P. Savage, and S. C. Chan. 1979. In vitro studies on the morphogenesis and differentiation of the mesoderm subjacent to the apical ectodermal ridge of the embryonic chick limb-bud. J. Embryol. Exp. Morph. 50: 75–97.
Koyama, E. and 13 others. 2008. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev. Biol. 316: 62–73.
Krabbenhoft, K. M. and J. F. Fallon. 1989. The formation of leg or wing specific structures by leg bud cells grafted to the wing bud is influenced by proximity to the apical ridge. Dev. Biol. 131: 373–382.
Kronenberg, H. M. 2003. Developmental regulation of the growth plate. Nature 423: 332–336.
Kumar, S. and G. Duester. 2014. Retinoic acid controls body axis extension by directly repressing Fgf8 transcription. Development 141: 2972–2977.
Laufer, E., C. E. Nelson, R. L. Johnson, B. A. Morgan and C. Tabin. 1994. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79: 993–1003.
Laufer, E., R. Dahn, O. E. Orozco, C. Y. Yeo, J. Pisenti, D. Henrique, U. K. Abbott, J. F. Fallon and C. Tabin. 1997a. The Radical fringe expression boundary in the limb bud ectoderm regulates AER formation. Nature 386: 366–367.
Laufer, E., S. Pizette, H. Zou, O. E. Orozco and L. Niswander. 1997b. BMP expression in duck interdigital webbing: A reanalysis. Science 278: 305.
Lettice, L. A., S. J. Heaney, L. A. Purdie, L. Li, P. de Beer, B. A. Oostra, D. Goode, G. Elgar, R. E. Hill and E. de Graaff. 2003. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Human Mol. Genet. 12: 1725–1735.
Lettice, L. A., A. E. Hill, P. S. Devenney and R. E. Hill. 2008. Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Human Mol. Genet. 2008 17: 97–985.
Lewandoski, M., X. Sun and G. R. Martin. 2000. Fgf8 signalling from the AER is essential for normal limb development. Nat. Genet. 26: 460–463.
Litingtung, Y., R. D. Dahn, Y. Li, J. F. Fallon and C. Chiang. 2002. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418: 979–983.
Liu, J. and 33 others. 2012. Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res. 22: 2315–2327.
Logan, M., H.-H. Simon and C. Tabin. 1998. Differential regulation of T-box and homeobox transcription factors suggests roles in controlling chick limb-type identity. Development 125: 2825–2835.
Loomis, C. A., R. A. Kimmel, C. X. Tong, J. Michaud and A. Joyner. 1998. Analysis of the genetic pathway leading to formation of ectopic apical ectodermal ridges in mouse Engrailed-1 mutant limbs. Development 125: 1137–1148.
López-Martínez, A., D. T. Chang, C. Chiang, J. A. Porter, M. A. Ros, B. K. Simandl, P. A. Beachy and J. F. Fallon. 1995. Limb-patterning activity and restricted posterior localization of the amino-terminal product of sonic hedgehog cleavage. Curr. Biol. 5: 791–796.
Lopez-Rios, J., D. Speziale, D. Robay, M. Scotti, M. Osterwalder, G. Nusspaumer, A. Galli, G. A. Holländer, M. Kmita and R. Zeller. 2012. GLI3 constrains digit number by controlling both progenitor proliferation and BMP-dependent exit to chondrogenesis. Dev. Cell. 22: 837–848.
Lorda-Diez, C. I., J. A. Montero, M. J. Diaz-Mendoza, J. A. Garcia-Porrero and J. M. Hurle. 2011. Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb. PLOS ONE 6: e24546.
Maas, S. A. and J. F. Fallon. 2005. Single base pair change in the long-range Sonic hedgehog limb-specific enhancer is a genetic basis for preaxial polydactyly. Dev. Dyn. 232: 345–348.
MacCabe, J. A., J. Errick and J. W. Saunders, Jr. 1974. Ectodermal control of dorso-ventral axis in leg bud of chick embryo. Dev. Biol. 39: 69–82.
Macias, D., Y. Gañon, T. K. Sampath, M. E. Piedra, M. A. Ros and J. M. Hurle. 1997. Role of BMP2 and OP-1 (BMP7) in programmed cell death and skeletogenesis during chick limb development. Development 124: 1109–1117.
Maden, M. 1985. Retinoids and the control of pattern in regenerating limbs. Ciba Found. Symp. 1113: 132–355.
Mahmood, R., J. Bresnick, A. Hornbruch, C. Mahony, N. Morton, K. Colquhoun, P. Martin, A. Lumsden, C. Dickson and I. Mason. 1995. A role for FGF-8 in the initiation and maintenance of vertebrate limb outgrowth. Curr. Biol. 5: 797–806.
Mao, J., E. McGlinn, P. Huang, C. J. Tabin and A. P. McMahon. 2009. Fgf-dependent Etv4/5 activity is required for posterior restriction of Sonic Hedgehog and promoting outgrowth of the vertebrate limb. Dev. Cell 16: 600–606.
Mariani, F. V., C. P. Ahn, and G. R. Martin. 2008 Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453: 401405.
Marques, S. R., Y. Lee, K. D. Poss, and D. Yelon. 2008. Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart. Dev. Biol. 321: 397–406.
Meinhardt, H. 2008. Models of biological pattern formation: From elementary steps to the organization of embryonic axes. Curr. Top. Dev. Biol. 81: 1–63.
Mercader, N., E. Leonardo, M. E. Piedra, C. Martínez-A, M. A. Ros and M. Torres. 2000. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 127: 3961–3970.
Merino, R., Y. Gañan, D. Macias, A. N. Economides, K. T. Sampath and J. M. Hurle. 1998. Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbs, and noggin through BMP signaling. Dev. Biol. 200: 35–45.
Merino, R., J. Rodriguez-Leon, D. Macias, Y. Gañan, A. N. Economides and J. M. Hurle. 1999. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126: 5515–5522.
Minguillon, C., J. Del Buono and M. P. Logan. 2005. Tbx5 and Tbx4 are not sufficient to determine limb-specific morphologies but have common roles in initiating limb outgrowth. Dev. Cell 8: 75–84.
Molven, A., C. V. E. Wright, R. Bremiller, E. M. De Robertis and C. B. Kimmel. 1990. Expression of a homeobox gene product in normal and mutant zebrafish embryos: Evolution of the tetrapod body plan. Development 109: 279–288.
Montavon, T., J. F. Le Garrec, M. Kerszberg and D. Duboule. 2008. Modeling Hox gene regulation in digits: Reverse collinearity and the molecular origin of thumbness. Genes Dev. 22: 346–359.
Montavon, T., N. Soshnikova, B. Mascrez, E. Joye, L. Thevenet, E. Splinter, W. de Laat, F. Spitz and D. Duboule. 2011. A regulatory archipelago controls Hox genes transcription in digits. Cell 147: 1132–1145.
Mori, C., N. Nakamura, S. Kimura, H. Irie, T. Takigawa and K. Shiota. 1995. Programmed cell death in the interdigital tissue of the fetal mouse limb is apoptosis with DNA fragmentation. Anat. Rec. 242: 103–110.
Mortlock, D. P. and J. W. Innis. 1997. Mutation of HOXA13 in hand-foot-genital syndrome. Nat. Genet. 15: 179–181.
Mundy, C., T. Yasuda, T. Kinumatsu, Y. Yamaguchi, M. Iwamoto, M. Enomoto-Iwamoto, E. Koyama and M. Pacifici. 2011. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev. Biol. 351: 70–81.
Muneoka, K. and S. V. Bryant. 1982. Evidence that patterning mechanisms in developing and regenerating limbs are the same. Nature 298: 369–371.
Muragaki, Y., S. Mundlos, J. Upton and B. R. Olsen. 1996. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272: 548–551.
Naiche, L. A. and V. E. Papaioannou. 2003. Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130: 2681–2693.
Newman, S. A. 1996. Sticky fingers: Hox genes and cell adhesion in vertebrate development of the tetrapod limb. BioEssays 18: 171–174.
Newman, S. A. and H. L. Frisch. 1979. Dynamics of skeletal pattern formation in developing chick limb. Science 205: 662–668.
Newman, S. A. and R. Bhat. 2007. Activator-inhibitor dynamics of vertebrate limb pattern formation. Birth Def. Res. C Embryol. Today 81: 305–319.
Niswander, L., S. Jeffrey, G. R. Martin and C. Tickle. 1994. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371: 609–612.
Nohno, T., S. Noji, E. Koyama, K. Ohyama, F. Myokai, A. Kuroiwa, T. Saito and S. Taniguchi. 1991. Involvement of the Chox-4 chicken homeobox genes in determination of anteroposterior axial polarity during limb development. Cell 64: 1197–1205.
Noro, M., H. Yuguchi, T. Sato, T. Tsuihiji, S. Yonei-Tamura, H. Yokoyama, Y. Wakamatsu and K. Tamura. 2011. Role of paraxial mesoderm in limb/flank regionalization of the trunk lateral plate. Dev. Dyn. 240: 1639–1649.
Ohuchi, H. and 11 others. 1997. The mesenchymal factor, Fgf10, initiates and maintains the outgrowth of the chick limb bud through interaction with Fgf8, and apical ectodermal factor. Development 124: 2235–2244.
Ohuchi, H., J. Takeuchi, H. Yoshioka, Y. Ishimaru, K. Ogura, N. Takahasi, T. Ogura and S. Noji. 1998. Correlation of wing-leg identity in ectopic FGF-induced chimeric limbs with the differential expression of chick Tbx5 and Tbx4. Development 125: 51–60.
Ohuchi, H. and S. Noji. 1999. Fibroblast-growth-factor-induced additional limbs in the study of initiation of limb formation, limb identity, myogenesis, and innervation. Cell Tissue Res. 296: 45–56.
Oliver, G., C. V. E. Wright, J. Hardwicke and E. M. De Robertis. 1988. A gradient of homeodomain protein in developing forelimbs of Xenopus and mouse embryos. Cell 55: 1017–1024.
Ouimette, J. F., M. L. Jolin, A. L’Honore, A. Gifuni and J. Drouin 2010. Divergent transcriptional activities determine limb identity. Nat. Commun. 1: 35.
Parker, H. G. and 16 others. 2009. An expressed Fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325: 995–998.
Parr, B. A. and A. P. McMahon. 1995. Dorsalizing signal wnt-7a required for normal polarity of D-V and A-P axes of the mouse limb. Nature 374: 350–353.
Parr, B. A., M. J. Shea, G. Vassileva and A. P. McMahon. 1993. Mouse Wnt genes exhibit discrete domains of expression in early embryonic CNS and limb buds. Development 119: 247–261.
Pizette, S. and L. Niswander. 1999. BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development 126: 883–894.
Pizette, S., C. Abate-Shen and L. Niswander. 2001. BMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development 128: 4463–4474.
Pollak, R. D. and J. F. Fallon. 1976. Autoradiographic analysis of macromolecular synthesis in prospectively necrotic cells of the chick limb bud. II. Nucleic acids. Exp. Cell Res. 100: 15–22.
Probst, S., C. Kraemer, P. Demougin, R. Sheth, G. R. Martin, H. Shiratori, H. Hamada, D. Iber, R. Zeller and A. Zuniga. 2011. SHH propagates distal limb bud development by enhancing CYP26B1-mediated retinoic acid clearance via AER-FGF signalling. Development 138: 1913–1923.
Rallis, C., B. G. Bruneau, J. Del Buono, C. E. Seidman, J. G. Seidman, S. Nissim, C. J. Tabin and M. P. Logan. 2003. Tbx5 is required for forelimb bud formation and continued outgrowth. Development 130: 2741–2751.
Raspopovic, J., L. Marcon, L. Russo, and J. Sharpe. 2014. Modeling digits. Digit patterning is controlled by a BMP-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345: 566–570.
Riddle, R. D., R. L. Johnson, E. Laufer and C. Tabin. 1993. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75: 1401–1416.
Riddle, R. D., M. Ensini, C. Nelson, T. Tsuchida, T. M. Jessell and C. Tabin. 1995. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83: 631–640.
Rodriguez-Esteban, C., J. W. R. Schwabe, J. De La Peña, B. Foys, B. Eshelman and J. C. Izpisúa-Belmonte. 1997. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386: 360–366.
Rodriguez-Esteban, C., T. Tsukui, S. Yonei, J. Magallon, K. Tamura and J. C. Izpisúa-Belmonte. 1999. T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398: 814–818.
Ros, M. A., G. E. Lyons, S. Mackem, and J. F. Fallon. 1994. Recombinant limbs as a model to study homeobox gene regulation during limb development. Dev. Biol. 166: 59–72.
Ros, M. A., R. D. Dahn, M. Fernandez-Teran, K. Rashka, N. C. Caruccio, S. M. Hasso, J. J. Bitgood, J. J. Lancman and J. F. Fallon.2003. The chick oligozeugodactyly (ozd) mutant lacks Sonic hedgehog function in the limb. Development 130: 527–537.
Roselló-Díez, A., M. A. Ros and M. Torres. 2011. Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision. Science 332: 1086–1088.
Roselló-Díez, A., C. G. Arques, I. Delgado, G. Giovinazzo, and M. Torres. 2014. Diffusible signals and epigenetic timing cooperate in late proximo-distal limb patterning. Development 141: 1534–1543.
Rosenquist, G. C. 1971. The origin and movement of the limb-bud epithelium and mesenchyme in the chick embryo as determined by radioautographic mapping. J. Embryol. Exp. Morphol. 25: 85–96.
Rowe, D. A., J. M. Cairnes and J. F. Fallon. 1982. Spatial and temporal patterns of cell death in limb bud mesoderm after apical ectodermal ridge removal. Dev. Biol. 93: 83–91.
Rubin, L. and J. W. Saunders, Jr. 1972. Ectodermal–mesodermal interactions in the growth of limbs in the chick embryo: Constancy and temporal limits of the ectodermal induction. Dev. Biol. 28: 94–112.
Sagai, T., M. Hosoya, Y. Mizushina, M. Tamura and T. Shiroishi. 2005. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132: 797–803.
Sandell, L. L., B. W. Sanderson, G. Moiseyev, T. Johnson, A. Mushegian, K. Young, J. P. Rey, J. X. Ma, K. Staehling-Hampton and P. A. Trainor.2007. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev. 21: 1113–1124.
Sato, K., R. Seki, M. Noro, H. Yokoyama and K. Tamura. 2010. Morphogenetic change of the limb bud in the hand plate formation. J. Exp. Zool. 314B: 539–551.
Saunders, J. W., Jr. 1948. The proximal-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108: 363–404.
Saunders, J. W., Jr. 1972. Developmental control of three-dimensional polarity in the avian limb. Ann. NY Acad. Sci. USA 193: 29–42.
Saunders, J. W., Jr., J. M. Cairns and M. T. Gasseling. 1957. The role of the apical ridge of ectoderm in the differentiation of the morphological structure and inductive specificity of limb parts of the chick. J. Morphol. 101: 57–88.
Saunders, J. W., Jr. and J. F. Fallon. 1966. Cell death in morphogenesis. In M. Locke (ed.), Major Problems of Developmental Biology. Academic Press, New York, 289–314.
Saunders, J. W., Jr. and M. T. Gasseling. 1968. Ectodermal-mesodermal interactions in the origin of limb symmetry. In R. Fleischmajer and R. E. Billingham (eds.), Epithelial-Mesenchymal Interactions. Williams & Wilkins, Baltimore, MD, 78–97.
Saunders, J. W., Jr. and C. Reuss. 1974. Inductive and axial properties of prospective wing-bud mesoderm in the chick embryo. Dev. Biol. 38: 41–50.
Saunders, J. W., Jr., M. T. Gasseling and L. C. Saunders. 1962. Cellular death in morphogenesis of the avian wing. Dev. Biol. 5: 147–178.
Scherz, P. J., B. D. Harfe, A. P. McMahon and C. J. Tabin. 2004. The limb Shh-Fgf feedback loop is terminated by the expansion of former ZPA cells. Science 305: 396–369.
Scherz, P. J., E. McGlinn, S. Nissim and C. J. Tabin. 2007. Extended exposure to Sonic hedgehog is required for patterning the posterior digits of the vertebrate limb. Dev. Biol. 308: 343–354.
Schneider, I. and N. H. Shubin. 2013. The origin of the tetrapod limb: From expeditions to enhancers. Trends Genet. 29: 419–426.
Sekine, K. and 10 others. 1999. Fgf10 is essential for limb and lung formation. Nat. Genet. 21: 138–141.
Sessions, S. K., D. M. Gardiner and S. V. Bryant. 1989. Compatible limb patterning mechanisms in urodeles and anurans. Dev. Biol. 131: 294–301.
Sessions, S. K. and S. B. Ruth. 1990. Explanation for naturally occurring supernumerary limbs in amphibians. J. Exp. Zool. 254: 38–47.
Sessions, S. K., R. A. Franssen and V. C. Horner. 1999. Morphological clues from multilegged frogs: Are retinoids to blame? Science 284: 800–802.
Sheth, R., L. Marcon, M. F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe and M. A. Ros. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338: 1476–1480.
Shubin, N. H. 2008. Your Inner Fish. Pantheon, New York.
Shubin, N. H., E. B. Daeschler and F. A. Jenkins, Jr. 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440: 764–771.
Spitz, F., F. Gonzalez and D. Duboule. 2003. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113: 405–417.
Stocum, D. L. and J. F. Fallon. 1982. Control of pattern formation in urodele limb ontogeny: A review and hypothesis. J. Embryol. Exp. Morphol. 69: 7–36.
Storm, E. E. and D. M. Kingsley. 1999. GDF5 coordinates bone and joint formation during digit development. Dev. Biol. 209: 11–27.
Summerbell, D. and J. H. Lewis. 1975. Time, place, and positional value in the chick limb bud. J. Embryol. Exp. Morphol. 33: 621–643.
Sun, M. and 16 others. 2008. Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J. Med. Genet. 45: 589–595.
Suzuki, T., S. M. Hasso and J. F. Fallon. 2008. Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity. Proc. Natl. Acad. Sci. USA 105: 4185–4190.
Szebenyi, G., M. P. Savage, B. B. Olwin and J. F. Fallon. 1995. Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning. Dev. Dyn. 204: 446–456.
Tabin, C. J. and L. Wolpert. 2007. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev. 21: 1433–1442.
Tabin, C. J. and A. P. McMahon. 2008. Grasping limb patterning. Science 321: 350–352.
Takeuchi, J. K., K. Koshiba-Takeuchi, K. Matsumoto, A. Vogel-Höpker, M. Naitoh-Matsuo, K. Ogura, N. Takahashi, K. Yasuda and T. Ogura. 1999. Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature 398: 810–814.
Takeuchi, J. K., M. Ohgi, K. Koshiba-Takeuchi, H. Shiratori, I. Sakaki, K. Ogura, Y. Saijoh and T. Ogura.2003. Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development 130: 5953–5964.
Tanaka, M. 2013. Molecular and evolutionary basis of limb field specification and limb initiation. Dev. Growth Differ. 55: 149–163.
Tanaka, M., K. Tamura, S. Noji, T. Nohno and H. Ide. 1997. Induction of additional limb at the dorsal-ventral boundary of a chick embryo. Dev. Biol.182: 191–203.
Tarchini, B. and D. Duboule. 2006. Control of Hoxd genes’ collinearity during early limb development. Dev. Cell 10: 93–103.
Tarchini, B., D. Duboule and M. Kmita. 2006. Regulatory constraints in the evolution of the tetrapod limb anterior-posterior polarity. Nature 443: 985–988.
Tavormina, P. L., R. Shiang, L. M. Thompson, Y. Z. Zhu, D. J. Wilkin, R. S. Lachman, W. R. Wilcox, D. L. Rimoin, D. H. Cohn and J. J. Wasmuth. 1995. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat. Genet. 9: 321–328.
ten Berge, D., S. A. Brugmann, J. A. Helms and R. Nusse. 2008. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 135: 3247–3257.
te Welscher, P., A. Zuniga, S. Kuijper, T. Drenth, H. J. Goedemans, F. Meijlink, and R. Zeller. 2002. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298: 827–830.
Thewissen, J. G., M. J. Cohn, L. S. Stevens, S. Bajpai, J. Heyning and W. E. Horton, Jr. 2006. Developmental basis for hind-limb loss in dolphins and origin of the cetacean bodyplan. Proc. Natl. Acad. Sci. USA 103: 8414–8418.
Thewissen, J. G., L. N. Cooper, M. T. Clementz, S. Bajpai and B. N. Tiwari. 2007. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450: 1190–1194.
Thewissen, J. G. M., L. N. Cooper, J. C. George and S. Bajpai. 2009. From land to water: The origin of whales, dolphins, and porpoises. Evol. Educ. Outreach 2: 272–288.
Tickle, C., D. Summerbell and L. Wolpert. 1975. Positional signaling and specification of digits in chick limb morphogenesis. Nature 254: 199–202.
Todt, W. L. and J. F. Fallon. 1987. Posterior apical ectodermal ridge removal in chick wing bud triggers a series of events resulting in defective anterior pattern. Development 101: 501–515.
Tufan, A. C. and R. S. Tuan. 2001. Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered N-cadherin-related functions. FASEB J. 15: 1436–1438.
Turing, A. M. 1952. The chemical basis of morphology. Philos. Trans. R. Soc. London 237B: 37–72.
Vargas, A. O. and J. F. Fallon. 2005a. Birds have dinosaur wings: The molecular evidence. J. Exp. Zool. 304B: 86–90.
Vargas, A. O. and J. F. Fallon. 2005b. The digits of the wing of birds are 1, 2, and 3: A review. J. Exp. Zool. 304B: 206–219.
Verheyden, J. M. and X. Sun. 2008. An Fgf–Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth. Nature 454: 638–641.
Vogel, A., C. Rodriguez, W. Warnken and J.-C. Izpisúa-Belmonte. 1995. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 378: 716–720.
Vogel, A., C. Rodriguez and J.-C. Izpisúa-Belmonte. 1996. Involvement of Fgf8 in initiation, outgrowth, and patterning of the vertebrate limb. Development 122: 1737–1750.
Vokes, S. A., H. Ji, W. H. Wong and A. P. McMahon. 2008. A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev. 22: 2651–2663.
Webster, M. K. and D. J. Donoghue. 1996. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J. 15: 520–527.
Wellik, D. M. and M. R. Capecchi. 2003. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301: 363–367.
Wessells, N. K. 1977. Tissue Interaction and Development. Benjamin Cummings, Menlo Park, CA.
Wolpert, L. 2010. Arms and the man: The problem of symmetric growth. PLOS Biol. 8: e1000477
Woltering, J. M., D. Noordermeer, M. Leleu and D. Duboule. 2014. Conservation and divergence of regulatory strategies at Hox loci and the origin of tetrapod digits. PLOS Biol. 12: e1001773.
Xu, X. L., M. Weinstein, C. Li, M. Naski, R. I. Cohen, D. M. Ornitz, P. Leder and C. Deng. 1998. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulatory loop between Fgf8 and Fgf10 is essential for limb induction. Development 125: 753–765.
Yang, L., C. L. Cai, L. Lin, Y. Qyang, C. Chung, R. M. Monteiro, C. L. Mummery, G. I. Fishman, A. Cogen and S. Evans. 2006. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133: 1575–1585.
Yang, Y. Z. and L. Niswander. 1995. Interaction between signaling molecules Wnt7a and Shh during vertebrate limb development: Dorsal signals regulate anteroposterior patterning. Cell 80: 939–947.
Yang, Y. and 10 others. 1997. Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124: 4393–4404.
Yang, Y. and S. H. Kozin. 2009. Cell signaling regulation of vertebrate limb growth and patterning. J. Bone Joint Surg. Am. 91: 76–80.
Yin, M. and M. Pacifici. 2001. Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limb. Dev. Dyn. 222: 522–533.
Yokouchi, Y., S. Nakazato, M. Yamamoto, Y. Goto, T. Kameda, H. Iba and A. Kuroiwa. 1995. Misexpression of Hoxa13 induces cartilage homeotic transformation and changes in adhesiveness in chick limb buds. Genes Dev. 9: 2509–2522.
Yokouchi, Y., J. Sakiyama, T. Kameda, H. Iba, A. Suzuki, N. Ueno and A. Kuroiwa. 1996. BMP2/4 mediate programmed cell death in chicken limb buds. Development 122: 3725–3734.
Yonei-Tamura, S., T. Endo, H. Yajima, H. Ohuichi, H. Ida and K. Tamura. 1999. FGF7 and Fgf10 directly induce the apical ectodermal ridge in chick embryos. Dev. Biol. 211: 133–143.
Zákány, J., M. Kmita and D. Duboule. 2004. A dual role for Hox genes in limb anterior-posterior asymmetry. Science 304: 1669–1672.
Zaleske, D. J. 1985. Development of the upper limb. Hand Clin. 1: 383–390.
Zhang, Y. T., M. S. Alber, and S. A. Newman. 2013. Mathematical modeling of vertebrate limb development. Math. Biosci. 243: 1–17.
Zhang, Z., J. M. Verheyden, J. A. Hassell and X. Sun. 2009. FGF-regulated Etv genes are essential for repressing Shh expression in mouse limb buds. Dev. Cell 16: 607–613.
Zhao, X., I. O. Sirbu, F. A. Mic, N. Molotkova, A. Molotkov, S. Kumar, and G. Duester. 2009. Retinoic acid promotes limb induction through effects on body axis extension but is unnecessary for limb patterning. Curr. Biol. 19: 1050–1057.
Zhu, J. and S. Mackem. 2011. Analysis of mutants with altered Shh activity and posterior digit loss supports a biphasic model for Shh function as a morphogen and mitogen. Dev. Dyn. 240: 1303–1310.
Zhu, J., Y. T. Zhang, M. S. Alber and S. A. Newman. 2010. Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLOS ONE 5: e10892.
Zou, H. and L. Niswander. 1996. Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272: 738–741.
Zúñiga, A. 2015. Next generation limb development and evolution: Old questions, new perspectives. Development 142: 3810–3820.
Zúñiga, A. and R. Zeller. 2014. In Turing's hands: The making of digits. Science 345: 516–517.
Zúñiga, A., A. P. Haramis, A. P. McMahon and R. Zeller. 1999. Signal relay by BMP antagonism controls the Shh/Fgf4 feedback loop in vertebrate limb buds. Nature 401: 598–602.
Zuzarte-Luis, V. and J. M. Hurle. 2005. Programmed cell death in the embryonic vertebrate limb. Semin. Cell Dev. Biol. 16: 261–269.
Zwilling, E. 1955. Ectoderm-mesoderm relationship in the development of the chick embryo limb bud. J. Exp. Zool. 128: 423–441.