Aguirre, A., M. E. Rubio and V. Gallo. 2010. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467: 323–327.
Ahn, Y. 2015. Signaling in tooth, hair, and mammary placodes. Curr. Top. Dev. Biol. 111: 421–452.
Ahn, Y., C. Sims, J. M. Logue, S. D. Weatherbee and R. Krumlauf. 2013. Lrp4 and wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development 140: 583–593.
Ahtiainen, L., S. Lefebvre, P. H. Lindfors, E. Renvoisé, V. Shirokova, M. K. Vartiainen, I. Thesleff and M. L. Mikkola. 2014. Directional cell migration, but not proliferation, drives hair placode morphogenesis. Dev. Cell 28: 588–602.
Alié, A., L. Devos, J. Torres-Paz, L. Prunier, F. Boulet, M. Blin, Y. Elipot and S. Retaux. 2018. Developmental evolution of the forebrain in cavefish, from natural variations in neuropeptides to behavior. eLife 7: e32808.
An, Z., M. Sabalic, R. F. Bloomquist, T. E. Fowler, T. Streelman and P. T Sharpe. 2018. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Comm. 9: 378.
Bailey, A. P., S. Bhattacharyya, M. Bronner-Fraser and A. Streit. 2006. Lens specification is the ground state of all sensory placodes, from which FGF promotes olfactory identity. Dev. Cell 11: 505–516.
Bailey, T. J., H. El-Hodiri, L. Zhang, R. Shah, P. H. Mathers and M. Jamrich. 2004. Regulation of vertebrate eye development by Rx genes. Int. J. Dev. Biol. 48: 761–770.
Baker, C. V. and M. Bronner-Fraser. 2001. Vertebrate cranial placodes. I. Embryonic induction. Dev. Biol. 232: 1–61.
Baker, C. V., M. Bronner-Fraser, N. M. Le Douarin and M. A. Teillet. 1997. Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo. Development 124: 3077–3087.
Bakkers, J., M. Hild, C. Kramer, M. Furutani-Seiki and M. Hammerschmidt. 2002. Zebrafish DeltaNp63 is a direct target of BMP signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev. Cell 2: 617–627.
Basch, M. L., R. M. Brown II, H. I. Jen and A. K. Groves. 2016. Where hearing starts: the development of the mammalian cochlea. J. Anat. 228: 233–254.
Bazin-Lopez, N., L. E. Valdivia, S. W. Wilson and G. Gestri. 2015. Watching eyes take shape. Curr. Opin. Genet. Dev. 32: 73–79.
Beazley, K. E., J. P. Canner and T. F. Linsenmayer. 2009. Developmental regulation of the nuclear ferritoid-ferritin complex of avian corneal epithelial cells: roles of systemic factors and thyroxine. Exp. Eye Res. 89: 854–862.
Begbie, J. and A. Graham. 2001. Integration between the epibranchial placodes and the hindbrain. Science 294: 595–598.
Bhattacharyya, S. and M. Bronner-Fraser. 2004. Hierarchy of regulatory events in sensory placode development. Curr. Opin. Genet. Dev. 14: 520–526.
Bhattacharyya, S., A. P. Baily, M. Bronner-Fraser and A. Streit. 2004. Segregation of lens and olfactory precursors from a common territory: Cell sorting and reciprocity of Dlx5 and Pax6 expression. Dev. Biol. 271: 403–414.
Biggs, L. C. and M. L. Mikkola. 2014. Early inductive events in ectodermal appendage morphogenesis. Semin. Cell Dev. Biol. 26: 11–21.
Blanpain, C. and E. Fuchs. 2009. Epidermal homeostasis: A balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10: 207–217.
Bok, J., S. Raft, K. A. Kong, S. K. Koo, U. C. Dräger and D. K. Wu. 2011. Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proc. Natl. Acad. Sci. USA 108: 161–166.
Breau, M. A. and S. Schneider-Maunoury. 2014. Mechanisms of cranial placode assembly. Int. J. Dev. Biol. 58: 9–19.
Brown, A. S. and D. J. Epstein. 2011. Otic ablation of smoothened reveals direct and indirect requirements for hedgehog signaling in inner ear development. Development 138: 3967–3976.
Brown, A. S., S. M. Rakowiecki, J. Y. Li and D. J. Epstein. 2015. The cochlear sensory epithelium derives from Wnt responsive cells in the dorsomedial otic cup. Dev. Biol. 399: 177–187.
Brown, K. E., P. J. Keller, M. Ramialison, M. Rembold, E. H. Stelzer, F. Loosli and J. Wittbrodt. 2010. Nlcam modulates midline convergence during anterior neural plate morphogenesis. Dev. Biol. 339: 14–25.
Brugmann, S. A., P. D. Pandur, K. L. Kenyon, F. Pignoni and S. A. Moody. 2004. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 131: 5871–5881.
Burmeister, M. and 13 others. 1996. Ocular retardation mouse caused by Chx10 homeobox null allele: Impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet. 12: 376–384.
Cadieu, E. and 19 others. 2009. Coat variation in the domestic dog is governed by variants in three genes. Science 326: 150–153.
Chauhan, B. K., M. Lou, Y. Zheng and R. A. Lang. 2011. Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. Proc. Natl. Acad. Sci. USA 108: 18289–18294.
Chen, C. C., P. J. Murray, T. X. Jiang, M. V. Plikus, Y. T. Chang, O. K. Lee, R. B. Widelitz and C. M. Chuong. 2014. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. J. Invest. Dermatol. 134: 2086–2096.
Chen, J., M. Tambalo, M. Barembaum, R. Ranganathan, M. Simoes-Costa, M.E. Bronner and A. Streit. 2017. A systems-level approach reveals new gene regulatory modules in the developing ear. Development 144: 1531–1543.
Chen, P. and N. Segil. 1999. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126: 1581–1590.
Chiang, C., Y. Litingtung, E. Lee, K. E. Young, J. L. Cordoen, H. Westphal and P. A. Beachy. 1996. Cyclopia and axial patterning in mice lacking sonic hedgehog gene function. Nature 383: 407–413.
Chuahan, B. K., A. Disanza, S. Y. Choi, S. C. Faber, M. Lou, H. E. Beggs, G. Scita, Y. Zheng and R. A. Lang. 2009. Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development 136: 3657–3667.
Clevers, H. 2015. What is an adult stem cell? Science 350: 1319–1320.
Cooper, M. K., J. A. Porter, K. E. Young and P. A. Beachy. 1998. Teratogen-mediated inhibition of target tissue response to hedgehog signaling. Science 280: 1603–1607.
Cotsarelis, G., S. Z. Cheng, G. Dong, T. T. Sun and R. M. Lavker. 1989. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell 57: 201–209.
Cotsarelis, G., T.-T. Sun and R. M. Lavker. 1990. Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle and skin carcinogenesis. Cell 61: 1329–1337.
Coulombre, A. J. 1956. The role of intraocular pressure in the development of the chick eye. I. Control of eye size. J. Exp. Zool. 133: 211–225.
Coulombre, A. J. 1965. The eye. In R. DeHaan and H. Ursprung (eds.), Organogenesis. Holt, Rinehart & Winston, New York, 217–251.
Cvekl, A. and E. R. Tamm. 2004. Anterior eye development and ocular mesenchyme: New insights from mouse models and human diseases. BioEssays 26: 374–386.
Daudet, N. and J. Lewis. 2005. Two contrasting roles for Notch activity in chick inner ear development: Specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 132: 541–551.
Daudet, N., R. Gibson, J. Shang, A. Bernard, J. Lewis and J. Stone. 2009. Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds. Dev. Biol. 326: 86–100.
Decembrini, S., M. Andreazzoli, R. Vignali, G. Barsacchi and F. Cremisi. 2006. Timing the generation of distinct retinal cells by homeobox proteins. PLOS Biol. 4: e272.
Decembrini, S., D. Bressan, R. Vignali, L. Pitto, S. Mariotti, G. Rainaldi, X. Wang, M. Evangelista, G. Barsacchi and F. Cremisi. 2009. MiRNAs couple cell fate and developmental timing in retinal histogenesis. Proc. Natl. Acad. Sci. USA 106: 21179–21184.
Dierks, C., S. Mömke, U. Philipp and O. Distl. 2013. Allelic heterogeneity of FGF5 mutations causes the long-hair phenotype in dogs. Anim. Genet. 44: 425–431.
Donner, A. L., S. A. Lachke and R. L. Maas. 2006. Lens induction in vertebrates: Variations on a conserved theme of signaling events. Semin. Cell Dev. Biol. 17: 676–685.
Dürnberger, H., B. Heuberger, P. Schwartz, G. Wasner and K. Kratochwil. 1978. Mesenchyme-mediated effect of testosterone on embryonic mammary epithelium. Cancer Res. 38: 4066–4070.
Dutta, S., J. E. Dietrich, G. Aspöck, R. D. Burdine, A. Schier, M. Westerfield and Z. M. Varga. 2005. pitx3 defines an equivalence domain for lens and anterior pituitary placode. Development 132: 1579–1590.
Eddison, M., I. Le Roux and J. Lewis. 2000. Notch signaling in the development of the inner ear: Lessons from Drosophila. Proc. Natl. Acad. Sci. USA 97: 11692–11699.
Eiraku, M., N. Takata, H. Ishibashi, M. Kawada, E. Sakakura, S. Okuda, K. Sekiguchi, T. Adachi and Y. Sasai. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472: 51–56.
Ezratty, E. J., N. Stokes, S. Chai, A. S. Shah, S. E. Williams and E. Fuchs. 2011. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145: 1129–1141.
Faber, S. C., M. L. Robinson, H. P. Makarenkova and R. A. Lang. 2002. Bmp signaling is required for development of primary lens fiber cells. Development 129: 3727–3737.
Freter, S., S. J. Fleenor, R. Freter, K. J. Liu and J. Begbie. 2013. Cranial neural crest cells form corridors prefiguring sensory neuroblast migration. Development 140: 3595–3600.
Fuchs, E. and V. Horsley. 2008. More than one way to skin... Genes Dev. 22: 976–985.
Fuhrmann, S. 2010. Eye morphogenesis and patterning of the optic vesicle. Curr. Top. Dev. Biol. 93: 61–84.
Furuta, Y. and B. L. Hogan. 1998. BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 12: 3764–3775.
Gage, P. J., W. Rhoades, S. K. Prucka and T. Hjalt. 2005. Fate maps of neural crest and mesoderm in the mammalian eye. Invest. Ophthalmol. Vis. Sci. 46: 4200–4208.
Garza, L. A. and 10 others. 2011. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J. Clin. Invest. 121: 613–622.
Garza, L. A. and 14 others. 2012. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci. Transl. Med .4: 126ra34.
Glaser, T., L. Jepeal, J. G. Edwards, S. R. Young, J. Favor and R. L. Maas. 1994. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat. Genet. 7: 463–471.
Golding, J. P., D. Sobieszczuk, M. Dixon, E. Coles, J. Christiansen, D. Wilkinson and M. Gassmann. 2004. Roles of erbB4, rhombomere-specific, and rhombomere-independent cues in maintaining neural crest-free zones in the embryonic head. Dev. Biol. 266: 361–372.
Graham, A., A. Blentic, S. Duque and J. Begbie. 2007. Delamination of cells from neurogenic placodes does not involve an epithelial-to-mesenchymal transition. Development 134: 4141–4145.
Grainger, R. M. 1992. Embryonic lens induction: Shedding light on vertebrate tissue determination. Trends Genet. 8: 349–356.
Groves, A. K. and C. LaBonne. 2014. Setting appropriate boundaries: Fate, patterning and competence at the neural plate border. Dev. Biol. 389: 2–12.
Halder, G., P. Callaerts and W. J. Gehring. 1995. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267: 1788–1792.
Hamburger, V. 1961. Experimental analysis of the dual origin of the trigeminal ganglion in the chick embryo. J. Exp. Zool. 148: 91–123.
Hemond, S. G. and D. K. Morest. 1991. Ganglion formation from the otic placode and the otic crest in the chick embryo: Mitosis, migration, and the basal lamina. Anat. Embryol. 184: 1–13.
Hilfer, S. R. and J.-J. W. Yang. 1980. Accumulation of CPC-precipitable material at apical cell surfaces during formation of the optic cup. Anat. Rec. 197: 423–433.
Hintze, M., R. S. Prajapati, M. Tambalo, N. A. D. Christophorou, M. Anwar, T. Grocott and A. Streit. 2017. Cell interactions, signals and transcriptional hierarchy governing placode progenitor induction. Development 144: 2810–2823.
Hogg, N. A. S., D. J. Harrison and C. Tickle. 1983. Lumen formation in the mammary gland. J. Embryol. Exp. Morph. 73: 39–57.
Hsu, Y. C. and E. Fuchs. 2012. A family business: Stem cell progeny join the niche to regulate homeostasis. Nat. Rev. Mol. Cell Biol. 13: 103–114.
Hsu, Y. C., H. A. Pasolli and E. Fuchs. 2011. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144: 92–105.
Hsu, Y. C., L. Li and E. Fuchs. 2014. Emerging interactions between skin stem cells and their niches. Nat. Med. 20: 847–856.
Huh, S. H. 2013. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev. 27: 450–458.
Huh, S.-H., M. E. Warchol and D. M. Ornitz. 2015. Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. eLife 4: e05921.
Huxley, T. H. 1882. On Science and Art in Relation to Education.
Jacobson, A. G. 1963. The determination and positioning of the nose, lens, and ear III. Effects of reversing the anterior-posterior axis of the epidermis, neural plate, and neural fold. J. Exp. Zool. 154: 293–303.
Jacobson, A. G. 1966. Inductive processes in embryonic development. Science 152: 25–34.
Janesick, A., J. Shiotsugu, M. Taketani and B. Blumberg. 2012. RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm. Development 139: 1213–1224.
Järvinen, E., I. Salazar-Ciudad, W. Birchmeier, M. M. Taketo, J. Jernvall, and I. Thesleff. 2006. Continuous tooth generation in mouse is induced by activated epithelial Wnt/b-catenin signaling. Proc. Natl. Acad. Sci. USA 103: 18627–18632.
Jernvall, J., T. Aberg, P. Kettunen, S. Keränen and I. Thesleff. 1998. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125: 161–169.
Johansson, J. A. and D. J. Headon. 2014. Regionalisation of the skin. Semin. Cell Dev. Biol. 26: 3–10.
Johnston, M. C., D. M. Noden, R. D. Hazelton, J. L. Coulombre and A. J. Coulombre. 1979. Origins of avian ocular and periocular tissues. Exp. Eye Res. 29: 27–43.
Johnstone, M. A. and D. M. Albert. 2002. Prostaglandin-induced hair growth. Surv. Ophthalmol. 47: S185–S202.
Jordan, T., I. Hanson, D. Zaletayev, S. Hodgson, J. Prosser, A. Seawright, N. Hastie and V. van Heyningen. 1992. The human PAX6 gene is mutated in two patients with aniridia. Nat. Genet. 1: 328–332.
Jussila, M. and I. Thesleff. 2012. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineage. Cold Spring Harbor Persp. Biol. 4: a008425.
Kanakubo, S., T. Nomura, K. Yamamura, J. Miyazaki, M. Tamai and N. Osumi. 2006. Abnormal migration and distribution of neural crest cells in Pax6 heterozygous mutant eye, a model for human eye diseases. Genes Cells 11: 919–933.
Kaufman, K. D. 2002. Androgens and alopecia. Mol. Cell Endocr. 198: 89–95.
Kelley, R. I., E. Roessler, R. C. Hennekam, G. L. Feldman, K. Kosaki, M. C. Jones, J. C. Palumbos and M. Muenke. 1996. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of Sonic hedgehog? Am. J. Med. Genet. 66: 478–484.
Kim, J. E., S. H. Bang, J. H. Choi, C. D. Kim, C. H. Won, M. W. Lee and S. E. Chang. 2016. Interaction of Wnt5a with Notch1 is critical for the pathogenesis of psoriasis. Ann. Dermatol. 28: 45–54.
Kollar, E. J. 1970. The induction of hair follicles by embryonic dermal papillae. J. Invest. Derm. 55: 374–378.
Kollar, E. J. and G. R. Baird. 1970. Tissue interactions in embryonic mouse tooth germs II. The inductive role of the dental papilla. J. Embryol. Exp. Morphol. 24: 173–186.
Kondoh, H., M. Uchikawa, H. Yoda, H. Takeda, M. Furutani-Seiki and R. O. Karlstrom. 2000. Zebrafish mutations in Gli-mediated hedgehog signaling lead to lens transdifferentiation from the adenohypophysis anlage. Mech. Dev. 96: 165–174.
Kondoh, H., M. Uchikawa and Y. Kamachi. 2004. Interplay of Pax6 and Sox2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. Int. J. Dev. Biol. 48: 819–827.
Kozlowski, D. J., T. Murakami, R. K. Ho and E. S. Weinberg. 1997. Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem. Cell Biol. 75: 551–562.
Kratochwil, K. 1985. Tissue combination and organ culture studies in the development of the embryonic mammary gland. Dev. Biol. 4: 315–333.
Kratochwil, K. and P. Schwartz. 1976. Tissue interaction in androgen response of embryonic mammary rudiment of mouse: Identification of target tissue for testosterone. Proc. Natl. Acad. Sci. USA 73: 4041–4044.
Kurpakus, M. A., M. T. Maniaci and M. Esco. 1994. Expression of keratins K12, K4, and K14 during development of ocular surface epithelium. Curr. Eye Res. 13: 805–814.
Ladher, R. K. 2017. Changing shape and shaping change: Inducing the inner ear. Semin. Cell. Dev. Biol. 65: 39–46.
Ladher, R. K., K. U. Anakwe, A. L. Gurney, G. C. Schoenwolf and P. H. Francis-West. 2000. Identification of synergistic signals initiating inner ear development. Science 290: 1965–1967.
Ladher, R. K., T. J. Wright, A.M. Moon, S. L. Mansour and G. C. Schoenwolf. 2005. FGF8 initiates inner ear induction in chick and mouse. Genes Dev. 19: 603–613.
Ladher, R. K., P. O’Neill and J. Begbie. 2010. From shared lineage to distinct functions: The development of the inner ear and epibranchial placodes. Development 137: 1777–1785.
Laine, H., A. Doetzlhofer, J. Mantela, J. Ylikoski, M. Laiho, M. F. Roussel, N. Segil and U. Pirvola. 2007. p19(Ink4d) and p21(Cip1) collaborate to maintain the postmitotic state of auditory hair cells, their codeletion leading to DNA damage and p53-mediated apoptosis. J. Neurosci. 27: 1434–1444.
Lay, K., T. Kume and E. Fuchs. 2016. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc. Natl. Acad. Sci. USA 113: 201601569.
Lechler, T. and E. Fuchs. 2005. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437: 275–280.
Lee, Y. S., F. Liu and N. Segil. 2006. A morphogenetic wave of p27Kip1 transcription directs cell cycle exit during organ of Corti development. Development 133: 2817–2826.
Levy, V., C. Lindon, Y. Zheng, B. D. Harfe and B. A. Morgan. 2007. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 21: 1358–1366.
Lewis, W. H. 1904. Experimental studies on the development of the eye in amphibia. I. On the origin of the lens. Rana palustris. Am. J. Anat. 3: 505–536.
Lin, Z., R. Cantos, M. Patente and D. K. Wu. 2005. Gbx2 is required for the morphogenesis of the mouse inner ear: A downstream candidate of hindbrain signaling. Development 132: 2309–2318.
Linsenmayer, T. F., C. X. Cai, J. M. Millholland, K. E. Beazley and J. M. Fitch. 2005. Nuclear ferritin in corneal epithelial cells: Tissue-specific nuclear transport and protection from UV-damage. Prog. Retin. Eye Res. 24:139–159.
Litsiou, A., S. Hanson and A. Streit. 2005. A balance of FGF, BMP and WNT signaling positions the future placode territory in the head. Development 132: 4051–4062.
Liu, E. Y. and 14 others. 2008. Wnt/β-catenin signaling directs multiple stages of tooth morphogenesis. Dev. Biol. 313: 210–224.
Lleras-Forero, L., M. Tambalo, N. Christophorou, D. Chambers, C. Houart and A. Streit. 2013. Neuropeptides: Developmental signals in placode progenitor formation. Dev. Cell 26: 195-203.
Mack, J. A., S. Anand and E. V. Maytin. 2005. Proliferation and cornification during development of the mammalian epidermis. Birth Def. Res. C Embryol. Today 75: 314–329.
Magarinos, M., J. Contreras, M. R. Aburto and I. Varela-Nieto. 2012. Early development of the vertebrate inner ear. Anat. Rec. Hob. 295: 1775–1790.
Mailleux, A. A., B. Spencer-Dene, C. Dillon and S. Bellusci. 2002. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 129: 53–60.
Majo, F., A. Rochat, M. Nicolas, G. A. Jaoudé and Y. Barrandon. 2008. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 456: 250–254.
Mammoto, T. and 10 others. 2011. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell 21: 758–769.
Manley, G. A. 2012. Evolutionary paths to mammalian cochleae. J. Assoc. Res. Otolaryngol. 13: 733–743.
Manley, G. A. 2017. Comparative auditory neuroscience: Understanding the evolution and function of ears. J. Assoc. Res. Otolaryngol. 18: 1–24.
Mascré, G., S. Dekoninck, B. Drogat, K. K. Youssef, S. Broheé, P. A. Sotiropoulou, B. D. Simons and C. Blanpain. 2012. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489: 257–262.
Meier, S. and E. D. Hay. 1974. Control of corneal differentiation by extracellular materials: Collagen as a promoter and stabilizer of epithelial stroma production. Dev. Biol. 38: 249–270.
Mesa, K. R., P. Rompolas, G. Zito, P. Myung, T. Y. Sun, S. Brown, D. G. Gonzalez, K. B. Blagoev, A. M. Haberman and V. Greco. 2015. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522: 94–97.
Mikkola, M. L. 2008. TNF superfamily in skin appendage development. Cytokine Growth Factor Rev. 19: 219–230.
Mina, M. and E. J. Kollar. 1987. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch. Oral Biol. 32: 123–127.
Montell, D. J. 2008. Morphogenetic cell movements: Diversity from modular mechanical properties. Science 322: 1502–1505.
Moody, S. A. and A. S. LaMantia. 2015. Transcriptional regulation of cranial sensory placode development. Curr. Top. Dev. Biol. 111: 301–350.
Morris, R. J. and C. S. Potten. 1999. Highly persistent lanbel-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermat. 112: 470–475.
Mukhopadhyay, M., M. Gorivodsky, S. Shtrom, A. Grinberg, C. Niehrs, M. I. Morasso and H. Westphal. 2006. Dkk2 plays an essential role in the corneal fate of the ocular surface epithelium. Development 133: 2149–2154.
Munne, P. M., M. Tummers, E. Järvinen, I. Thesleff and J. Jernvall. 2009. Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction. Development 136: 393–402.
Myung, P. S., M. Takeo, M. Ito and R. Atit. 2013. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J. Invest. Dermatol. 133: 31–34.
Nakajima, Y. 2015. Signaling regulating inner ear development: Cell fate determination, patterning, morphogenesis, and defects. Congenital Anom. 55: 17–25.
Närhi, K., E. Järvinen, W. Birchmeier, M. M. Taketo, M. L. Mikkola and I. Thesleff. 2008. Sustained epithelial b-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development 135: 1019–1028.
Närhi, K., M. Tummers, L. Ahtiainen, N. Itoh, I. Thesleff and M.L. Mikkola. 2012. Sostdc1 defines the size and number of skin appendage placodes. Dev. Biol. 364: 149–161.
Nelson, A. M. and 12 others. 2015. dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell 17: 139–151.
Neubüser, A., H. Peters, R. Balling and G. R. Martin. 1997. Antagonistic interactions between FGF and BMP signaling pathways: A mechanism for positioning the sites of tooth formation. Cell 90: 247–255.
Nguyen, B. and 14 others. 2006. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20: 1028–1042.
Nguyen, M. and H. Arnheiter. 2000. Signaling and transcriptional regulation in early mammalian eye development: A link between FGF and MITF. Development 127: 3581–3591.
Nishimura, E. K., S. A. Jordan, H. Oshima, H. Yoshida, M. Osawa, M. Moriyama, I. J. Jackson, Y. Barrandon, Y. Miyachi and S. Nishikawa. 2002. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416: 854–860.
Oakes, S. R., H. N. Hilton and C. J. Ormandy. 2006. The alveolar switch: Coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 8: 207.
O’Connell, D. J., J. W. Ho, T. Mammoto, A. Turbe-Doan, J. T. O’Connell, P. S. Haseley, S. Koo, N. Kamiya, D. E. Ingber, P. J. Park and R. L. Maas. 2012. A Wnt-BMP feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Sci. Signal 5: ra4.
Ogino, H., M. Fisher and R. M. Grainger. 2008. Convergence of a head-field selector Otx2 and Notch signaling: A mechanism for lens specification. Development 135: 249–258.
Ogino, H., H. Ochi, H. M. Reza and K. Yasuda. 2012. Transcription factors involved in lens development from the preplacodal ectoderm. Dev. Biol. 363: 333–347.
Osborne, N. J., J. Begbie, J. K. Chilton, H. Schmidt and B. J. Eickholt. 2005. Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick. Dev. Dyn. 232: 939–949.
Panousopoulou, E. and J. B. A. Green. 2016. Invagination of ectodermal placodes is driven by intercalation-mediated contraction of the suprabasal tissue canopy. PLOS Biol. 14: e1002405.
Papaconstantinou, J. 1967. Molecular aspects of lens cell differentiation. Science 156: 338–346.
Patthey, C., T. Edlund and L. Gunhaga. 2009. Wnt-regulated temporal control of BMP exposure directs the choice between neural plate border and epidermal fate. Development 136: 73–83.
Piatigorsky, J. 1981. Lens differentiation in vertebrates: A review of cellular and molecular features. Differentiation 19: 134–153.
Pieper, M., G. W. Eagleson, W. Wosniok and G. Schlosser. 2011. Origin and segregation of cranial placodes in Xenopus laevis. Dev. Biol. 360: 257–275.
Pispa, J. and I. Thesleff. 2003. Mechanisms of ectodermal organogenesis. Dev. Biol. 262: 195–205.
Plageman, T. F. Jr., M. I. Chung, M. Lou, A. N. Smith, J. D. Hildebrand, J. B. Wallingford and R. A. Lang. 2010. Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development 137: 405–415.
Platt, J. B. 1896. Ontogenetic differentiation of the ectoderm in Necturus. Study II: Development of the peripheral nervous system. Q. J. Micro. Sci. 38: 911–966.
Plikus, M. V., J. A. Mayer, D. de la Cruz, R. E. Baker, P. K. Maini, R. Maxson and C. M. Chuong. 2008. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451: 340–344.
Pottin, K., H. Hinaux and S. Rétaux. 2011. Restoring eye size in Astyanax mexicanus blind cavefish embryos through modulation of the Shh and Fgf8 forebrain organising centres. Development 138: 2467–2476.
Propper, A. and L. Gomot. 1967. Tissue interactions during organogenesis of the mammary gland in the rabbit embryo. (Article in French). C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 264: 2573–2575.
Quiring, R., U. Walldorf, U. Kloter and W. J. Gehring. 1994. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265: 785–789.
Raynaud, A. 1961. Morphogenesis of the mammary gland. In S. K. Kon and A. T. Cowrie (eds.), Milk: The Mammary Gland and Its Secretion. Academic Press, New York, 3–46.
Rendl, M., L. Polak and E. Fuchs. 2008. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 22: 543–557.
Rétaux, S., K. Pottin and A. Alunni. 2008. Shh and forebrain evolution in the blind cavefish Astyanax mexicanus. Bio. Cell 100: 139–147.
Reza, H. M., H. Nishi, K. Kataoka, Y. Takahashi and K. Yasuda. 2007. L-Maf regulates p27kip1 expression during chick lens fiber differentiation. Differentiation 75: 737–744.
Riccomagno, M. M., S. Takada and D. J. Epstein. 2005. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev. 19: 1612–1623.
Rinn, J. L. and 10 others. 2008. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev. 22: 303–307.
Rios, A. C., N. Y. Fu, G. J. Lindeman and J. E. Visvader. 2014. In situ identification of bipotent stem cells in the mammary gland. Nature 506: 322–327.
Roessler, E., E. Belloni, K. Gaudenz, P. Jay, P. Berta, S. W. Scherer, L. C. Tsui and M. Muenke. 1996. Mutations in the human Sonic hedgehog gene cause holoprosencephaly. Nat. Genet. 14: 357–360.
Rojas-Munoz, A., R.Dahm and C. Nüsslein-Volhard. 2005. chokh/rx3 specifies the retinal pigment epithelium fate independently of eye morphogenesis. Dev. Biol. 288: 348–362.
Rompolas, P., K. R. Mesa and V. Greco. 2013. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502: 513–518.
Ruben, R. J. 1967. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol. 220: 1–44.
Saha, M. S., C. L. Spann and R. M. Grainger. 1989. Embryonic lens induction: More than meets the optic vesicle. Cell Diff. Dev. 28: 153–172.
Sai, X. and R. K. Ladher. 2008. FGF signaling regulates cytoskeletal remodeling during epithelial morphogenesis. Curr. Biol. 18: 976–981.
Sai, X. and R. K. Ladher. 2015. Early steps in inner ear development: Induction and morphogenesis of the otic placode. Front. Pharmacol. 6: 19.
Saint-Jeannet, J. P. and S. A. Moody. 2014. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev. Biol. 389: 13–27.
Sasaki, S., Y. Hozumi and S. Kondo. 2005. Influence of prostaglandin F2a and its analogues on hair regrowth and follicular melanogenesis in a murine model. Exp. Dermatol. 14: 323–328.
Schimmang, T. and U. Pirvola. 2013. Coupling the cell cycle to development and regeneration of the inner ear. Semin. Cell Dev. Biol. 24: 507–513.
Schlosser, G. 2005. Evolutionary origins of vertebrate placodes: Insights from developmental studies and from comparisons with other deuterostomes. J. Exp. Zool. 304B: 347–399.
Schlosser, G. 2010. Making senses: Development of vertebrate cranial placodes. Int. Rev. Cell Molec. Biol. 283: 129–234.
Schlosser, G. 2014. Early embryonic specification of vertebrate cranial placodes. Wiley Interdiscip. Rev. Dev. Biol. 3: 349–363.
Schlosser, G. 2017. From so simple a beginning – what amphioxus can teach us about placode evolution. Int. J. Dev. Biol. 61: 633–648.
Schlosser, G. and K. Ahrens. 2004. Molecular anatomy of placode development in Xenopus laevis. Dev. Biol. 271: 439–466.
Schwarz, Q., J. M. Vieira, B. Howard, B. J. Eickholt and C. Ruhrberg. 2008. Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development 135: 1605–1630.
Sennett, R. and M. Rendl. 2012. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23: 917–927.
Singh, S. and A. K. Groves. 2016. The molecular basis of craniofacial placode development. Wiley Interdiscip. Rev. Dev. Biol. 5: 363–376.
Snippert, H. J. and 12 others. 2010. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327: 1385–1389.
Spemann, H. 1901.Entwicklungsphysiologische Studien am Tritonei. Wilhelm Roux’ Arch. Entwicklungsmech. Org. 12: 224–264.
Sternlicht, M. D., H. Kouros-Meir, P. Liu and Z. Werb. 2006. Hormonal and local control of mammary branching morphogenesis. Differentiation 74: 365–381.
Steventon, B., R. Mayor and A. Streit. 2014. Neural crest and placode interaction during the development of the cranial sensory system. Dev. Biol. 389: 28–38.
Stigloher, C., J. Ninkovic, M. Laplante, A. Geling, B. Tannhäuser, S. Topp, H. Kikuta, T. S. Becker, C. Houart and L. Bally-Cuif. 2006. Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3. Development 133: 2925–2935.
St. Johnston, D. and B. Sanson. 2011. Epithelial polarity and morphogenesis. Curr. Opin. Cell Biol. 23: 540–546.
Stöhr, P. 1903. Anat. Hefte 23: 1–66; quoted in A. Christiano 2004. Epithelial stem cells: Stepping out of their niche. Cell 118: 530–532.
Streit, A. 2002. Extensive cell movements accompany formation of the otic placode. Dev. Biol. 249: 237–254.
Streit, A. 2004. Early development of the cranial sensory nervous system: From a common field to individual placodes. Dev. Biol. 276: 1–15.
Streit, A. 2007. The preplacodal region: An ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia. Int. J. Dev. Biol. 51: 447–461.
Streit, A. 2008. The cranial sensory nervous system: Specification of sensory progenitors and placodes. StemBook.
Streit, A. 2018. Specification of sensory placode progenitors: Signals and transcription factor networks. Int. J. Dev. Biol. 62: 195–205.
Taylor, G., M. S. Lehrer, P. J. Jensen, T. T. Sun and R. M. Lavker. 2000. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102: 451–461.
Tétreault, N., M. P. Champagne and G. Bernier. 2009. The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation. Dev. Biol. 327: 541–550.
Thesleff, I. and M. Tummers. 2009. Tooth organogenesis and regeneration. StemBook.
Trumpp, A., M. J. Depew, J. L. Rubenstein, J. M. Bishop and G. R. Martin. 1999. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 13: 3136–3148.
Truong, A. B. and P. A. Khavari. 2007. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle 6: 295–299.
Tsai, R. J., L. M. Li and J. K. Chen. 2000. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. New Engl. J. Med. 343: 86–93.
Turner, D. L and C. L. Cepko. 1987. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328: 131-136.
Vaahtokari, A., T. Aberg, J. Jernvall, S. Keränen and I. Thesleff. 1996. The enamel knot as a signaling center in the developing mouse tooth. Mech. Dev. 54: 39–43.
Vainio, S., I. Karavanova, A. Jowett and I. Thesleff. 1993. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75: 45–58.
Van Genderen, R.M., R. M. Okamura, I. Fariñas, R. G. Quo, T. G. Parslow, L. Bruhn and R. Grosschedl.1994. Development of several organs that require inductive epithelial–mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8: 2691–2703.
Veltmaat, J. M. and 10 others. 2006. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133: 2325–2335.
Visvader, J. E. and J. Stingl. 2014. Mammary stem cells and the differentiation hierarchy: Current status and perspectives. Genes Dev. 28: 1143–1158.
von Woellwarth, C. 1961. Die Rolle des Neuralleistenmaterials und der Temperatur bei der Determination der Augenlinse. Embryologia (Nagoya) 6: 219–242.
Wang, D., C. Cai, X. Dong, Q. C. Yu, X. O. Zhang, L. Yang and Y. A. Zeng. 2015. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517: 81–84.
Wang, L., J. A. Siegenthaler, R. D. Dowell and R. Yi. 2016. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science 351: 613–617.
Wang, T., Y. Zhang, H. D. Wang, Y. Shen, N. Liu, J. Cao, X. J. Yu, C. S. Dong and X. Y. He. 2015. Alpaca fiber growth is mediated by microRNA let-7b via down-regulation of target gene FgfF5. Genet. Mol. Res. 14: 13754–13763.
Weston, J. and S. L. Butler. 1966. Temporal factors affecting localization of neural crest cells in the chicken embryo. Dev. Biol. 14: 246–266.
Williams, S. E., S. Beronja, H. A. Pasolli and E. Fuchs E. 2011. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470: 353–358.
Wu, P. and 10 others. 2013. Specialized stem cell niche enables repetitive renewal of alligator teeth. Proc. Natl. Acad. Sci. USA 110: E2009–2018.
Xu, H., C. M. Dude and C. V. Baker. 2008. Fine-grained fate maps for the ophthalmic and maxillomandibular trigeminal placodes in the chick embryo. Dev. Biol. 317: 174–186.
Yamamoto, Y., D. W. Stock and W. R. Jeffery. 2004. Hedgehog signaling controls eye degeneration in blind cavefish. Nature 431: 844–847.
Yamamoto, Y., M. S. Byerly, W. R. Jackman and W. R. Jeffery. 2009. Pleiotropic functions of embryonic Sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev. Biol. 330: 200–211.
Yang, J., M. V. Plikus and N. L. Komarova. 2015. The role of symmetric stem cell divisions in tissue homeostasis. PLOS Comput. Biol. 11: e1004629.
Yang, X.-J. 2004. Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin. Cell Dev. Biol. 15: 91–103.
Zhang, Y. and 12 others. 2008. Activation of b-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135: 2161–2172.
Zhengwen, A., M. Sabalic, R. F. Bloomquist, T. E. Fowler, T. Streelman and P. T. Sharpe. 2018. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun. 9: 378.
Zuber, M. E. 2010. Mechanisms regulating eye field specification and early eye formation. Curr. Topics Dev. Biol. 93: 48–53.
Zuber, M. E., G. Gestri, A. S. Viczian, G. Barsacchi and W. A. Harris. 2003. Specification of the vertebrate eye by a network of eye field transcription factors. Development 130: 5155–5167.