Agassiz, A. and C. O. Whitman. 1884. On the development of some pelagic fish eggs—Preliminary notice. Proc. Am. Acad. Arts Sci. 20: 23–75.
Agathon, A., C. Thisse and B. Thisse. 2003. The molecular nature of the zebrafish tail organizer. Nature 424: 448–452.
Agius, E., M. Oelgeschläger, O. Wessely, C. Kemp and E. M. De Robertis. 2000. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127: 1173–1183.
Akkers, R. C., S. J. van Heeringen, U. G. Jacobi, E. M. Janssen-Megens, K. J. Francoijs, H. G. Stunnenberg and G. J. Veenstra. 2009. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev. Cell 17: 425–434.
Ancel, P. and P. Vintenberger. 1948. Recherches sur le determinisme de la symmetrie bilatérale dans l’oeuf des amphibiens. Bull. Biol. Fr. Belg. 31: 1–182.
Appel, T. A. 1987. The Cuvier-Geoffroy Debate: French Biology in the Decades before Darwin. Oxford University Press, New York.
Armon, R. 2012. Between biochemists and embryologists: The biochemical study of embryonic induction in the 1930s. J. Hist. Biol. 45: 65–108.
Bae, S, C. D. Reid and D. S. Kessler. 2011. Siamois and Twin are redundant and essential in formation of the Spemann organizer. Dev. Biol. 352: 367–381.
Beams, H. W. and R. G. Kessel. 1976. Cytokinesis: A comparative study of cytoplasmic division in animal cells. Am. Sci. 64: 279–290.
Beetschen, J. C. 2001. Amphibian gastrulation: History and evolution of a 125-year-old concept. Int. J. Dev. Biol. 45: 771–795.
Behrndt, M., G. Salbreux, P. Campinho, R. Hauschild, F. Oswald, J. Roensch, S. W. Grill and C. P. Heisenberg. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science 338: 257–260.
Beloussov, L. V., N. N. Luchinskaya, A. S. Ermakov and N. S. Glagoleva. 2006. Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events. Int. J. Dev. Biol. 50: 113–122.
Bier, E. and E. M. De Robertis. 2015. BMP gradients: A paradigm for morphogen-mediated developmental patterning. Science 348: 5838.
Bïjtel, J. H. 1931. Über die Entwicklung des Schwanzes bei Amphibien. Wilhelm Roux Arch. Entwicklungsmech. Org. 125: 448–486.
Birsoy, B., M. Kofron, K. Schaible, C. Wylie and J. Heasman. 2006. Vg 1 is an essential signaling molecule in Xenopus development. Development 133: 15–20.
Blader, P. and U. Strähle 1998. Ethanol impairs migration of the prechordal plate in the zebrafish embryo. Dev. Biol. 201: 185–201.
Blitz, I. L. and K. W. Y. Cho. 1995. Anterior neurectoderm is progressively induced during gastrulation: The role of the Xenopushomeobox geneorthodenticle. Development 121: 993–1004.
Blum, M., T. Beyer, T. Weber, P. Vick, P. Andre, E. Bitzer and A. Schweickert. 2009. Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev. Dyn. 238: 1215–1225.
Blum, M., A. Schweickert, P. Vick, C. V. Wright and M. V. Danilchik. 2014. Symmetry breakage in the vertebrate embryo: When does it happen and how does it work? Dev. Biol. 393: 109–123.
Blythe, S. A., S. W. Cha, E. Tadjuidje, J. Heasman and P. S. Klein. 2010. Beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev. Cell 19: 220–231.
Boucaut, J.-C., T. D’Arribère, T. J. Poole, H. Aoyama, K. M. Yamada and J.-P. Thiery. 1984. Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibition of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J. Cell Biol. 99: 1822–1830.
Bouwmeester, T., S.-H. Kim, Y. Sasai, B. Lu and E. M. De Robertis. 1996. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601.
Bradbury, J. 2004. Small fish, big science. PLOS Biology 2: e148.
Brannon, M. and D. Kimelman. 1996. Activation of siamois by the Wnt pathway. Dev. Biol. 180: 344–347.
Braukmann, S. and S. F. Gilbert. 2005. Sucking in the gut: A history of early gastrulation research. In C. D. Stern (ed.), Gastrulation: From Cells to Embryo. Cold Spring Harbor Press, Cold Spring Harbor, NY, 1–20.
Bruce, A. E. E. 2016. Zebrafish epiboly: Spreading thin over the yolk. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 245: 244–258.
Brunet, T. and 16 others. 2013. Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat. Commun. 4: 2821.
Caneparo, L., P. Pantazis , W. Dempsey, S. E. Fraser. 2011. Intercellular bridges in vertebrate gastrulation. PLOS ONE 6: e20230.
Capuron, A. 1968. Marquage autoradiographique et conditions de l’organogenèse générale d’embryons induits par de la greffe de la lèvre dorsale du blastopore chez l’amphibien urodèle Pleurodeles waltii Michah. Ann. Embryol. Morphol. 1: 271–293.
Carmany-Rampey, A. and A. F. Schier. 2001. Single-cell internalization during zebrafish gastrulation. Curr. Biol. 11: 1261–1265.
Carnac, G., L. Kodjabachian, J. B. Gurdon and P. Lemaire. 1996. The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 122: 3055–3065.
Carron, C. and D. L. Shi. 2016. Specification of anterioposterior axis by combinatorial signaling during Xenopus development. Wiley Interdiscip. Rev. Dev. Biol. 5: 150–168.
Carvalho, L. and C. P. Heisenberg. 2010. The yolk syncytial layer in early zebrafish development. Trends Cell Biol. 20: 586–592.
Cha, B. J. and D. L. Gard. 1999. XMAP230 is required for the organization of cortical microtubules and patterning of the dorsoventral axis in fertilized Xenopus eggs. Dev. Biol. 205: 275–286.
Chakravarti, D., V. J. LaMorte, M. C. Nelson, T. Nakajima, I. G. Schulman, H. Juguilon, M. Montminy and R. M. Evans.1996. Role of CBP/P300 in nuclear receptor signalling. Nature 383: 99–103.
Chang, J. B. and J. E. Ferrell, Jr. 2013. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature 500: 603–607.
Chea, H. K., C. V. Wright and B. J. Swalla. 2005. Nodal signaling and the evolution of deuterostome gastrulation. Dev. Dyn. 234: 269–278.
Chen, Y. P., L. Huang and M. Solursh. 1994. A concentration gradient of retinoids in the early Xenopus laevis embryo. Dev. Biol. 161: 70–76.
Chien, Y. H., S. Srinivasan, R. Keller and C. Kintner. 2018. Mechanical strain determines cilia length, motility, and planar position in the left-right organizer. Dev. Cell 45: 316–330.e4.
Cho, K. W. Y. 2012. Enhancers. Wiley Interdiscip. Rev. Dev. Biol. 1: 469–478.
Cho, K. W. and E. M. De Robertis. 1990. Differential activation of Xenopus homeobox genes by mesoderm-inducing growth factors and retinoic acid. Genes Dev. 4: 1910–1916.
Chu, L. T., S. H. Fong, I. Kondrychyn, S. L. Loh, Z. Ye, and V. Korzh. 2012. Yolk syncytial layer formation is a failure of cytokinesis mediated by Rock1 function in the early zebrafish embryo. Biol Open 1: 747–753.
Cooper, M. S. and L. A. D’Amico. 1996. A cluster of noninvoluting endocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev. Biol. 180: 184–198.
Cuykendall, T. N. and D. W. Houston. 2009. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development 136: 3057–3065.
Dale, L. and J. M. W. Slack. 1987. Regional specificity within the mesoderm of early embryos of Xenopus laevis. Development 100: 279–295.
Dal-Pra, S., M. Fürthauer, J. Van-Celst, B. Thisse and C. Thisse. 2006. Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev. Biol. 298: 514–526.
Darken, R. S., A. M. Scola, A. S. Rakeman, G. Das, M. Mlodzik and P. A. Wilson. 2002. The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J. 21: 976–85.
Davidson, L. A., B. D. Dzamba, R. Keller and D. W. DeSimone. 2008. Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev. Dyn. 237: 2684–2692.
De Robertis, E. M. and J Aréchaga (eds.). 2001. The Spemann-Mangold organizer: 75 years on. Int. J. Dev. Biol. 45 1–373.
De Robertis, E. M. and Y. Moriyama. 2016. The chordin morphogenetic pathway. Curr. Top. Dev. Biol. 116: 231–246.
De Robertis, E. M., J. Larraín, M. Oelgeschläger and O. Wessley. 2000. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1: 171–181.
Dobbs-McAuliffe, B., Q. Zhao and E. Linney. 2004. Feedback mechanisms regulate retinoic acid production and degradation in the zebrafish embryo. Mech. Dev. 121: 339–350.
Domingos, P. M., N. Itasaki, C. M. Jones, S. Mercurio, M. G. Sargent, J. C. Smith and R. Krumlauf. 2001. The Wnt/b-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev. Biol. 239: 148–160.
Dosch, R., V. Gawantka, H. Delius, C. Blumenstock and C. Niehrs. 1997. BMP-4 acts as a morphogen in dorsolateral mesoderm patterning in Xenopus. Development 124: 2325–2334.
Dosch, R., D. S. Wagner, K. A. Mintzer, G. Runke, A. P. Wiemelt and M. C. Mullins. 2004. Maternal control of vertebrate development before the midblastula transition: Mutants from the zebrafish I. Dev. Cell 6: 771–780.
Driever, W. 1995. Axis formation in zebrafish. Curr. Opin. Genet. Dev. 5: 610–618.
Driever, W. and 11 others. 1996. A genetic screen for mutations affecting development in zebrafish. Development 123: 37–46.
Du, S., B. W. Draper, M. Mione, C. B. Moens and A. Bruce. 2012. Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Dev. Biol. 362: 11–23.
Dumortier, J. G., S. Martin, D. Meyer, F. M. Rosa and N. B. David. 2012. Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc. Natl. Acad. Sci. USA 109: 16945–16950.
Dupé, V. and A. Lumsden. 2001. Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128: 2199–2208.
Durston, A. J., H. J. Jansen and S. A. Wacker. 2010a. Time-space translation: A developmental principle. ScientificWorld 10: 2207–2214.
Durston, A. J., H. J. Jansen and S. A. Wacker. 2010b. Time-space translation regulates trunk axial patterning in the early vertebrate embryo. Genomics 95: 250–255.
Eivers, E., K. McCarthy, C. Glynn, C. M. Nolan and L. Byrnes. 2004. Insulin-like growth factor (IGF) signaling is required for early dorso-anterior development of the zebrafish embryo. Int. J. Dev. Biol. 48: 1131–1140.
Elinson, R. P. and B. Rowning. 1988. A transient array of parallel microtubules in frog eggs: Potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128: 185–197.
Elinson, R. P. and E. M. del Pino. 2012. Developmental diversity of amphibians. Wiley Interdiscip. Rev. Dev. Biol. 1: 345–369.
Engleka, M. J. and D. S. Kessler. 2001. Siamois cooperates with TGFb signals to induce the complete function of the Spemann-Mangold organizer. Int. J. Dev. Biol. 45: 241–250.
Essner, J. J., K. J. Vogan, M. K. Wagner, C. J. Tabin, H. J. Yost and M. Brueckner. 2002. Conserved function for embryonic nodal cilia. Nature 418: 37–38.
Essner, J. J., J. D. Amack, M. K. Nyholm, E. B. Harris and H. J. Yost. 2005. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132: 1247–1260.
Fan, M. J. and S. Y. Sokol. 1997. A role for Siamois in Spemann organizer formation. Development 124: 2581–2589.
Fässler, P. E. and K. Sander. 1996. Hilde Mangold (1898–1924) and Spemann’s organizer: Achievement and tragedy. Wilhelm Roux Arch. Dev. Biol. 205: 323–332.
Fauny, J. D., B. Thisse and C. Thisse. 2009. The entire zebrafish blastula-gastrula margin acts as an organizer dependent on the ratio of Nodal to BMP activity. Development 136: 3811–3819.
Fluck, R. A., K. L. Krok, B. A. Bast, S. E. Michaud and C. E. Kim. 1998. Gravity influences the position of the dorsoventral axis in medaka fish embryos (Oryzias latipes). Dev. Growth Diff. 40: 509–518.
Fukazawa, C., C. Santiago, K. M. Park, W. J. Deery, S. Gomez de la Torre Canny, C. K. Holterhoff and D. S. Wagner. 2010. poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis. Dev. Biol. 346: 272–283.
Fukuda, M., S. Takahashi, Y. Haramoto, Y. Onuma, Y. J. Kim, C. Y. Yeo, S. Ishiura and M. Asashima.2010. Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin. Int. J. Dev. Biol. 54: 81–92.
Funayama, N., F. Fagotto, P. McCrea and B. M. Gumbiner. 1995. Embryonic axis induction by the armadillo repeat domain of b-catenin: Evidence for intracellular signalling. J. Cell Biol. 128: 959–968.
Fürthauer, M., J. van Celst, C. Thisse and B. Thisse. 2004. FGF signaling controls the dorsoventral patterning of the zebrafish embryo. Development 131: 2853–2864.
Gawantka, V., H. Delius, K. Hirschfeld, C. Blumenstock and C. Niehrs. 1995. Antagonizing the Spemann organizer: Role of the homeobox gene Xvent-1. EMBO J. 14: 6268–6279.
Genikhovich, G., P. Fried, M. M. Prünster, J. B. Schinko, A. F. Gilles, D. Fredman, K. Meier, D. Iber and U. Technau. 2015. Axis patterning by BMPs: Cnidarian network reveals evolutionary constraints. Cell Rep. 10 :1646–1654.
Gerhart, J. C., M. Danilchik, T. Doniach, S. Roberts, B. Rowning and R. Stewart. 1989. Cortical rotation of the Xenopus egg: Consequences for the anteroposterior pattern of embryonic dorsal development. Development 107: S37–S51.
Germain, S., M. Howell, G. M. Esslemont and C. S. Hill. 2000. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14: 435–451.
Gilbert, S. F. and L. Saxén. 1993. Spemann’s organizer: Models and molecules. Mech. Dev. 41: 73–89.
Gimlich, R. L. 1985. Cytoplasmic localization and chordamesoderm induction in the frog embryo. J. Embryol. Exp. Morphol. 89: 89–111.
Gimlich, R. L. 1986. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo. Dev. Biol. 115: 340–352.
Gimlich, R. L. and J. Cooke. 1983. Cell lineage and the induction of second nervous systems in amphibian development. Nature 306: 471–473.
Gimlich, R. L. and J. C. Gerhart. 1984. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev. Biol. 104: 117–130.
Glinka, A., W. Wu, D. Onichtchouk, C. Blumenstock and C. Niehrs. 1997. Head induction by simultaneous repression of BMP and Wnt signalling in Xenopus. Nature 389: 517–519.
Glinka, A., W. Wu, A. P. Monaghan, C. Blumenstock and C. Niehrs. 1998. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357–362.
Godsave, S. F. and J. M. W. Slack. 1989. Clonal analysis of mesoderm induction in Xenopus laevis. Dev. Biol. 134: 486–490.
Gont, L. K., H. Steinbeisser, B. Blumberg and E. M. De Robertis. 1993. Tail formation as a continuation of gastrulation: The multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119: 991–1004.
Gonzales, A. P. and J. R. Yeh. 2014. Cas9-based genome editing in zebrafish. Methods Enzymol. 546: 377–413.
Gorny, A. K. and H. Steinbeisser. 2012. Brachet’s cleft: A model for the analysis of tissue separation in Xenopus. Wiley Interdiscip. Rev. Dev. Biol. 1: 294–300.
Goto, T., L. Davidson, M. Asashima and R. Keller. 2005. Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr. Biol. 15: 787–793.
Granato, M. and C. Nüsslein-Volhard. 1996. Fishing for genes controlling development. Curr. Opin. Genet. Dev. 6: 461–468.
Gritsman, K., W. S. Talbot and A. F. Schier. 2000. Nodal signaling patterns the organizer. Development 127: 921–932.
Grunz, H. 1997. Neural induction in amphibians. Curr. Topics Dev. Biol. 35: 191–228.
Grunz, H. and L. Tacke. 1989. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducers. Cell Diff. Dev. 28: 211–217.
Guger, K. A. and B. M. Gumbiner. 1995. b-Catenin has wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev. Biol. 172: 115–125.
Haffter, P. and 16 others. 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36.
Hamburger, V. 1984. Hilde Mangold, co-discoverer of the organizer. J. Hist. Biol. 17: 1–11.
Hamburger, V. 1988. The Heritage of Experimental Embryology: Hans Spemann and the organizer. Oxford University Press, Oxford.
Hardin, J. D. and R. Keller. 1988. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103: 211–230.
Hawley, S. H. B., K. Wünnenberg-Stapleton, C. Hashimoto, M. N. Laurent, T. Watabe, B. W. Blumberg and K. W. Y. Cho. 1995. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9: 2923–2935.
He, X., J.-P. Saint-Jeannet, J. R. Woodgett, H. E. Varmus and I. B. Dawid. 1995. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374: 617–622.
Heasman, J., A. Crawford, K. Goldstone, P. Garner-Hamrick, B. Gumbiner, P. McCrea, C. Kinter, C. Y. Noro and C. Wylie. 1994a. Overexpression of cadherins and underexpression of b-catenin inhibit dorsal mesoderm induction in early Xenopusembryos. Cell 79: 791–803.
Heasman, J., D. Ginsberg, K. Goldstone, T. Pratt, C. Yoshidanaro and C. Wylie. 1994b. A functional test for maternally inherited cadherin in Xenopus shows its importance in cell adhesion at the blastula stage. Development 120: 49–57.
Helde, K. A., E. T. Wilson, C. J. Cretekos and D. J. Grunwald. 1994. Contribution of early cells to the fate map of the zebrafish gastrula. Science 265: 517–520.
Hemmati-Brivanlou, A. and D. A. Melton. 1992. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopusembryos. Nature 359: 609–614.
Hemmati-Brivanlou, A. and D. A. Melton. 1994. Inhibition of activin signaling promotes neuralization in Xenopus. Cell 77: 273–281.
Hemmati-Brivanlou, A. and G. H. Thomsen. 1995. Ventral mesodermal patterning in Xenopus embryos: Expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17: 78–89.
Hemmati-Brivanlou A. and D. A. Melton. 1997. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88: 13–17.
Ho, R. K. 1992. Axis formation in the embryo of the zebrafish, Brachydanio rerio. Sem. Dev. Biol. 3: 53–64.
Holley, S. A., P. D. Jackson, Y. Sasai, B. Lu, E. M. De Robertis, F. M. Hoffmann and E. L. Ferguson. 1995. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376: 249–253.
Holowacz, T. and R. P. Elinson. 1993. Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte. Development 119: 277–285.
Holowacz, T. and S. Sokol. 1999. FGF is required for posterior patterning but not for neural induction. Dev. Biol. 205: 296–308.
Holtfreter, H. 1933. Die totale Exogastrulation, eine Selbststablösung des Ektoderms von Entomesoderm. Entwicklung und funktionelles Verhalten nervenloser Organe. Arch. Entwick. Mech. Org. 129: 669–793.
Hontelez, S., I. van Kruijsbergen, G. Georgiou, S. J. van Heeringen, O. Bogdanovic, R. Lister and G. J. Veenstra. 2015. Embryonic transcription is controlled by maternally defined chromatin state. Nat. Commun. 6: 10148.
Houliston, E. and R. P. Elinson. 1991. Evidence for the involvement of microtubules, endoplasmic reticulum, and kinesin in cortical rotation of fertilized frog eggs. J. Cell Biol. 114: 1017–1028.
Hurtado, C. and E. M. De Robertis. 2007. Neural induction in the absence of organizer in salamanders is mediated by MAPK. Dev. Biol. 307: 282–289.
Ibrahim, H. and R. Winklbauer. 2001. Mechanisms of mesendoderm internalization in Xenopus gastrula: Lessons from the ventral side. Dev. Biol. 240: 108–122.
Iemura, S.-I., T. S. Yamamoto, C. Takagi, H. Uchiyama, T. Natsume, S. Shimasaki, H. Sugino and N. Ueno. 1998. Direct binding of follistatin to a complex of bone morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc. Natl. Acad. Sci. USA 95: 9337–9342.
Janesick, A., T. T. Nguyen, K. Aisaki, K. Igarashi, S. Kitajima, R. A. Chandraratna, J. Kanno and B. Blumberg. 2014. Active repression by RARg signaling is required for vertebrate axial elongation. Development 141: 2260–2270.
Jessen, J. R., J. Topczewski, S. Bingham, D. S. Sepich, F. Marlow, A. Chandrasekhar and L. Solnica-Krezel. 2002. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat. Cell Biol. 4: 610–615.
Kane, D. A. and C. B. Kimmel. 1993. The zebrafish midblastula transition. Development 119: 447–456.
Kane, D. A., K. N. McFarland and R. M. Warga. 2005. Mutations in half baked/E-cadherin block cell behaviors that are necessary for teleost epiboly. Development 132: 1105–1116.
Keller, P. J., A. D. Schmidt, J. Wittbrodt and E. H. K. Stelzer. 2008. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322: 1065–1069.
Keller, R. E. 1975. Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42: 222–241.
Keller, R. E. 1976. Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Dev. Biol. 51: 118–137.
Keller, R. E. 1980. The cellular basis of epiboly: An SEM study of deep-cell rearrangement during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 60: 201–234.
Keller, R. E. 1981. An experimental analysis of the role of bottle cells and the deep marginal zone in the gastrulation of Xenopus laevis. J. Exp. Zool. 216: 81–101.
Keller, R. E. 1986. The cellular basis of amphibian gastrulation. In L. Browder (ed.), Developmental Biology: A Comprehensive Synthesis, Vol. 2. Plenum, New York, 241–327.
Keller, R. E. and G. C. Schoenwolf. 1977. An SEM study of cellular morphology, contact, and arrangement as related to gastrulation in Xenopus laevis. Wilhelm Roux Arch. Dev. Biol. 182: 165–186.
Keller, R. E. and M. Danilchik. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103: 193–209.
Kelly, G. M., D. F. Erezyilmaz and R. T. Moon. 1995. Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of b-catenin. Mech. Dev. 53: 261–273.
Kessler, D. S. 1997. Siamois is required for formation of Spemann’s organizer. Proc. Natl. Acad. Sci. USA 94: 13017–13022.
Khokha, M. K., J. Yeh, T. C. Grammer and R. M. Harland. 2005. Depletion of three BMP antagonists from Spemann’s organizer leads to catastrophic loss of dorsal structures. Dev. Cell 8: 401–411.
Kiecker, C. and C. Niehrs. 2001. A morphogen gradient of Wnt/b-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128: 4189–4201.
Kim, S.-H., A. Yamamoto, T. Bouwmeester, E. Agius and E. M. De Robertis. 1998. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125: 4681–4691.
Kimmel, C. B. and R. D. Law. 1985. Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer. Dev. Biol. 108: 86–93.
Kimmel, C. B. and R. M. Warga. 1987. Indeterminate cell lineage of the zebrafish embryo. Dev. Biol. 124: 269–280.
Kishimoto, Y., S. Koshita, M. Furutani-Seiki and H. Kondoh. 2004. Zebrafish maternal-effect mutations causing cytokinesis defect without affecting mitosis or equatorial vasa deposition. Mech. Dev. 121: 79–89.
Klein, S. L. and S. A. Moody. 2015. Early neural ectodermal genes are activated by Siamois and Twin during blastula stages. Genesis 53: 308–320.
Kofron, M., T. Demel, J. Xanthos, J. Lohr, B. Sun, H. Sive, S. Osada, C. Wright, C. Wylie and J. Heasman.1999. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFb growth factors. Development 126: 5759 –5770.
Kolm, P. J., V. Apekin and H. Sive. 1997. Xenopus hindbrain patterning requires retinoic signaling. Dev. Biol. 192: 1–16.
Kornikova, E. S, E. G. Korvin-Pavlovskaya and L. V. Beloussov. 2009. Relocations of cell convergence sites and formation of pharyngula-like shapes in mechanically relaxed Xenopus embryos. Dev. Genes Evol. 219: 1–10.
Koshida, S., M. Shinya, T. Mizuno, A. Kuroiwa and H. Takeda. 1998. Initial anteroposterior pattern of zebrafish central nervous system is determined by differential competence of the epiblast. Development 125: 1957–1966.
Ku, M. and D. A. Melton. 1993. Xwnt-11: A maternally expressed Xenopus wntgene. Development 119: 1161–1173.
Kubo, H., K. Shiga, Y. Harada and Y. Iwao. 2010. Analysis of a sperm surface molecule that binds to a vitelline envelope component of Xenopus laevis eggs. Mol. Reprod. Dev. 77: 728–735.
Kudoh, T., S. W. Wilson and I. B. Dawid. 2002. Distinct roles for FGF, Wnt, and retinoic acid in posteriorizing the neural ectoderm. Development 129: 4335–4346.
Kudoh, T., M. L. Concha, C. Houart, I. B. Dawid and S. W. Wilson. 2004. Combinatorial FGF and BMP signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development 131: 3581–3592.
Kuroda, H., M. Inui, K. Sugimoto, T. Hayata and M. Asashima. 2002. Axial protocadherin is a mediator of prenotochord cell sorting in Xenopus. Dev. Biol. 244: 267–277.
Lamb, T. M., A. K. Knecht, W. C. Smith, S. E. Stachel, A. N. Economides, N. Stahl, G. D. Yancopolous and R. M. Harland. 1993. Neural induction by the secreted polypeptide noggin. Science 262: 713–718.
Landström, U. and S. Løvtrup. 1979. Fate maps and cell differentiation in the amphibian embryo: An experimental study. J. Embryol. Exp. Morphol. 54: 113–130.
Lane, M. C. and W. C. Smith. 1999. The origins of primitive blood in Xenopus: Implications for axial patterning. Development 126: 423–434.
Langdon, Y. G. and M. C. Mullins. 2011. Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu. Rev. Genet. 45: 357–377.
Langeland, J. and C. B. Kimmel. 1997. The embryology of fish. In S. F. Gilbert and A. M. Raunio (eds.), Embryology: Constructing the Organism. Sinauer Associates, Sunderland, MA, 383–407.
Larabell, C. A., M. Torres, B. A. Rowning, C. Yost, J. R. Miller, M. Wu, D. Kimelman and R. T. Moon. 1997. Establishment of the dorsal-ventral axis in Xenopus embryos is presaged by early asymmetries in b-catenin which are modulated by the Wnt signaling pathway. J. Cell Biol. 136: 1123–1136.
Laurent, M. N., I. L. Blitz, C. Hashimoto, U. Rothbächer and K. W.-Y. Cho. 1997. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 124: 4905–4916.
Lee, K. W., S. E. Webb and A. L. Miller. 2003. Ca2+ released via IP3 receptors is required for furrow deepening during cytokinesis in zebrafish embryos. Int. J. Dev. Biol. 47: 411–421.
Lemaire, P., N. Garrett and J. B. Gurdon. 1995. Expression cloning of Siamois, aXenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81: 85–94.
Lepage, S. E. and A. E. Bruce. 2010. Zebrafish epiboly: Mechanics and mechanisms. Int. J. Dev. Biol. 54: 1213–1228.
Leslie, J. D. and R. Mayor. 2013. Complement in animal development: Unexpected roles of a highly conserved pathway. Semin. Immunol. 25: 39–46.
Leung, C., S. E. Webb and A. L. Miller. 1998. Calcium transients accompany ooplasmic segregation in zebrafish embryos. Dev. Growth Diff. 40: 313–326.
Leung, C., S. E. Webb and A. L. Miller. 2000. On the mechanism of ooplasmic segregation in single-cell zebrafish embryos. Dev. Growth Diff. 42: 29–40.
Leyns, L., T. Bouwmeester, S.-H. Kim, S. Piccolo and E. M. De Robertis. 1997. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88: 747–756.
Little, S. C. and M. C. Mullins. 2006. Extracellular modulation of BMP activity in patterning the dorsoventral axis. Birth Defects Res. C Embryo Today 78: 224–242.
Lobikin, M. G. Wang, J. Xu, Y. W. Hsieh, C. F. Chuang, J. M. Lemire and M. Levin. 2012. Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc. Natl. Acad. Sci. USA 109: 12586–12591.
Long, S., N. Ahmad and M. Rebagliati. 2003. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130: 2303–2316.
Lu, F. I., C. Thisse and B. Thisse. 2011. Identification and mechanism of regulation of the zebrafish dorsal determinant. Proc. Natl. Acad. Sci. USA 108: 15876–15880.
Manes, M. E. and R. P. Elinson. 1980. Ultraviolet light inhibits gray crescent formation in the frog egg. Wilhelm Roux Arch. Dev. Biol. 189: 73–77.
Mangold, O. 1933. Über die Induktionsfahigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21: 761–766.
Mao, B., W. Wu, D. Hoppe, P. Stannek, A. Glinka and C. Niehrs. 2001. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411: 321–325.
Mao, B. and 11 others. 2002. Kremen proteins are Dickkopf receptors that regulate Wnt/b-catenin signalling. Nature 417: 664–667.
Marsden, M. and D. W. DeSimone. 2001. Regulation of cell polarity, radial intercalation, and epiboly in Xenopus: Novel roles for integrin and fibronectin. Development 128: 3635–3647.
McFarland, K. N., R. M. Warga and D. A. Kane. 2005. Genetic locus half baked is necessary for morphogenesis of the ectoderm. Dev. Dyn. 233: 390–406.
McMahon, A. P. and R. T. Moon. 1989. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58: 1075–1084.
Miller, J. R., B. A. Rowning, C. A. Larabell, J. A. Yang-Snyder, R. L. Bates and R. T. Moon. 1999. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of Disheveled that is dependent on cortical rotation. J. Cell Biol. 146: 427–437.
Molenaar, M., M. van de Wetering, M. Oosterwegel, J. Peterson-Maduro, S. Godsave, V. Korinek, J. Roose, O. Destrée and H. Clevers. 1996. XTcf-3 transcription factor mediates b-catenin-induced axis formation in Xenopus embryos. Cell 86: 391–399.
Moody, S. A., S. L. Klein, B. A. Karpinski, T. M. Maynard, and A. S. Lamantia. 2013. On becoming neural: What the embryo can tell us about differentiating neural stem cells. Am. J. Stem Cells 2: 74–94.
Moon, R. T. and D. Kimelman. 1998. From cortical rotation to organizer gene expression: Toward a molecular explanation of axis specification in Xenopus. BioEssays 20: 536–545.
Moosmann, J., A. Ershov, V. Altapova, T. Baumbach, M. S. Prasad, C. LaBonne, X. Xiao, J. Kashef and R. Hofmann. 2013. X-ray phase-contrast in vivo microtomography probes new aspects of Xenopus gastrulation. Nature 497: 574–377.
Mudbhary, R. and K. C. Sadler. 2011. Epigenetics, development, and cancer: Zebrafish make their mark. Birth Defects Res. C: Embryol. Today 93: 194–203.
Nagai, K., T. Ishida, T. Hashimoto, Y. Harada, S. Ueno, Y. Ueda, H. Kubo and Y. Iwao. 2009. The Sperm-surface glycoprotein, SGP, is necessary for fertilization in the frog, Xenopus laevis. Dev. Growth Differ. 51: 499–510.
Nakamura, O. and H. Takasaki. 1970. Further studies on the differentiation capacity of the dorsal marginal zone in the morula of Triturus pyrrhogaster. Proc. Jpn. Acad. 46: 700–705.
Newman, C. S. and P. A. Krieg. 1999. Specification and differentiation of the heart in amphibia. In S. A. Moody (ed.), Cell Lineage and Fate Determination. Academic Press, New York, 341–351.
Newport, J. W. and M. W. Kirschner. 1982a. A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at midblastula stage. Cell 30: 675–686.
Newport, J. W. and M. W. Kirschner. 1982b. A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 30: 687–696.
Niehrs, C. 2004. Regionally specific induction by the Spemann-Mangold organizer. Nat. Rev. Genet. 5: 425–434.
Nieuwkoop, P. D. 1969. The formation of the mesoderm in urodele amphibians. I. Induction by the endoderm. Wilhelm Roux Arch. Entwicklungsmech. Org. 162: 341–373.
Nieuwkoop, P. D. 1973. The “organisation center” of the amphibian embryo: Its origin, spatial organisation and morphogenetic action. Adv. Morphogenet. 10: 1–39.
Nieuwkoop, P. D. 1977. Origin and establishment of embryonic polar axes in amphibian development. Curr. Top. Dev. Biol. 11: 115–132.
Nieuwkoop, P. D. and P. A. Florschütz. 1950. Quelques caractèrer spéciaux de le gastrulation et de la neurulation de l’oeuf de Xenopus laevis, Daud. et de quelques autres anoures. Arch. Biol. 61: 113–150.
Northrop, J., A. Woods, R. Seger, A. Suzuki, N. Ueno, E. Krebs and D. Kimelman. 1995. BMP-4 regulates the dorsal-ventral differences in FGF/MAPK-mediated mesoderm induction in Xenopus. Dev Biol. 172: 242–252.
Oelgeschläger, M., H. Kuroda, B. Reversade and E. M. De Robertis. 2003. Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev. Cell 4: 219–230.
Okada, Y., S. Tanaka, Y. Tanaka, J.-C. Belmonte and N. Hirokawa. 2005. Mechanism of nodal flow: A conserved breaking event in left-right axis determination. Cell 121: 633–644.
Onuma, Y., S. Takahashi, C. Yokota and M. Asashima. 2002. Multiple nodal-related genes act coordinately in Xenopus embryogenesis. Dev. Biol. 241: 94–105.
Oppenheimer, J. M. 1936. Transplantation experiments on developing teleosts (Fundulus and Perca). J. Exp. Zool. 72: 409–437.
Ossipova, O., C. W. Chu, J. Fillatre, B. K. Brott, K. Itoh, and S. Y. Sokol. 2015. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev. Biol. 408: 316–327.
Papan, C., B. Boulat, S. S. Velan, S. E. Fraser and R. E. Jacobs. 2007a. Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging. Dev. Biol. 305: 161–171.
Papan, C., B. Boulat. S. Velan, S. E. Fraser, and R. E. Jacobs. 2007b. Two-dimensional and three-dimensional time-lapse microscopic magnetic resonance imaging of Xenopus gastrulation movements using intrinsic tissue-specific contrast. Dev. Dyn. 236: 494–501.
Pera, E. M., O. Wessely, S.-S. Li and E. M. De Robertis. 2001. Neural and head induction by insulin-like growth factor signals. Dev. Cell 1: 655–665.
Pera, E. M., H. Acosta, N. Gouignard, M. Climent and I. Arregi. 2014. Active signals, gradient formation, and regional specificity in neural induction. Exp. Cell Res. 321: 25–31.
Petersen, C. P. and P. W. Reddien. 2009. Wnt signaling and the polarity of the primary body axis. Cell 139: 1056–1068.
Pézeron, G., P. Mourrain, S. Courty, J. Ghislain, T. S. Becker, F. M. Rosa and N. B. David. 2008. Live analysis of endodermal layer formation identifies random walk as a novel gastrulation movement. Curr. Biol. 18: 276–281.
Piccolo, S. 2013. Mechanics in the embryo. Nature 504: 223–225.
Piccolo, S., Y. Sasai, B. Lu and E. M. De Robertis. 1996. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598.
Piccolo, S., E. Agius, L. Leyns, S. Bhattacharyya, H. Grunz, T. Bouwmeester and E. M. DeRobertis. 1999. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP, and Wnt signals. Nature 397: 707–710.
Pierce, S. B. and D. Kimelman. 1995. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121: 755–765.
Rankin, S. A., J. Kormish, M. Kofron, A. Jegga and A. M. Zorn. 2011. A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. Dev. Biol. 351: 297–310.
Rebagliati, M. R., R. Toyama, C. Fricke, P. Haffter and I. B. Dawid. 1998. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev. Biol. 199: 261–272.
Recanzone, G. and W. A. Harris. 1985. Demonstration of neural induction using nuclear markers in Xenopus. Wilhelm Roux Arch. Dev. Biol. 194: 344–354.
Reversade, B. and E. M. De Robertis. 2005. Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123: 1147–1160.
Reversade, B., H. Kuroda, H. Lee, A. Mays, and E. M. De Robertis. 2005. Depletion of BMP2, BMP4, and BMP7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development 132: 3381–3392.
Rex, M., E. Hilton and R. Old. 2002. Multiple interactions between maternally-activated signaling pathway control Xenopus nodal-related genes. Int. J. Dev. Biol. 46: 217–226.
Richard-Parpaillon, L., C. Héligon, F. Chesnel, D. Boujard and A. Philpott. 2002. The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev. Biol. 244: 407–417.
Rogers, C. D., T. C. Archer, D. D. Cunningham, T. C. Grammer and E. M. Casey. 2008. Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Dev. Biol. 313: 307–319.
Rogers, C. D., N. Harafuji, T. Archer, D. D. Cunningham and E. S. Casey. 2009a. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Mech. Dev. 126: 42–55.
Rogers, C. D., S. A. Moody and E. S. Casey. 2009b. Neural induction and factors that stabilize a neural fate. Birth Defects Res. C: Embryol. Today 87: 249–262.
Rogers, K. W. and P. Müller. 2018. Nodal and BMP dispersal during early zebrafish development. Dev. Biol. 447: 14–23.
Roux, W. 1887. Beiträge zur Entwicklungsmechanik des Embryo. Arch. Mikrosk. Anat. 29: 157–212.
Rozario, T., B. Dzamba, G. F. Weber, L. A. Davidson and D. W. DeSimone. 2009. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev. Biol. 327: 386–398.
Ryan, A. K. and 14 others. 1998. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394: 545–551.
Saka, Y. and J. C. Smith. 2001. Spatial and temporal patterns of cell division during early Xenopus embryogenesis. Dev. Biol. 229: 307–318.
Sampath, K., A. L. Rubinstein, A. M. Cheng, J. O. Liang, K. Fekany, L. Solnica-Krezel, V. Korzh, M. E. Halpern and C. V. Wright. 1998. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395: 185–189.
Sander, K. and P. E. Faessler. 2001. Introducing the Spemann-Mangold organizer: Experiments and insights that generated a key concept in developmental biology. Int. J. Dev. Biol. 45: 1–11.
Sasai, Y., B. Lu, H. Steinbeisser, D. Geissert, L. K. Gont and E. M. De Robertis. 1994. Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790.
Sato, S. M. and T. D. Sargent. 1989. Development of neural inducing capacity in dissociated Xenopus embryos. Dev. Biol. 134: 263–266.
Saxén, L. 1961. Transfilter neural induction of amphibian ectoderm. Dev. Biol.3: 140–152.
Saxén, L. 2001. Spemann’s heritage in Finnish developmental biology. Int. J. Dev. Biol. 45: 51–55.
Saxén, L. and S. Toivonen. 1962. Embryonic Induction. Prentice-Hall, Englewood Cliffs, NJ.
Schier, A. F. 2001. Axis formation and patterning in zebrafish. Curr. Opin. Genet. Dev. 11: 393–404.
Schier, A. F. and W. S. Talbot. 1998. The zebrafish organizer. Curr. Opin. Genet. Dev. 8: 464–471.
Schier, A. F., S. C. Neuhauss, K. A. Held, W. S. Talbot and W. Driever. 1997 The one eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124: 327–342.
Schmitz, B. and J. A. Campos-Ortega. 1994. Dorso-ventral polarity of the zebrafish embryo is distinguishable prior to the onset of gastrulation. Wilhelm Roux Arch. Dev. Biol. 203: 374–380.
Schneider, S., H. Steinbeisser, R. M. Warga and P. Hausen. 1996. b-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57: 191–198.
Schroeder, K. E., M. L. Condic, L. M. Eisenberg and H. J. Yost. 1999. Spatially regulated translation in embryos: Asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev. Biol. 214: 288–297.
Schweickert, A., T. Weber, T. Beyer, P. Vick, S. Bogusch, K. Feistel and M. Blum. 2007. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17: 60–66.
Shimizu, T., T. Yabe, O. Muraoka, S. Yonemura, S. Aramaki, K. Hatta, Y. K. Bae, H. Nojima and M. Hibi. 2005a. E-cadherin is required for gastrulation cell movements in zebrafish. Mech. Dev. 122: 747–763.
Shimizu, T., Y. K. Bae, O. Muraoka and M. Hibi. 2005b. Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev. Biol. 279: 125–141.
Shindo, A. 2018. Models of convergent extension during morphogenesis. Wiley Interdiscip. Rev. Dev. Biol. 7(1).
Shindo, A. and J. B. Wallingford. 2014. PCP and septins compartmentalize cortical actomyosin to direct collective cell movement. Science 343: 649–652.
Shindo, A., Y. Inoue, M. Kinoshita and J. B. Wallingford. 2019. PCP-dependent transcellular regulation of actomyosin oscillation facilitates convergent extension of vertebrate tissue. Dev. Biol. 446: 159–167.
Shinya, M., M. Furutani-Seiki, A. Kuroiwa and H. Takeda. 1999. Mosaic analysis with oep mutant reveals a repressive interaction between floor-plate and non-floor-plate mutant cells in the zebrafish neural tube. Dev. Growth Diff. 41: 135–142.
Shiotsugu, J., Y. Katsuyama, K. Arima, A. Baxter, T. Koide, J. Song, R. A. Chandraratna and B. Blumberg. 2004. Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 131: 2653–2667.
Siddiqui, M., H. Sheikh, C. Tran, A. E. Bruce. 2010. The tight junction component Claudin E is required for zebrafish epiboly. Dev. Dyn. 239: 715–722.
Silva, A. C., M. Filipe, K.-M. Kuerner, H. Steinbeisser and J. A. Belo. 2003. Endogenous Cerberus activity is required for anterior head specification in Xenopus. Development 130: 4943–4953.
Sive, H. L. and P. F. Cheng. 1991. Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev. 5: 1321–1332.
Skirkanich, J., G. Luxardi, J. Yang, L. Kodjabachian and P. S. Klein. 2011. An essential role for transcription before the MBT in Xenopus laevis. Dev. Biol. 357: 478–491.
Smith, J. C. and J. M. W. Slack. 1983. Dorsalization and neural induction: Properties of the organizer in Xenopus laevis. J. Embryol. Exp. Morphol. 78: 299–317.
Smith, W. C. and R. M. Harland. 1991. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67: 753–765.
Smith, W. C. and R. M. Harland. 1992. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell70: 829–840.
Smith, W. C., A. K. Knecht, M. Wu and R. M. Harland. 1993. Secreted noggin mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361: 547–549.
Smithers, L. E., C. M. Jones. 2002. Xhex-expressing endodermal tissues are essential for anterior patterning in Xenopus. Mech. Dev.119: 191–200.
Sokol, S., J. L. Christian, R. T. Moon and D. A. Melton. 1991. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 67: 741–752.
Solnica-Krezel, L. and W. Driever. 1994. Microtubule arrays of the zebrafish yolk cell: Organization and function during epiboly. Development 120: 2443–2455.
Solnica-Krezel, L. and W. Driever. 2001. The role of the homeodomain protein Bozozok in zebrafish axis formation. Int. J. Dev. Biol. 45: 299–310.
Sonavane, P. R., C. Wang, B. Dzamba, G. F. Weber, A. Periasamy and D. W. DeSimone. 2017. Mechanical and signaling roles for keratin intermediate filaments in the assembly and morphogenesis of Xenopus mesendoderm tissue at gastrulation. Development 144: 4363–4376.
Spemann, H. 1938. Embryonic Development and Induction. Yale University Press, New Haven, CT.
Spofford, W. R. 1945. Observations on the posterior part of the neural plate in Ambystoma. J. Exp. Zool. 99: 35–52.
Stancheva, I., O. El-Maarri, J. Walter, A. Niveleau and R. R. Meehan. 2002. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev. Biol. 243: 155–165.
Steinbeisser, H., A. Fainsod, C. Niehrs, Y. Sasai and E. M. De Robertis. 1995. The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: A loss-of-function study using antisense RNA. EMBO J. 14: 5230–5243.
Strahle, U. and S. Jesuthasan. 1993. Ultraviolet irradiation impairs epiboly in zebrafish embryos: Evidence for a microtubule-dependent mechanism of epiboly. Development 119: 909–919.
Sun, Z., A. Amsterdam, G. J. Pazour, D. G. Cole, M. S. Miller and N. Hopkins. 2004. A genetic screen in zebrafish identifies cilia genes as a principle cause of cystic kidney. Development 131: 4085–4093.
Szabó, A., I. Cobo, S. Omara, S. McLachlan, R. Keller and R. Mayor. 2016. The molecular basis of radial intercalation during tissue spreading in early development. Dev. Cell 37: 213–225.
Tao, Q., C. Yokota, H. Puck, M. Kofron, B. Birsoy, D. Yan, M. Asashima, C. C. Wylie, X. Lin and J. Heasman. 2005. Maternal wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120: 857–871.
Taverner, N. V., M. Kofron, Y. Shin, C. Kabitschke, M. J. Gilchrist, C. Wylie, K. W. Cho, J. Heasman and J. C. Smith.2005. Microarray-based identification of VegT targets in Xenopus. Mech. Dev. 122: 333–354.
Thisse, B. and C. Thisse. 2015. Formation of the vertebrate embryo: Moving beyond the Spemann organizer. Semin. Cell Dev. Biol. 42: 94–102.
Thisse, B., C. V. Wright and C. Thisse. 2000. Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403: 425–428.
Toivonen, S. 1979. Transmission problem in primary induction. Differentiation 15: 177–181.
Toivonen, S. and L. Saxén. 1955. The simultaneous inducing action of liver and bone marrow of the guinea pig in implantation and explanation experiments with embryos of Triturus. Exp. Cell Res. 3: 346–357.
Toivonen, S. and L. Saxén 1968. Morphogenetic interaction of presumptive neural and mesodermal cells mixed in different ratios. Science 159: 539–540.
Toivonen, S. and J. Wartiovaara. 1976. Mechanism of cell interaction during primary induction studied in transfilter experiments. Differentiation 5: 61–66.
Toivonen, S., D. Tarin, L. Saxén, P. J. Tarin and J. Wartiovaara. 1975. Transfilter studies on neural induction in the newt. Differentiation 4: 1–7.
Trinkaus, J. P. 1984. Mechanisms of Fundulus epiboly: A current view. Am. Zool. 24: 673–688.
Trinkaus, J. P. 1992. The midblastula transition, the YSL transition, and the onset of gastrulation in Fundulus. Development 1992: 75–80.
Trinkaus, J. P. 1993. The yolk syncitial layer of Fundulus: Its origin and history and its significance for early embryogenesis. J. Exp. Zool. 265: 258–284.
Tsang, M., S. Maegawa, A. Kiang, R. Habas, E. Weinberg and I. B. Dawid. 2004. A role for MKP3 in axial patterning of the zebrafish embryo. Development 131: 2769–2779.
Tuazon, F. B. and M. C. Mullins. 2015. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin. Cell Dev. Biol. 42: 118–133.
Tucker, A. S. and J. M. Slack. 1995. Tail bud determination in the vertebrate embryo. Curr. Biol. 5: 807–813.
Tucker, J. A., K. A. Mintzer and M. C. Mullins. 2008. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev. Cell 14: 108–119.
Twitty, V. C. 1966. Of Scientists and Salamanders. Freeman, San Francisco, CA.
Valles, J. M., Jr., S. R. Wasserman, C. Schweidenback, J. Edwardson, J. M. Denegre and K. L. Mowry. 2002. Processes that occur before second cleavage determine third cleavage orientation in Xenopus. Exp. Cell Res. 274: 112–118.
Varshney, G. K., R. Sood and S. M. Burgess. 2015. Understanding and editing the zebrafish genome. Adv. Genet. 92: 1–52.
Vervenne, H. B., K. R. Crombez, K. Lambaerts, L. Carvalho, M. Köppen, C. P. Heisenberg, W. J. Van de Ven and M. M. Petit. 2008. Lpp is involved in Wnt/PCP signaling and acts together with Scrib to mediate convergence and extension movements during zebrafish gastrulation. Dev. Biol. 320: 267–277.
Vincent, J. P., G. F. Oster and J. C. Gerhart. 1986. Kinematics of gray crescent formation in Xenopus eggs: The displacement of subcortical cytoplasm relative to the egg surface. Dev. Biol. 113: 484–500.
Vorwald-Denholtz, P. P. and E. M. De Robertis. 2011. Temporal pattern of the posterior expression of Wingless in Drosophila blastoderm. Gene Expr. Patterns 11: 456–463.
Wacker, S. A., C. L. McNulty, A. J. Durston. 2004. The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP4. Dev. Biol. 266: 123–137.
Walentek, P., I. Schneider, A. Schweickert, and M. Blum. 2013. Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development. PLOS ONE 8: e73646.
Wallingford, J. B., A. J. Ewald, R. M. Harland and S. E. Fraser. 2001. Calcium signaling during convergent extension in Xenopus. Curr. Biol. 11: 652–661.
Wang, S., M. Krinks, K. Lin, F. P. Luyten and M. Moos, Jr. 1997. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88: 757–766.
Warga, R. M. and C. B. Kimmel. 1990. Cell movements during epiboly and gastrulation in zebrafish. Development 108: 569–580.
Weaver, C. and D. Kimelman. 2004. Move it or lose it: Axis specification in Xenopus. Development 131: 3491–3499.
Weaver C., G. H. Farr III, W. Pan, B. A. Rowning, J. Wang, J. Mao, D. Wu, L. Li, C. A. Larabell and D. Kimelman. 2003. GBP binds kinesin light chains and translocates during cortical rotation in Xenopus eggs. Development 130: 5425–5436.
Wen, J. W. and R. Winklbauer. 2017. Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula. Elife 6.
Wessely, O., J. I. Kim, D. Geissert, U. Tran and E. M. De Robertis. 2004. Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays. Dev. Biol. 269: 552–566.
White, J. A. and J. Heasman. 2008. Maternal control of pattern formation in Xenopus laevis. J. Exp. Zool. (MDE) 310B: 73–84.
White, R. J., Q. Nie, A. D. Lander and T. F. Schilling. 2007. Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLOS Biol. 5: e304.
Wilson, P. A. and R. Keller. 1991. Cell rearrangement during gastrulation of Xenopus: Direct observation of cultured explants. Development 112: 289–300.
Wilson, P. A. and A. Hemmati-Brivanlou. 1995. Induction of epidermis and inhibition of neural fate by BMP-4. Nature 376: 331–333.
Winklbauer, R. and M. Schürfeld. 1999. Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus. Development 126: 3703–3713.
Winklbauer, R. and E. W. Damm. 2012. Internalizing the vegetal cell mass before and during amphibian gastrulation: Vegetal rotation and related movements. Wiley Interdiscip. Dev. Biol. 1: 301–306.
Xu, P. F., N. Houssin, K. F. Ferri-Lagneau, B. Thisse and C. Thisse. 2014. Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344: 87–89.
Xu, S., F. Cheng, J. Liang, W. Wu and J. Zhang. 2012. Maternal xNorrin, a canonical Wnt signaling agonist and TGF-b antagonist, controls early neuroectoderm specification in Xenopus. PLOS Biol. 10: e1001286.
Yao, J. and D. S. Kessler. 2001. Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann’s organizer. Development 128: 2975–2987.
Yang, J., C. Tan, R. S. Darken, P. A. Wilson and P. S. Klein. 2002. b-Catenin/Tcf-regulated transcription prior to the midblastula transition. Development 129: 5743–5752.
Yost, C., M. Torres, J. R. Miller, E. Huang, D. Kimelman and R. T. Moon. 1996. The axis-inducing ability, stability, and subcellular localization of b-catenin are regulated in Xenopus embryos by glycogen synthase kinase-3. Genes Dev. 10: 1443–1454.
Zhang, J., D. W. Houston, M. L. King, C. Payne, C. Wylie and J. Heasman. 1998. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94: 515–524.
Zhang, X. and 11 others. 2012. Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell 149: 1565–1577.
Zhang, X., S. M. Cheong, N. G. Amado, A. H. Reis, B. T. MacDonald, M. Zebisch, E. Y. Jones, J. G. Abreu and X. He. 2015. Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev. Cell 32: 719–730.
Zhong, T. P., S. Childs, J. P. Leu and M. C. Fishman. 2001. Gridlock signalling pathway fashions the first embryonic artery. Nature 414: 216–220.
Zimmerman, L. B., J. M. de Jesús-Escobar and R. M. Harland. 1996. The Spemann organizer signal noggin binds and inactivates bone morphogenesis protein 4. Cell 86: 599–606.