Alford, L. M., M. M. Ng and D. R. Burgess. 2009. Cell polarity emerges at first cleavage in sea urchin embryos. Dev. Biol. 330: 12–20.
Angerer, L. M. and R. C. Angerer. 2000. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo. Dev. Biol. 218: 1–12.
Armstrong, N., J. Hardin and D. R. McClay. 1993. Cell-cell interactions regulate skeleton formation in the sea urchin embryo. Development 119: 833–840.
Balinsky, B. I. 1981. Introduction to Embryology, 5th Ed. Saunders, Philadelphia, PA.
Beane, W. S., J. M. Gross and D. R. McClay. 2006. RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation. Dev. Biol. 292: 213–225.
Chabry, L. M. 1888. Contribution a l’embryologie normale tératologique des ascidies simples. J. Anat. Physiol. Norm. Pathol. 23: 167–321.
Cherr, G. N., R. G. Summers, J. D. Baldwin and J. B. Morrill. 1992. Preservation and visualization of the sea urchin blastocoelic extracellular matrix. Microsc. Res. Tech. 22: 11–22.
Cohen, A. and N. J. Berrill, N. 1936. The development of isolated blastomeres of the ascidian egg. J. Exp. Zool. 74: 91–117.
Conklin, E. G. 1905. The orientation and cell-lineage of the ascidian egg. J. Acad. Nat. Sci. Phila. 13: 5–119.
Croce, J. C. and D. R. McClay. 2010. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137: 83–91.
Dan, K. 1960. Cytoembryology of echinoderms and amphibia. Int. Rev. Cytol. 9: 321–368.
Dan, K. and K. Okazaki. 1956. Cyto-embryological studies of sea urchins. III. Role of secondary mesenchyme cells in the formation of the primitive gut in sea urchin larvae. Biol. Bull. 110: 29–42.
Davidson, B. and L. Christiaen. 2006. Linking chordate gene networks to cellular behavior in ascidians. Cell 124: 247–250.
Davidson, E. H. and M. S. Levine. 2008. Properties of developmental gene regulatory networks. Proc. Natl. Acad. Sci. USA 105: 20063–20066.
Driesch, Hans. 1891. "Entwicklungsmechanische Studien: I. Der Werthe der beiden ersten Furchungszellen in der Echinogdermenentwicklung. Experimentelle Erzeugung von Theil- und Doppelbildungen. II. Über die Beziehungen des Lichtez zur ersten Etappe der thierischen Form-bildung." Zeitschrift für wissenschaftliche Zoologie 53: 160–84. Translated as “The Potency of the First Two Cleavage Cells in Echinoderm Development. Experimental Production of Partial and Double Formations.” In B. H. Willier and J. M. Oppenheimer (eds.), Foundations of Experimental Embryology. Hafner Press, New York, 38–50.
Duloquin, L., G. Lhomond and C. Gache. 2007. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134: 2293–2302.
Ernst, S. G. 2011. Offerings from an urchin. Dev. Biol. 358: 285–294.
Ettensohn, C. A. 1985. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. Dev. Biol. 112: 383–390.
Ettensohn, C. A. 1990. The regulation of primary mesenchyme cell patterning. Dev. Biol. 140: 261–271.
Ettensohn, C. A. and D. R. McClay. 1986. The regulation of primary mesenchyme cell migration in the sea urchin embryo: Transplantations of cells and latex beads. Dev. Biol. 117: 380–391.
Ettensohn, C. A. and E. P. Ingersoll. 1992. Morphogenesis of the sea urchin embryo. In E. F. Rossomondo and S. Alexander (eds.), Morphogenesis. Marcel Dekker, New York, 189–262.
Erkenbrack, E. M. and E. H. Davidson. 2015. Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses. Proc. Natl. Acad. Sci. USA 112: 4075−4084.
Fink, R. D. and D. R. McClay. 1985. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev. Biol. 107: 66–74.
Fischer, J.-L. 1991. Laurent Chabry and the beginnings of experimental embryology in France. In S. Gilbert (ed.), A Conceptual History of Modern Embryology. Plenum, New York, 31–41.
Gao, F. and E. H. Davidson. 2008. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc. Nat. Acad. Sci. USA 105: 6091–6096.
Hardin, J. D. 1988. The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103: 317–324.
Hardin, J. D. 1990. Context-dependent cell behaviors during gastrulation. Semin. Dev. Biol. 1: 335–345.
Hardin, J. D. and L. Y. Cheng. 1986. The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev. Biol. 115: 490–501.
Hardin, J. D. and D. R. McClay. 1990. Target recognition by the archenteron during sea urchin gastrulation. Dev. Biol. 142: 86–102.
Harkey, M. A. and A. M. Whiteley. 1980. Isolation, culture and differentiation of echinoid primary mesenchyme cells. Wilhelm Roux Arch. Dev. Biol. 189: 111–122.
Hibino, T., T. Nishikata and H. Nishida.1998. Centrosome-attracting body: A novel structure closely related to unequal cleavages in the ascidian embryo. Dev. Growth Diff. 40: 85–95.
Hodor, P. G. and C. A. Ettensohn. 1998. The dynamics and regulation of mesenchymal cell fusion in the sea urchin. Dev. Biol. 199: 111–124.
Hörstadius, S. 1939. The mechanics of sea urchin development studied by operative methods. Biol. Rev. 14: 132–179.
Imai, K. S., N. Takada, N. Satoh and Y. Satou. 2000. b-Catenin mediates the specification of endoderm cells in ascidian embryos. Development 127: 3009–3020.
Imai, K. S., N. Satoh and Y. Satou. 2002. Early embryonic expression ofFGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129: 1729–1738.
José-Edwards, D. S., I. Oda-Ishii, J. E. Kugler, Y. J. Passamaneck, L. Katikala, Y. Nibu and A. Di Gregorio. 2015. Brachyury, Foxa2 and the cis-regulatory origins of the notochord. PLOS Genet. 11: e1005730.
Katikala, L., H. Aihara, Y. J. Passamaneck, S. Gazdoiu, D. S. Jose-Edwards, J. E. Kugler, I. Oda-Ishii, J. H. Imai, Y. Nibu and A. Di Gregorio. 2013. Functional Brachyury binding sites establish a temporal read-out of gene expression in the Cionanotochord. PLOS Biol. 11: e1001697.
Kedes, L. H., A. C. Chang, D. Houseman and S. N. Cohen. 1975. Isolation of histone genes from unfractionated sea urchin DNA by subculture cloning in E. coli. Nature 255: 533–538.
Kenny, A. P., D. W. Oleksyn, L. A. Newman, R. C. Angerer and L. M. Angerer. 2003 Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos. Dev. Biol. 261: 412–425.
Kim, G. J., A. Yamada and H. Nishida. 2000. An FGF signal from endoderm and localized factors in the posterior-vegetal egg cytoplasm pattern the mesodermal tissues in the ascidian embryo. Development 127: 2853–2862.
Kimberly, E. L. and J. Hardin.1998. Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev. Biol. 204: 235–250.
Kobayashi, K., K. Sawada, H. Yamamoto, S. Wada, H. Saiga and H. Nishida. 2003. Maternal Macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme and notochord induction in ascidian embryos. Development 130: 5179–5190.
Kominami, T. and H. Takata. 2004. Gastrulation in the sea urchin embryo: A model system for analyzing the morphogenesis of a monolayered epithelium. Dev. Growth Diff. 46: 309–326.
Kugler, J. E., S. Gazdoiu, I. Oda-Ishii, Y. J. Passamaneck, A. J. Erives, and A. Di Gregorio. 2010. Temporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis. J. Cell Sci. 123: 453–463.
Lane, M. C., M. A. R. Koehl, F. Wilt and R. Keller. 1993. A role for regulated secretion of apical matrix during epithelial invagination in the sea urchin. Development 117: 1049–1060.
Lemaire, P. 2009. Unfolding a chordate developmental program, one cell at a time: Invariant lineages, short-range inductions, and evolutionary plasticity in ascidians. Dev. Biol. 332: 48–60.
Leonard, J. D. and C. A. Ettensohn. 2007. Analysis of dishevelled localization and function in the early sea urchin embryo. Dev. Biol. 306: 50–65.
Lepage, T., C. Sardet and C. Gache. 1992. Spatial expression of the hatching enzyme gene in the sea urchin embryo. Dev. Biol. 150: 23–32.
Logan, C. Y. and D. R. McClay. 1997. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo. Development 124: 2213–2223.
Logan, C. Y. and D. R. McClay. 1999. Lineages that give rise to endoderm and mesoderm in the sea urchin embryo. In S. A. Moody (ed.), Cell Lineage and Determination. Academic Press, New York, 41–58.
Logan, M., S. M. Pagán-Westphal, D. M. Smith, L. Paganessi and C. J. Tabin. 1998. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94: 307–317.
Lhomond, G., D. R. McClay, C. Gache and J. C. Croce. 2012. Frizzled1/2/7 signaling directs b-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis. Development 139: 816–825.
Lyons, D. C., M. L. Martik, L. R. Saunders, and D. R. McClay. 2014. Specification to biomineralization: following a single cell type as it constructs a skeleton. Integr. Comp. Biol. 54: 723–733.
Makabe, K. W. and H. Nishida. 2012. Cytoplasmic localization and reorganization in ascidian eggs: Role of postplasmic/PEM RNAs in axis formation and fate determination. Wiley Interdiscip. Rev. Dev. Biol. 1: 501–518.
Malinda, K. M. and C. A. Ettensohn. 1994. Primary mesenchyme cell migration in the sea urchin embryo: Distribution of directional cues. Dev. Biol. 164: 562–578.
Malinda, K. M., G. W. Fisher and C. A. Ettensohn. 1995. Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo. Dev. Biol. 172: 552–566.
Martik, M. and D. R. McClay. 2012. Gastrulation in high-resolution: New insights into an important process of development. Abstracts of the Society for Developmental Biology Annual Meeting 2012. Abstract 126, p. 41.
Martins, G. G., R. G. Summers and J. B. Morrill. 1998. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus. Dev. Biol. 198: 330–342.
McClay, D. R. 2011. Evolutionary crossroads in developmental biology: Sea urchins. Development 138: 2639–2648.
McClay, D. R. 2016. Sea urchin morphogenesis. Curr. Top. Dev. Biol.117: 15–30.
McIntyre, D. C., D. C. Lyons, M. Martik, and D. R. McClay. 2014. Branching out: origins of the sea urchin larval skeleton in development and evolution. Genesis 52: 173–185.
Miller, J. R., S. E. Fraser and D. R. McClay. 1995. Dynamics of thin filopodia during sea urchin gastrulation. Development 121: 2505–2511.
Morrill, J. B. and L. L. Santos. 1985. A scanning electron micrographical overview of cellular and extracellular patterns during blastulation and gastrulation in the sea urchin, Lytechinus variegatus. In R. H. Sawyer and R. M. Showman (eds.), The Cellular and Molecular Biology of Invertebrate Development. University of South Carolina Press, Columbia, SC, 3–33.
Nakatani, Y., H. Yasuo, N. Satoh and H. Nishida. 1996. Basic fibroblast growth factor induces notochord formation and the expression of As-T, a Brachyury homolog, during ascidian embryogenesis. Development 122: 2023–2031.
Newrock, K. M., C. R. Alfageme, R. V. Nardi and L. H. Cohen. 1978. Histone changes during chromatin remodeling in embryogenesis. Cold Spring Harb. Symp. Quant. Biol. 42: 421–431.
Nishida, H. 1987. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev. Biol.121: 526–541.
Nishida, H. 1992a. Determination of developmental fates of blastomeres in ascidian embryos. Dev. Growth Diff. 34: 253–262.
Nishida, H. 1992b. Regionality of egg cytoplasm that promotes muscle differentiation in embryo of the ascidian Halocynthia roretzi. Development 116: 521–529.
Nishida, H. 2005. Specification of embryonic axis and mosaic development in ascidians. Dev. Dyn. 233: 1177–1193.
Nishida, H. and K. Sawada. 2001. macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 409: 724–729.
Nishikata, T., T. Hibino and H. Nishida. 1999. The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. Dev. Biol. 209: 72–85.
Okazaki, K. 1975. Spicule formation by isolated micromeres of the sea urchin embryo. Am. Zool. 15: 567–581.
Oliveri, P., D. M. Carrick and E. H. Davidson. 2002. A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev. Biol. 246: 209–228.
Oliveri, P., Q. Tu and E. H. Davidson. 2008. Global regulatory logic for specification of an embryonic cell lineage. Proc. Natl. Acad. Sci. USA 105: 5955–5962.
Patalano, S., G. Prulière, F. Prodon, A. Paix, P. Dru, C. Sardet and J. Chenevert. 2006. The aPKC-PAR-6-PAR-3 cell polarity complex localizes to the centrosome attracting body, a macroscopic cortical structure responsible for asymmetric divisions in the early ascidian embryo. J. Cell Sci. 119(Pt 8): 1592–1603.
Peter, I. S. and E. H. Davidson. 2015. Genomic Control Process: Development and Evolution. Academic Press, New York.
Peter, I. S. and E. H. Davidson. 2016. Implications of developmental gene regulatory networks inside and outside developmental biology. Curr. Top. Dev. Biol. 117: 237–252.
Peter, I. S., E. Faure and E. H. Davidson. 2012. Predictive computation of genomic logic processing functions in embryonic development. Proc. Natl. Acad. Sci. USA 109: 16434–16442.
Peterson, R. E. and D. R. McClay. 2003. Primary mesenchyme cell patterning during the early stages following ingression. Dev. Biol. 254: 68–78.
Prodon, F., P. Dru, F. Roegiers and C. Sardet. 2005. Polarity of the ascidian egg cortex and reloclization of cER and mRNAs in the early embryo. J. Cell Sci. 118: 2393–2404.
Prodon, F., C. Sardet and H. Nishida. 2008. Cortical and cytoplasmic flows driven by actin microfilaments polarize the cortical ER-mRNA domain along the a-v axis in ascidian oocytes. Dev. Biol. 313: 682–699.
Röttinger, E., A. Saudemont, V. Duboc, L. Besnardeau, D. McClay and T. Lepage. 2008. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135: 353–365.
Rafiq, K., T. Shashikant, C. J. McManus, and C. A. Ettensohn. 2014. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 141: 950–961.
Ransick, A. and E. H. Davidson. 1993. A complete second gut induced by transplanted micromeres in the sea urchin embryo. Science 259: 1134–1138.
Ransick, A. and E. H. Davidson. 1995. Micromeres are required for normal vegetal plate specification in sea urchin embryos. Development 121: 3215–3222.
Reverberi, G. and A. Minganti. 1946. Fenomeni di evocazione nello sviluppo dell’uovo di Ascidie. Risultati dell’indagine spermentale sull’ouvo di Ascidiella aspersa e di Ascidia malaca allo stadio di 8 blastomeri. Pubbl. Staz. Zool. Napoli 20: 199–252.
Revilla-i-Domingo, R., P. Oliveri and E. H. Davidson. 2007. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc. Natl. Acad. Sci. USA 104: 12383–12388.
Roegiers, F., A. McDougall and C. Sardet. 1995. The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg. Development 121: 3457–3466.
Ruffins, S. W. and C. A. Ettensohn. 1996. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122: 253–263.
Sardet, C., P. Dru and F. Prodon. 2005. Maternal determinants and mRNAs in the cortex of ascidian oocytes, zygotes, and embryos. Biol. Cell 97: 35–49.
Sardet, C., A. Paix, F. Prodon, P. Dru and J. Chenevert. 2007. From oocyte to 16-cell stage: Cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev. Dyn. 236: 1716–1731.
Satoh, N., K. Tagawa and H. Takahashi. 2012. How was the notochord born? Evol. Dev. 14: 56–75.
Satou, Y., K. S. Imai and N. Satoh. 2001. Early embryonic expression of a LIM-homeobox gene Cs-lhx3 is downstream of b-catenin and responsible for the endoderm differentiation in Ciona savignyi embryos. Development 128: 3559–3570.
Saunders, L. R. and D. R. McClay. 2014. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition. Development 141: 1503–1513.
Sawada, K., Y. Fukushima and H. Nishida. 2005. Macho-1 functions as a transcriptional activator for muscle formation in embryos of the ascidian Halocynthia roretzi. Gene Exp. Patterns 5: 429–437.
Sawada, T. and G. Schatten. 1989. Effects of cytoskeletal inhibitors on ooplasmic segregation and microtubule organization during fertilization and early development in the ascidian Molgula occidentalis. Dev. Biol. 132: 331–342.
Sawyer, J. M., J. R. Harrell, G. Shemer, J. Sullivan-Brown, M. Roh-Johnson, and B. Goldstein. 2010. Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol. 341: 5–19.
Schroeder, T. E. 1981. Development of a “primitive” sea urchin (Eucidaris tribuloides): Irregularities in the hyaline layer, micromeres, and primary mesenchyme. Biol. Bull. 161: 141–151.
Sethi, A. J., R. C. Angerer and L. M. Angerer. 2009. Gene regulatory network interactions in sea urchin endomesoderm induction. PLOS Biol. 7: e1000029.
Sherwood, D. R. and D. R. McClay. 1999. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126:1703–1713.
Speksnijder, J. E., C. Sardet and L. F. Jaffe. 1990. The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation. J. Cell Biol.110: 1589–1598.
Sweet, H. C., P. G. Hodor and C. A. Ettensohn. 1999. The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 126: 5255–5265.
Weitzel, H. E., M. R. Illies, C. A. Byrum, R. Xu, A. H. Wikramanayake and C. A. Ettensohn. 2004. Differential stability of b-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131: 2947–2956.
Whittaker, J. R. 1982. Muscle lineage cytoplasm can change the developmental expression in epidermal lineage cells of ascidian embryos. Dev. Biol. 93: 463–470.
Wikramanayake, A. H., L. Huang and W. H. Klein. 1998. b-catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proc. Natl. Acad. Sci. USA 95: 9343–9348.
Wikramanayake, A. H., R. Peterson, J. Chen, L. Huang, J. M. Bince, D. R. McClay and W. H. Klein. 2004. Nuclear b-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 39: 194–205.
Wilson, E. B. 1895. An Atlas of the Fertilization and Karyogenesis of the Ovum. Macmillan, London.
Wolpert, L. and T. Gustafson. 1961. Studies in the cellular basis of morphogenesis of the sea urchin embryo: The formation of the blastula. Exp. Cell Res. 25: 374–382.
Wray, G. A. 1999. Introduction to sea urchins. In S. A. Moody (ed.), Cell Lineage and Determination. Academic Press, New York, 3–9.
Wu, S. Y., M. Ferkowicz and D. R. McClay. 2007. Ingression of primary mesenchyme cells of the sea urchin embryo: A precisely timed epithelial mesenchymal transition. Birth Def. Res. C Embryol. Today 81: 241–252.
Yagi, K., N. Satoh and Y. Satou. 2004. Identification of downstream genes of the ascidian muscle determinant gene Ci-macho1. Dev. Biol. 274: 478–489.
Yagi, K., N. Takatori, Y. Satou and N. Satoh. 2005. Ci-Tbx6b and Ci-Tbx6c are key mediators of the maternal effect gene Ci-macho1 in muscle cell differentiation in Ciona intestinalis embryos. Dev. Biol. 282: 535–549.
Yajima, M. and G. M. Wessel. 2011. Small micromeres contribute to the germline in the sea urchin. Development 138: 237–243.