$\kappa =\frac{k}{\rho c}$

${P}_{\text{e}}=\epsilon \sigma {T}^{4}$

$h=u+pv$

$\eta =1\u2013\frac{{T}_{\text{lower}}}{{T}_{\text{upper}}}$

$\dot{Q}=kA({T}_{1}\text{}-\text{}{T}_{2})/d$

$X=Q\left(1\text{}-\text{}\frac{{T}_{\text{a}}}{{T}_{1}}\right)$

$\mathit{\u2206}U=Q+W$

$\frac{p}{\rho}+gz+\frac{1}{2}{u}^{2}=\text{const.}$

$\rho uA=\text{const.}$

$W={h}_{2}\u2013{h}_{1}$

Printed from , all rights reserved. © Oxford University Press, 2022