Butler, Brown, Stephenson \& Speakman, Animal Physiology Solutions to numerical exercises

Chapter 13

Question 13.12

$\mathrm{pH}=7.95=-\log \left[\mathrm{H}^{+}\right]$. Therefore, $\left[\mathrm{H}^{+}\right]=$antilog of $-7.95=\mathbf{1 . 1} \times \mathbf{1 0}^{-8} \mathbf{~ m o l ~ L}^{-1}$

Question 13.13

$\left[\mathrm{HCO}_{3}{ }^{-}\right]=7.2-\left(\beta_{\mathrm{CO}_{2}} \times P_{\mathrm{CO}_{2}}\right)$

Substituting into eq 13.3 we get:
$7.77=6.08+\log \frac{7.2-0.4 P_{\mathrm{CO}_{2}}}{{ }_{0.4} P_{\mathrm{CO}_{2}}}$
This becomes:
$1.69=\log \frac{7.2-0.4 P_{\mathrm{CO}_{2}}}{{ }_{0.4} P_{\mathrm{CO}_{2}}}$
By taking the antilog of both sides, we get:
$48.98=\frac{7.2-0.4 P_{\mathrm{CO}_{2}}}{{ }_{0.4} P_{\mathrm{CO}_{2}}}$
Therefore
$48.98 \times 0.4 P_{\mathrm{CO}_{2}}=7.2-0.4 P_{\mathrm{CO}_{2}}$
$19.59 P_{\mathrm{CO}_{2}}+0.4 P_{\mathrm{CO}_{2}}=7.2$
$19.99 P_{\mathrm{CO}_{2}}=7.2$

Therefore, $P_{\mathrm{CO}_{2}}=\mathbf{0 . 3 6} \mathbf{~ k P a}$

Amount of CO_{2} dissolved is:
$0.36 \times 0.4=0.14 \mathrm{mmol} \mathrm{L}^{-1}$
Therefore, $\left[\mathbf{H C O}_{3}{ }^{-}\right]=7.2-0.14=\mathbf{7 . 0 6} \mathbf{~ m m o l ~ L}{ }^{-1}$

