Butler, Brown, Stephenson & Speakman, *Animal Physiology* Solutions to numerical exercises

Chapter 11

Question 11.2

Standard temperature and pressure (STP) = 273 K and 101.3 kPa, respectively.

So at STP, the volume of the oxygen consumed by the fish would be: $51 \text{ mL} \times \frac{273}{288} \times \frac{101.3}{99} = 49.5 \text{ mL}$. As 1 mmol of a gas occupies 22.4 mL, $49.5 \text{ mL} = \frac{49.5}{22.4} = 2.21 \text{ mmol O}_2$

Partial pressure at the centre of the organism is 0 kPa, and $P_{O_2} = \frac{20.95}{101.3}$ atm = 0.207 atm

$$r^2 = \frac{6K_{O_2}}{\dot{M}_{O_2}} P_{O_2} \text{ and } r = \sqrt{\frac{6K_{O_2}}{\dot{M}_{O_2}}} P_{O_2}$$

which means that $r = \sqrt{\frac{6 \times 0.000638 \times 207}{0.05}} = 0.126$ cm and the **diameter is 0.25 cm**

Butler, Brown, Stephenson & Speakman, *Animal Physiology* Solutions to numerical exercises

Question 11.7

$$\dot{V}b = \frac{\dot{M}_{O_2}}{CaO_2 - C\overline{v}O_2}$$

$$\dot{M}_{O_2} = 234 \text{ } \mu\text{mol min}^{-1} = 0.234 \text{ } \text{mmol min}^{-1}$$

Therefore,
$$\dot{V}b = \frac{0.234}{3.7} = 0.0632 \text{ L min}^{-1} = 63.2 \text{ mL min}^{-1}$$

Cardiac stroke volume = $\frac{63.2}{51}$ = **1.24 mL**

Butler, Brown, Stephenson & Speakman, *Animal Physiology* Solutions to numerical exercises

The concentration of oxygen in the water = $\beta \times P_1O_2$

Therefore,
$$\frac{\dot{M}_{O_2}}{\dot{V}w} = (\beta P_1 O_2 - \beta P_E O_2)$$
, and $\beta P_E O_2 = \beta P_1 O_2 - \frac{\dot{M}_{O_2}}{\dot{V}w}$

$$\beta P_1 O_2 = 16.8 \times 20.2 = 339.4 \text{ } \mu mol \text{ } L^{-1} \text{ } and \text{ } \frac{\dot{M}_{O_2}}{\dot{V}w} = \frac{234}{2.04} = 114.7 \text{ } \mu mol \text{ } L^{-1},$$

thus
$$\beta P_E O_2 = 339.4 - 114.7 = 224.7 \ \mu mol \ L^{-1}$$
 and

$$P_EO_2 = \frac{224.7}{16.8} = 13.4 \text{ kPa}$$