Butler, Brown, Stephenson \& Speakman, Animal Physiology Solutions to numerical exercises

Chapter 11

Question 11.2

Standard temperature and pressure $(\mathrm{STP})=273 \mathrm{~K}$ and 101.3 kPa , respectively.

So at STP, the volume of the oxygen consumed by the fish would be: $51 \mathrm{~mL} \times \frac{273}{288} \times \frac{101.3}{99}=49.5 \mathrm{~mL}$. As 1 mmol of a gas occupies $22.4 \mathrm{~mL}, 49.5 \mathrm{~mL}=\frac{49.5}{22.4}=\mathbf{2 . 2 1} \mathbf{~ m m o l ~ O} \mathbf{O}_{\mathbf{2}}$

Question 11.6

If

Partial pressure at the centre of the organism is 0 kPa , and $P_{\mathrm{O}_{2}}=\frac{20.95}{101.3} \mathrm{~atm}=0.207 \mathrm{~atm}$
$r^{2}=\frac{6 K_{\mathrm{O}_{2}}}{\dot{M}_{\mathrm{O}_{2}}} P_{\mathrm{O}_{2}}$ and $\mathrm{r}=\sqrt{\frac{6 K_{\mathrm{O}_{2}}}{\dot{M}_{\mathrm{O}_{2}}} P_{\mathrm{O}_{2}}}$
which means that $r=\sqrt{\frac{6 \times 0.000638 \times 207}{0.05}}=0.126 \mathrm{~cm}$ and the diameter is $\mathbf{0 . 2 5} \mathbf{~ c m}$

Butler, Brown, Stephenson \& Speakman, Animal Physiology Solutions to numerical exercises

Question 11.7

If

$\dot{\mathrm{V}} \mathrm{b}=\frac{\dot{M}_{\mathrm{O}_{2}}}{\mathrm{CaO}_{2}-\mathrm{C} \overline{\mathrm{V}} \mathrm{O}_{2}}$
$\dot{M}_{\mathrm{O}_{2}}=234 \mu \mathrm{~mol} \mathrm{~min}^{-1}=0.234 \mathrm{mmol} \mathrm{min}^{-1}$
Therefore, $\dot{V} \mathrm{~b}=\frac{0.234}{3.7}=0.0632 \mathrm{~L} \mathrm{~min}^{-1}=\mathbf{6 3 . 2} \mathbf{~ m L ~ m i n}{ }^{-1}$
Cardiac stroke volume $=\frac{63.2}{51}=\mathbf{1 . 2 4} \mathbf{~ m L}$

Question 11.8

Butler, Brown, Stephenson \& Speakman, Animal Physiology Solutions to numerical exercises

The concentration of oxygen in the water $=\beta \times \mathrm{P}_{\mathrm{I}} \mathrm{O}_{2}$
Therefore, $\frac{\dot{M}_{\mathrm{O}_{2}}}{\dot{V} \mathrm{w}}=\left(\beta \mathrm{P}_{\mathrm{I}} \mathrm{O}_{2}-\beta \mathrm{P}_{\mathrm{E}} \mathrm{O}_{2}\right)$, and $\beta \mathrm{P}_{\mathrm{E}} \mathrm{O}_{2}=\beta \mathrm{P}_{\mathrm{I}} \mathrm{O}_{2}-\frac{\dot{M}_{\mathrm{O}_{2}}}{\dot{V} \mathrm{w}}$
$\beta \mathrm{P}_{\mathrm{I}} \mathrm{O}_{2}=16.8 \times 20.2=339.4 \mu \mathrm{~mol} \mathrm{~L}$-1 and $\frac{\dot{M}_{\mathrm{O}_{2}}}{\dot{V} \mathrm{w}}=\frac{234}{2.04}=114.7 \mu \mathrm{~mol} \mathrm{~L}^{-1}$,
thus $\beta \mathrm{P}_{\mathrm{E}} \mathrm{O}_{2}=339.4-114.7=224.7 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ and
$\mathrm{P}_{\mathrm{E}} \mathrm{O}_{2}=\frac{224.7}{16.8}=\mathbf{1 3 . 4} \mathbf{~ k P a}$

