Butler, Brown, Stephenson \& Speakman, Animal Physiology Solutions to numerical exercises

Chapter 10

Question 10.2

Draw a line with a slope of $1.54 \mu \mathrm{~mol} \mathrm{O}_{2} \mathrm{~min}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ (the thermal conductance of the animal) and meeting the x axis at $38^{\circ} \mathrm{C}$ (the animal's body temperature). Draw a horizontal line representing 27.7 $\mu \mathrm{mol} \mathrm{O}_{2} \mathrm{~min}^{-1}$ (the animal's basal metabolic rate). This line intersects the thermal conductance line at the animal's lower critical temperature and delimits the lower end of the thermoneutral zone. Thus, the animal would not be in its thermoneutral zone at $13{ }^{\circ} \mathrm{C}$

Butler, Brown, Stephenson \& Speakman, Animal Physiology Solutions to numerical exercises

Question 10.3

a) Animal X is the ectotherm and Y is the endotherm
b) The lower critical temperature for animal Y is $\mathbf{2 5}{ }^{\circ} \mathbf{C}$, as this is where the slope of the line markedly increases
c) Body temperature of the endotherm is approximately $37.5^{\circ} \mathrm{C}$, as shown by the point at which the thermal conductance line intersects the x axis.
d) The basal metabolic rate (BMR) of the other endotherm is lower than that of animal Y , as shown by extrapolating the horizontal line from the thermoneutral zone.
e) Animal Y is smaller than the one referred to in (d)
f) Rates of oxygen uptake at $0^{\circ} \mathrm{C}$ are approximately $\mathbf{1} \boldsymbol{\mu \mathrm { mol }} \mathbf{g}^{-1} \mathbf{m i n}^{-1}$ in animal X and $\mathbf{2 0} \boldsymbol{\mu \mathrm { mol }}$ $\mathbf{g}^{-1} \mathbf{m i n}^{-1}$ in animal Y

