Butler, Brown, Stephenson & Speakman, *Animal Physiology* Solutions to numerical exercises

Chapter 10

Question 10.2

Draw a line with a slope of 1.54 μ mol O₂ min⁻¹ °C⁻¹ (the thermal conductance of the animal) and meeting the *x* axis at 38 °C (the animal's body temperature). Draw a horizontal line representing 27.7 μ mol O₂ min⁻¹ (the animal's basal metabolic rate). This line intersects the thermal conductance line at the animal's lower critical temperature and delimits the lower end of the thermoneutral zone. **Thus, the animal would not be in its thermoneutral zone at 13 °C**

Butler, Brown, Stephenson & Speakman, *Animal Physiology* Solutions to numerical exercises

Question 10.3

- a) Animal X is the ectotherm and Y is the endotherm
- b) The lower critical temperature for animal Y is 25 °C, as this is where the slope of the line markedly increases
- c) Body temperature of the endotherm is approximately 37.5 $^{\circ}$ C, as shown by the point at which the thermal conductance line intersects the x axis.
- d) The basal metabolic rate (BMR) of the other endotherm is **lower** than that of animal Y, as shown by extrapolating the horizontal line from the thermoneutral zone.
- e) Animal Y is **smaller** than the one referred to in (d)
- f) Rates of oxygen uptake at 0 °C are approximately 1 μmol g⁻¹ min⁻¹ in animal X and 20 μmol g⁻¹ min⁻¹ in animal Y