Butler, Brown, Stephenson \& Speakman, Animal Physiology Solutions to numerical exercises

Chapter 8

Question 8.2

$Q_{10}=\left(\frac{5.5}{4.2}\right)^{\frac{10}{(20-15)}}=1.7$ and is within the normal range for a fish.

At $5^{\circ} \mathrm{C}, \dot{M} \mathrm{O}_{2}$ would be that at $15^{\circ} \mathrm{C}\left(4.2 \mu \mathrm{~mol} \mathrm{~g}{ }^{-1} \mathrm{~h}^{-1}\right) / 1.7\left(Q_{10}\right)=\mathbf{2 . 4 7} \boldsymbol{\mu} \mathbf{m o l} \mathbf{g}^{-1} \mathbf{h}^{-1}$ At $30{ }^{\circ} \mathrm{C}, \dot{M} \mathrm{O}_{2}$ would be that at $20^{\circ} \mathrm{C}\left(5.5 \mu \mathrm{~mol} \mathrm{~g}{ }^{-1} \mathrm{~h}^{-1}\right) \times 1.7\left(Q_{10}\right)=\mathbf{9 . 3 5} \boldsymbol{\mu} \mathbf{m o l} \mathbf{g}^{\mathbf{- 1}} \mathbf{h}^{\mathbf{- 1}}$

Question 8.3

Convert ${ }^{\circ} \mathrm{C}$ to $\mathrm{K}\left(0^{\circ} \mathrm{C}=273 \mathrm{~K}\right)$ and then calculate $1000 / \mathrm{K}$. Convert $\dot{M}_{\mathrm{O}_{2}}$ to $\ln \dot{M}_{\mathrm{O}_{2}}$ and then plot ln $\dot{M} \mathrm{O}_{2}$ against $1000 / \mathrm{K}$:

The Q_{10} between 5 and $40^{\circ} \mathrm{C}$, where the break point occurs, is $\left(\frac{24.8}{1.78}\right)^{\frac{10}{(40-5)}}$ $=13.9^{0.286}=\mathbf{2 . 1 2}$

Question 8.5

Butler, Brown, Stephenson \& Speakman, Animal Physiology Solutions to numerical exercises

The area of the sphere with a radius of 1 m and with rat B in the centre is $4 \pi \times 1 \mathrm{~m} \times 1 \mathrm{~m}=4 \times 3.14$ m^{2}. If the surface area of rat A receiving the radiation from rat B is S, the fraction of the total radiation emitted by rat $\mathrm{B}(0.457 \mathrm{~W})$ reaching rat A , at a distance of 1 m , is $0.457 \mathrm{~W} \times \mathrm{S} /$ surface area of the sphere with radius 1 m
$=0.457 \mathrm{~W} \times \mathrm{S} /\left(4 \times 3.14 \mathrm{~m}^{2}\right)$
$=\mathrm{S} \times 0.03638 \mathrm{~W} \mathrm{~m}^{-2}$.
Rat A also receives radiation from the Sun, which is $S \times\left(50 \%\right.$ of $\left.1.37 \mathrm{~kW} \mathrm{~m}^{-2}\right)=\mathrm{S} \times 685 \mathrm{~W} \mathrm{~m}^{-2}$.
Therefore, the ratio between radiation received from the Sun and radiation received from rat B is $\mathrm{S} \times$ $685 \mathrm{~W} \mathrm{~m}^{-2} / \mathrm{S} \times 0.03638 \mathrm{~W} \mathrm{~m}^{-2}=\mathbf{1 8 , 8 2 9}$

