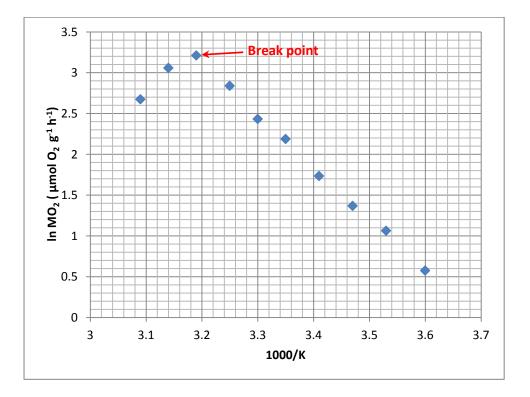
Butler, Brown, Stephenson & Speakman, Animal Physiology Solutions to numerical exercises

Chapter 8


Question 8.2

 $Q_{10} = \left(\frac{5.5}{4.2}\right)^{\frac{10}{(20-15)}} = 1.7 \text{ and is within the normal range for a fish.}$

At 5 °C, \dot{M}_{O_2} would be that at 15 °C (4.2 µmol g⁻¹ h⁻¹)/1.7 (Q_{10}) = **2.47 µmol g⁻¹ h⁻¹** At 30 °C, \dot{M}_{O_2} would be that at 20 °C (5.5µmol g⁻¹ h⁻¹) x 1.7 (Q_{10}) = **9.35 µmol g⁻¹ h⁻¹**

Question 8.3

Convert °C to K (0 °C = 273 K) and then calculate 1000/K. Convert \dot{M}_{O_2} to $\ln \dot{M}_{O_2}$ and then plot $\ln \dot{M}_{O_2}$ against 1000/K:

The Q_{10} between 5 and 40 °C, where the break point occurs, is $\left(\frac{24.8}{1.78}\right)^{\frac{10}{(40-5)}}$ = 13.9^{0.286} = **2.12**

Question 8.5

Butler, Brown, Stephenson & Speakman, Animal Physiology Solutions to numerical exercises

The area of the sphere with a radius of 1 m and with rat B in the centre is $4\pi \times 1m \times 1$ m = 4 × 3.14 m². If the surface area of rat A receiving the radiation from rat B is S, the fraction of the total radiation emitted by rat B (0.457 W) reaching rat A, at a distance of 1 m, is 0.457 W × S/surface area of the sphere with radius 1 m

= $0.457 \text{ W} \times \text{S}/(4 \times 3.14 \text{ m}^2)$ = $\text{S} \times 0.03638 \text{ W} \text{ m}^{-2}$.

Rat A also receives radiation from the Sun, which is $S \times (50\% \text{ of } 1.37 \text{ kW m}^{-2}) = S \times 685 \text{ W m}^{-2}$.

Therefore, the ratio between radiation received from the Sun and radiation received from rat B is S \times 685 W m⁻² / S \times 0.03638 W m⁻² = **18,829**