Summary Tables Supplement

Table 1.2 Frequency Response of STC Networks					
	Low-Pass (LP)	High-Pass (HP)			
Transfer Function $T(s)$	$\frac{K}{1 + (s/\omega_0)}$	$\frac{Ks}{s+\omega_0}$			
Transfer Function (for physical frequencies) $T(j\omega)$	$\frac{K}{1+j(\omega/\omega_0)}$	$\frac{K}{1 - j(\omega_0/\omega)}$			
Magnitude Response $ T(j\omega) $	$\frac{ K }{\sqrt{1+(\omega/\omega_0)^2}}$	$\frac{ K }{\sqrt{1+(\omega_0/\omega)^2}}$			
Phase Response $\angle T(j\omega)$	$-\tan^{-1}(\omega/\omega_0)$	$\tan^{-1}(\omega_0/\omega)$			
Transmission at $\omega = 0$ (dc)	Κ	0			
Transmission at $\omega = \infty$	0	Κ			
3-dB Frequency	$\omega_0 = 1/\tau; \ \tau \equiv \text{time co}$ $\tau = CR \text{ or } L/R$	nstant			
Bode Plots	in Fig. 1.23	in Fig. 1.24			

Table 2.1 Characteristics of the Ideal Op Amp

- 1. Infinite input impedance
- 2. Zero output impedance
- 3. Zero common-mode gain or, equivalently, infinite common-mode rejection
- 4. Infinite open-loop gain A
- 5. Infinite bandwidth

Table 3.1 Summary of Important Semiconductor Equations					
Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Si at $T = 300$ K)			
Carrier concentration in intrinsic silicon (cm ⁻³)	$n_i = BT^{3/2} e^{-E_g/2kT}$	$B = 7.3 \times 10^{15} \text{ cm}^{-3} \text{K}^{-3/2}$ $E_g = 1.12 \text{ eV}$ $k = 8.62 \times 10^{-5} \text{ eV/K}$ $n_i = 1.5 \times 10^{10}/\text{cm}^3$			
Diffusion current density (A/cm ²)	$J_{p} = -qD_{p}\frac{dp}{dx}$ $J_{n} = qD_{n}\frac{dn}{dx}$	$q = 1.60 \times 10^{-19}$ coulomb $D_p = 12 \text{ cm}^2/\text{s}$ $D_n = 34 \text{ cm}^2/\text{s}$			
Drift current density (A/cm ²)	$J_{\rm drift} = q \left(p \mu_p + n \mu_n \right) E$	$\mu_p = 480 \text{ cm}^2/\text{V} \cdot \text{s}$ $\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}$			
Resistivity ($\Omega \cdot cm$)	$\rho = 1/[q(p\mu_p + n\mu_n)]$	μ_p and μ_n decrease with the increase in doping concentration			
Relationship between mobility and diffusivity	$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T$	$V_T = kT/q \simeq 25.9 \text{ mV}$			
Carrier concentration in n -type silicon (cm ⁻³)	$n_{n0} \simeq N_D$ $p_{n0} = n_i^2 / N_D$				
Carrier concentration in p -type silicon (cm ⁻³)	$\begin{array}{l} p_{p0}\simeq N_A \\ n_{p0}=n_i^2/N_A \end{array}$				
Junction built-in voltage (V)	$V_0 = V_T \ln\!\left(\frac{N_A N_D}{n_i^2}\right)$				
Width of depletion region (cm)	$\begin{aligned} \frac{x_n}{x_p} &= \frac{N_A}{N_D} \\ W &= x_n + x_p \\ &= \sqrt{\frac{2e_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)} \end{aligned}$	$e_s = 11.7e_0$ $e_0 = 8.854 \times 10^{-14}$ F/cm			

Table 3.1 continued		
Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Si at $T = 300$ K)
Charge stored in depletion layer (coulomb)	$Q_J = q \frac{N_A N_D}{N_A + N_D} AW$	
Forward current (A)	$I = I_p + I_n$ $I_p = Aqn_i^2 \frac{D_p}{L_p N_D} \left(e^{VV_T} - 1 \right)$ $I_n = Aqn_i^2 \frac{D_n}{L_n N_A} \left(e^{VV_T} - 1 \right)$	
Saturation current (A)	$I_{S} = Aqn_{i}^{2} \left(\frac{D_{p}}{L_{p}N_{D}} + \frac{D_{n}}{L_{n}N_{A}} \right)$	
<i>I–V</i> relationship	$I = I_S \left(e^{V V_T} - 1 \right)$	
Minority-carrier lifetime (s)	$\tau_p = L_p^2 / D_p \qquad \tau_n = L_n^2 / D_n$	$L_p, L_n = 1 \ \mu \text{m}$ to 100 μm $\tau_p, \tau_n = 1 \ \text{ns}$ to $10^4 \ \text{ns}$
Minority-carrier charge storage (coulomb)	$Q_p = \tau_p I_p \qquad Q_n = \tau_n I_n$ $Q = Q_p + Q_n = \tau_T I$	
Depletion capacitance (F)	$C_{j0} = A_{\sqrt{\left(\frac{e_{s}q}{2}\right)\left(\frac{N_{A}N_{D}}{N_{A}+N_{D}}\right)\frac{1}{V_{0}}}}$ $C_{j} = C_{j0} / \left(1 + \frac{V_{R}}{V_{0}}\right)^{m}$	$m = \frac{1}{3} \text{ to } \frac{1}{2}$
Diffusion capacitance (F)	$C_d = \left(\frac{\tau_T}{V_T}\right)I$	

Table 4.1 Diode m	odels
Exact	$i = I_s (e^{v/V_T} - I), V_T = \frac{kT}{q}$ $k = Boltzmann's constant = 8.62 \times 10^{-5} eV/K = 1.38 \times 10^{-23} J/K$ T = the absolute temperature in Kelvin = 273 + temperature in °C $q =$ the magnitude of electronic charge = 1.60×10^{-19} coulomb $V_2 - V_1 = 2.3 V_T \log \frac{I_2}{I_1}$
Constant voltage drop model	$ \begin{array}{c} \stackrel{i}{\longrightarrow} \\ \stackrel{+}{\longrightarrow} \\ \stackrel{v_D}{\longrightarrow} \\ \stackrel{-}{\longrightarrow} \\ i > 0, v_D = 0.7 \text{ V} \end{array} $
Reverse bias model	V_{Z}
Small-signal model	$r_d = \frac{V_T}{I_D}$

ST-8 Summary Tables Supplement

Table 6.1	BJT Modes of Operation			
Mode	EBJ	СВЈ		
Cutoff Active Saturation	Reverse Forward Forward	Reverse Reverse Forward		

 Table 6.2
 Summary of the BJT Current–Voltage Relationships in the Active Mode

 $i_{C} = I_{S} e^{v_{BE}/V_{T}}$ $i_{B} = \frac{i_{C}}{\beta} = \left(\frac{I_{S}}{\beta}\right) e^{v_{BE}/V_{T}}$ $i_{E} = \frac{i_{C}}{\alpha} = \left(\frac{I_{S}}{\alpha}\right) e^{v_{BE}/V_{T}}$ *Note:* For the *pnp* transistor

Note: For the *pnp* transistor, replace v_{BE} with v_{EB} .

$$i_{C} = \alpha i_{E}$$

$$i_{B} = (1 - \alpha)i_{E} = \frac{i_{E}}{\beta + 1}$$

$$i_{C} = \beta i_{B}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$i_{E} = (\beta + 1)i_{B}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$V_{T} = \text{thermal voltage} = \frac{kT}{q} \simeq 25 \text{ mV at room temperature}$$

©2020 Oxford University Press

Table 7.1 Systematic Procedure for the Analysis of Transistor Amplifier Circuits

- 1. Eliminate the signal source and determine the dc operating point of the transistor.
- 2. Calculate the values of the parameters of the small-signal model.
- 3. Eliminate the dc sources by replacing each dc voltage source by a short circuit and each dc current source by an open circuit.
- 4. Replace the transistor with one of its small-signal, equivalent-circuit models. Although any of the models can be used, one might be more convenient than the others for the particular circuit being analyzed. This point is made clearer in Section 7.3.
- 5. Analyze the resulting circuit to determine the required quantities (e.g., voltage gain, input resistance).

Table 7.2 Small-Signal Models of the MOSFET

Small-Signal Parameters

NMOS transistors

Transconductance:

$$g_m = \mu_n C_{ox} \frac{W}{L} V_{OV} = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = \frac{2I_D}{V_{OV}}$$

Output resistance:

$$r_o = V_A / I_D = 1 / \lambda I_I$$

PMOS transistors

Same formulas as for NMOS *except* using $|V_{OV}|$, $|V_A|$, $|\lambda|$ and replacing μ_n with μ_n .

Small-Signal, Equivalent-Circuit Models

©2020 Oxford University Press

	Characteristics				
Amplifier type	R _{in}	A_{vo}	R_o	A_v	G_v
Common source (Fig. 7.36)	∞	$-g_m R_D$	R_D	$-g_m(R_D \parallel R_L)$	$-g_m \big(R_D \ R_L \big)$
Common source with R_s (Fig. 7.38)	∞	$-\frac{g_m R_D}{1+g_m R_s}$	R _D	$\frac{-g_m(R_D \parallel R_L)}{1+g_m R_s}$	$-\frac{g_m(R_D \parallel R_L)}{1+g_m R_s}$
				$-\frac{R_D \parallel R_L}{1/g_m + R_s}$	$-\frac{R_D \ R_L}{1/g_m + R_s}$
Common gate (Fig. 7.40)	$\frac{1}{g_m}$	$g_m R_D$	R _D	$g_m(R_D \parallel R_L)$	$\frac{R_D \parallel R_L}{R_{\rm sig} + 1/g_m}$
Source follower (Fig. 7.43)	∞	1	$\frac{1}{g_m}$	$\frac{R_L}{R_L + 1/g_m}$	$\frac{R_L}{R_L + 1/g_m}$

^b The MOSFET output resistance r_o is not taken into account in these formulas.

Table 7.5 Characteristics of BJT Amplifiers ^{a,b,c}					
	$R_{ m in}$	A_{vo}	R_o	A_v	G_v
Common emitter (Fig. 7.37)	$(\beta + 1)r_e$	$-g_m R_C$	R _C	$-g_m \left(R_C \parallel R_L \right) \\ -\alpha \frac{R_C \parallel R_L}{r_e}$	$-\beta \frac{R_C \ R_L}{R_{\rm sig} + (\beta + 1)r_e}$
Common emitter with R_e (Fig. 7.39)	$(\beta+1)\bigl(r_e+R_e\bigr)$	$-\frac{g_m R_c}{1+g_m R_e}$	R _C	$\frac{-g_m(R_C \parallel R_L)}{1 + g_m R_e}$ $-\alpha \frac{R_C \parallel R_L}{r_e + R_e}$	$-\beta \frac{R_{c} \ R_{L}}{R_{\text{sig}} + (\beta + 1)(r_{e} + R_{e})}$
Common base (Fig. 7.41)	r _e	$g_m R_C$	R _C	$g_m \left(R_C \parallel R_L \right)$ $\alpha \frac{R_C \parallel R_L}{r_e}$	$\alpha \frac{R_C \parallel R_L}{R_{\rm sig} + r_e}$
Emitter follower (Fig. 7.44)	$(\beta+1)(r_e+R_L)$	1	r _e	$\frac{R_L}{R_L + r_e}$	$\begin{aligned} \frac{R_L}{R_L + r_e + R_{\rm sig}/(\beta + 1)} \\ G_{vo} &= 1 \\ R_{\rm out} &= r_e + \frac{R_{\rm sig}}{\beta + 1} \end{aligned}$

^a For the interpretation of R_m , A_{vo} , and R_o refer to Fig. 7.35.

^b The BJT output resistance r_o is not taken into account in these formulas.

^c Setting $\beta = \infty$ ($\alpha = 1$) and replacing r_e with $1/g_m$, R_C with R_D , and R_e with R_s results in the corresponding formulas for MOSFET amplifiers (Table 7.4).

Table 8.1	Gain Distrib	ution in the	MOS Casco	ode Amplifier for	Various Values of	R _L
Case	R_L	R _{in2}	R_{d1}	A_{v1}	A_{v2}	A_v
1	∞	∞	r_o	$-g_m r_o$	$g_m r_o$	$-(g_m r_o)^2$
2	$(g_m r_o) r_o$	r _o	$r_o/2$	$-\frac{1}{2}(g_m r_o)$	$g_m r_o$	$-\frac{1}{2}(g_m r_o)^2$
3	r _o	$\frac{2}{g_m}$	$\frac{2}{g_m}$	-2	$\frac{1}{2}(g_m r_o)$	$-(g_m r_o)$
4	0.2 <i>r</i> ₀	$\frac{1.2}{g_m}$	$\frac{1.2}{g_m}$	-1.2	$0.17(g_m r_o)$	$-0.2(g_m r_o)$

		Refer to Figs.	11.14 11.16	11.28 11.29	11.21	11.25
	R_{of}		$\frac{R_o}{1+A\beta}$	$R_o(1+A\beta)$	$R_o(1+A\beta)$	$\frac{R_o}{1+A\beta}$
		R_{if}	$R_i(1+A\beta)$	$\frac{R_i}{1+A\beta}$	$R_i(1+A\beta)$	$\frac{R_i}{1+A\beta}$
	To Find β , Apply to	Port 2 of Feedback Network	a voltage, and find the open-circuit voltage at port 1	a current, and find the short-circuit current at port 1	a current, and find the open-circuit voltage at port 1	a voltage, and find the short-circuit current at port 1
	f Feedback s Obtained	At Output	By open- circuiting port 1 of feedback network	By short- circuiting port 1 of feedback network	By open- circuiting port 1 of feedback network	By short- circuiting port 1 of feedback network
ogies	Loading of Network Is	At Input	By short- circuiting port 2 of feedback network	By open- circuiting port 2 of feedback network	By open- circuiting port 2 of feedback network	By short- circuiting port 2 of feedback network
plifier Topo		Source Form	Thévenin	Norton	Thévenin	Norton
-Am		A_{f}	$\frac{N_o}{N_s}$	$\frac{I_o}{I_s}$	$\frac{1}{\sqrt{s}}$	$\frac{V_o}{I_s}$
edbac		β	$\frac{V_{f}}{V_{o}}$	$rac{I_f}{I_o}$	$P_o = \frac{V_f}{V_o}$	$rac{I_f}{V_o}$
ur Fee		V	$\frac{V_{i}}{V_{i}}$	$\frac{I_o}{I_i}$	$\frac{I_o}{V_i}$	$rac{V_o}{I_i}$
ne Fo		χ_s	V.	I_s	2*	I_s
for tl		x_f	V_f	I_f	V_{t}	I_f
ships		x_o	V_0	I_o	I_o	$\sim 10^{\circ}$
ation		x_i	V_i	I_i	V_i	I_i
mmary of Rel		Feedback Topology	Series-Shunt	Shunt-Series	Series-Series	Shunt–Shunt
Table 11.2 Su		Feedback Amplifier	Voltage	Current	Transconductance	Transresistance

Table	16.1 Important Parameters of the VTC of the Logic Inverter (Refer to Fig. 16.13)
V_{OL} :	Output low level
V_{OH} :	Output high level
V_{IL} :	Maximum value of input interpreted by the inverter as a logic 0
V_{IH} :	Minimum value of input interpreted by the inverter as a logic 1
NM_L :	Noise margin for low input = $V_{IL} - V_{OL}$
NM_{H} :	Noise margin for high input = $V_{OH} - V_{IH}$

Table 17.1	Implications of Device and Voltage Scaling				
	Parameter	Relationship	Scaling Factor		
1	W, L, t _{ox}		1/S		
2	V_{DD}, V_t		1/S		
3	Area/Device	WL	$1/S^{2}$		
4	C _{ox}	ϵ_{ox}/t_{ox}	S		
5	k_n^\prime, k_p^\prime	$\mu_n C_{ox}, \mu_p C_{ox}$	S		
6	$C_{\rm gate}$	WLC _{ox}	1/S		
7	t_P (intrinsic)	$\alpha C/k' V_{DD}$	1/S		
8	Energy/Switching cycle (intrinsic)	CV_{DD}^2	1/S ³		
9	P _{dyn}	$f_{\max}CV_{DD}^2 = \frac{CV_{DD}^2}{2t_P}$	1/S ²		
10	Power density	$P_{\rm dyn}$ /Device area	1		

Table 17.2 Summary of Important Speed and Power Characteristics of the CMOS Logic Inverter

Propagation Delay

Using average currents (Fig. 17.4): $t_{PHL} \simeq \frac{\alpha_n C}{k'_n (W/L)_n V_{DD}} \text{ where } \alpha_n = \frac{2}{\frac{7}{4} - \frac{3V_m}{V_{DD}} + \left(\frac{V_m}{V_{DD}}\right)^2}$ $t_{PLH} \simeq \frac{\alpha_p C}{k'_p (W/L)_p V_{DD}} \text{ where } \alpha_p = \frac{2}{\frac{7}{4} - \frac{3|V_m|}{V_{DD}} + \left(\frac{|V_m|}{V_{DD}}\right)^2}$

Using equivalent resistances (Fig. 17.5):

$$t_{PHL} = 0.69R_NC \text{ where } R_N = \frac{R_{eff,N}(W_{eff}/L_{eff})}{(W_n/L_n)}$$
$$t_{PLH} = 0.69R_PC \text{ where } R_P = \frac{R_{eff,P}(W_{eff}/L_{eff})}{(W_p/L_p)}$$

For a ramp-input signal, $t_{PHL} \simeq R_N C$ and $t_{PLH} \simeq R_P C$.

Power Dissipation

$$P_{dyn} = fCV_{DD}^{2}$$
$$PDP = P_{D} \times t_{P}$$
$$EDP = PDP \times t_{P}$$

©2020 Oxford University Press

©2020 Oxford University Press

Table G.3 continued		
	NMOS	npn
Transconductance g _m	$g_m = I_D / (V_{OV}/2)$ $g_m = (\mu_n C_{or}) \left(\frac{W}{T}\right) V_{OV}$	$g_m = I_C / V_T$
	$g_m u \sqrt{2(\mu_n C_{ox}) \left(\frac{W}{L}\right) I_D}$	
Output Resistance r_o	$r_o = V_A / I_D = \frac{V_A' L}{I_D}$	$r_o = V_A / I_C$
Intrinsic Gain $A_0 \equiv g_m r_o$	$A_0 = V_A / (V_{OV}/2)$ $A_0 = \frac{2V_A'L}{V_{OV}}$	$A_0 = V_A / V_T$
	$A_0 = \frac{V_A' \sqrt{2\mu_n C_{ox} WL}}{\sqrt{I_D}}$	
Input Resistance with Source (Emitter) Grounded	∞	$r_{\pi} = \beta / g_m$
High-Frequency Model	$G \circ \begin{array}{c} C_{gd} \\ + \\ V_{gs} \\ - \\ C_{gs} \\ g_m V_{gs} \\ + \\ r_o \\ - \\ \end{array} $	$ \circ D B \circ \overset{r_x B'}{\longrightarrow} c_{\pi} $
	o S	o E
Capacitances	$C_{gs} = \frac{2}{3} WLC_{ox} + WL_{ov}C_{ox}$	$\begin{array}{l} C_{\pi} = C_{de} + C_{je} \\ C_{de} = \tau_F g_m \\ C_{je} \simeq 2 C_{je0} \end{array}$
	$C_{gd} = WL_{ov}C_{ax}$	$C_{\mu}=C_{\mu0} / \left[1+rac{V_{CB}}{V_{C0}} ight]^m$
Transition Frequency f_T	$f_T = \frac{g_m}{2\pi \left(C_{gs} + C_{gd}\right)}$	$f_T = \frac{g_m}{2\pi \left(C_\pi + C_\mu\right)}$
	For $C_{gs} \gg C_{gd}$ and $C_{gs} \simeq \frac{2}{3} WLC_{ox}$, $f_T \simeq \frac{1.5\mu_n V_{OV}}{2\pi L^2}$	For $C_{\pi} \gg C_{\mu}$ and $C_{\pi} \simeq C_{de}$, $f_T \simeq \frac{2\mu_n V_T}{2\pi W_B^2}$
Design Parameters	$I_D, V_{OV}, L, \frac{W}{L}$	$I_C, V_{BE}, A_E $ (or I_S)
Good Analog Switch?	Yes, because the device is symmetrical and thus the $i_D - v_{DS}$ characteristics pass directly through the origin.	No, because the device is asymmetrical with an offset voltage V_{CEOff} .

©2020 Oxford University Press

Table J.1 Standard Resistance Values							
	1% Resistor Values (k Ω)						
5% Resistor Values (k Ω)	100-174	178-309	316–549	562–976			
10	100	178	316	562			
11	102	182	324	576			
12	105	187	332	590			
13	107	191	340	604			
15	110	196	348	619			
16	113	200	357	634			
18	115	205	365	649			
20	118	210	374	665			
22	121	215	383	681			
24	124	221	392	698			
27	127	226	402	715			
30	130	232	412	732			
33	133	237	422	750			
36	137	243	432	768			
39	140	249	442	787			
43	143	255	453	806			
47	147	261	464	825			
51	150	267	475	845			
56	154	274	487	866			
62	158	280	499	887			
68	162	287	511	909			
75	165	294	523	931			
82	169	301	536	953			
91	174	309	549	976			

Table J.2	SI Unit Prefixes	
Name	Symbol	Factor
femto	f	$\times 10^{-15}$
pico	р	$\times 10^{-12}$
nano	n	$\times 10^{-9}$
micro	μ	$\times 10^{-6}$
milli	m	$\times 10^{-3}$
kilo	k	$\times 10^3$
mega	М	$\times 10^{6}$
giga	G	$\times 10^9$
tera	Т	$\times 10^{12}$
peta	Р	$\times 10^{15}$

 Table J.3
 Meter Conversion Factors

 $1 \ \mu m = 10^{-4} \ cm = 10^{-6} \ m$
 $1 \ m = 10^2 \ cm = 10^6 \ \mu m = 10^9 \ nm$
 $0.1 \ \mu m = 100 \ nm$
 $1 \ \AA = 10^{-8} \ cm = 10^{-10} \ m$

Table K.1 Typical Values of CMOS Device Parameters														
	0.	8 µm	0.	5 µm	0.2	25 µm	0.1	8 µm	0.1	3 µm	65	nm	28	3 nm
Parameter	NMO	S PMOS	NMO	S PMOS	NMO	S PMOS	NMO	S PMOS	NMOS	S PMOS	NMOS	S PMOS	NMOS	PMOS
t _{ox} (nm)	15	15	9	9	6	6	4	4	2.7	2.7	1.4	1.4	1.4	1.4
C_{ox} (fF/ μ m ²)	2.3	2.3	3.8	3.8	5.8	5.8	8.6	8.6	12.8	12.8	25	25	34	34
$\mu (\text{cm}^2/\text{V}\cdot\text{s})$	550	250	500	180	460	160	450	100	400	100	216	40	220	200
$\mu C_{ox}(\mu A/V^2)$	127	58	190	68	267	93	387	86	511	128	540	100	750	680
V_{t0} (V)	0.7	-0.7	0.7	-0.8	0.5	-0.6	0.5	-0.5	0.4	-0.4	0.35	-0.35	0.3	-0.3
V_{DD} (V)	5	5	3.3	3.3	2.5	2.5	1.8	1.8	1.3	1.3	1.0	1.0	0.9	0.9
$ V'_A $ (V/µm)	25	20	20	10	5	6	5	6	5	6	3	3	1.5	1.5
C_{ov} (f F/µm)	0.2	0.2	0.4	0.4	0.3	0.3	0.37	0.33	0.36	0.33	0.33	0.31	0.4	0.4

Table K.2 Typical Parameter Values for BJTs*									
	Standard High	-Voltage Process	Advanced Low	Advanced Low-Voltage Process					
Parameter	npn	Lateral pnp	npn	Lateral pnp					
A_{F} (µm ²)	500	900	2	2					
$I_{s}(A)$	5×10^{-15}	2×10^{-15}	6×10^{-18}	6×10^{-18}					
β_0 (A/A)	200	50	100	50					
V_A (V)	130	50	35	30					
V_{CEO} (V)	50	60	8	18					
τ_F	0.35 ns	30 ns	10 ps	650 ps					
C_{ie0}	1 pF	0.3 pF	5 fF	14 fF					
$C_{\mu 0}$	0.3 pF	1 pF	5 fF	15 fF					
$r_x(\Omega)$	200	300	400	200					
*Adapted from Gray et al. (2001); see Appendix I.									