CONTENTS

- 1. How to enter data to do a Spearman correlation.
- 2. How to do a Spearman correlation.

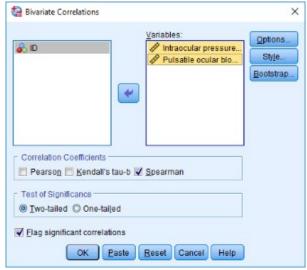
1. How to enter data to do a Spearman correlation.

For general advice on data entry see the "How to enter data into SPSS" help sheet.

Data used in correlations are related: Data from the one variable go in one column and data for the other variable in another column. Related data points must be in the same case (i.e., row). In this example, one variable is eye and the other variable is *blood*. Eye (variable label = Intraocular pressure) is measured in microlitres per minute and is a scale level of measurement. Blood (variable label = Pulsatile ocular blood flow) is measured in microlitres per minute. ID indicates the identity of the person from whom the data were collected.

Variable View 4e_Chapter12_eye_blood.sav [DataSet1] - IBM SPSS Statistics Data Editor × Elle Edit View Data Transform Analyze Direct Marketing Graphs Utilities Extensions Window Help ▙ ᆿ 47 5 7 H ABC 1 Decimals Missing Columns Name Туре Width Label Values Align Measure ID Numeric 8 0 None 8 E Right Nominal None E Right Scale 8 1 None 8 2 eye Numeric Intraocular pres. None 3 blood Numeric 8 0 Pulsatile ocular... None None 8 E Right Scale 4 Data View Variable View IBM SPSS Statistics Processor is ready Unicode:ON

	ew (value		on and	оп)	
ta 4e_Chapte	er12_eye_blood.sa	w [DataSet1] -	IBM SPSS St	— C) ×
<u>File Edit View</u>	Data Transfo Ar	nalyz Direct Ma	arkı <u>G</u> raph <u>U</u> tili	tie E <u>x</u> tensic <u>)</u>	Windo <u>H</u> elp
			M 👬	▙	1 H
				Visible: 3 of	3 Variables
	💰 ID	🔗 eye	🛷 blood	var	va
1	1	15.3	858		-
2	2	11.3	1192		


Data View (Value Labels on and off)

Visible: 3 of 3 Variables							
	💰 ID	🔗 eye	n blood	var	va		
1	1	15.3	858		4		
2	2	11.3	1192				
3	3	17.3	987				
4	4	14.4	1264				
5	5	15.1	1372				
6	6	18.6	649				
7	7	18.1	979				
8	8	21.7	523				
9	9	13.8	1177				
10	10	9.2	1060				
	4				Þ		

2. How to do a Spearman Correlation.

To get SPSS to conduct a Spearman correlation: Open your data file. Select: Analyze – Correlate – Bivariate...

This will bring up the Bivariate Correlations window:

Select the variables that you want to analyse, and send them to the **Variables** box (in this example *Intraocular pressure* and *Pulsatile ocular blood flow*). Make sure that the **Spearman** option is selected. (NB: You can do a Peason and/or Kendal's correlation at the same time by also selecting these options). Click **OK**.

The key elements of the output are:

Correlations					
			Intraocular pressure, IOP (mmHg)	Pulsatile ocular blood flow, POBF (microlitres/m in)	
Spearman's rho	Intraocular pressure, IOP (mmHg)	Correlation Coefficient	1.000	576	Statistic (r _s)
		Sig. (2-tailed)	54	.008	• P
		N	20	20	Number of
	Pulsatile ocular blood flow, POBF (microlitres/min)	Correlation Coefficient	576	1.000	objects (N)
		Sig. (2-tailed)	.008		
		N	20	20	

**. Correlation is significant at the 0.01 level (2-tailed).

In summary the key information from the test is r_s = -0.576, N=20, P = 0.008