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Solutions for Chapter 14  2

Section 14.2 

 
1. Show that the function ( ) sin ( ) cos ( )f x t a bx bt, = v  (i) satisfies the 1-dimensional wave equation 

(14.1), (ii) has the form ( ) ( ) ( )f x t F x t G x, = + + −v vt . 

 
 (i) We have  ( ) sin ( ) cos ( )f x t a bx bt, = v  

  Then  
2

2 2
2

2
2 2 2 2

2

cos ( ) cos ( ), sin ( ) cos ( )

sin ( ) sin ( ), sin ( ) sin ( )

f fba bx bt b a bx bt b f
x x
f fba bx bt b a bx bt b f
t t

∂ ∂
= = −

∂ ∂
∂ ∂

= = −
∂ ∂

v v

v v v v

= −

= −v

 

  Therefore 
2 2

2 2
1

2
f f

x t
∂ ∂

=−
∂ ∂v

 

 (ii) We have  1sin cos sin( ) sin( )
2

A B A B A⎡ ⎤= + + −⎣ ⎦B  

  Therefore ( ) sin ( ) cos ( ) sin( ) sin( )
2
af x t a bx bt bx bt bx bt⎡ ⎤, = = + + −⎣ ⎦v v v  

 
 

2. The diffusion equation 
2

2
f fD
t x

∂ ∂
=

∂ ∂
 provides a model of, for example, the transfer of heat from a  

 hot region of a system to a cold region by conduction when ( , )f x t  is a temperature field, or the 

transfer of matter from a region of high concentration to one of low concentration when f is the 

concentration. Find the functions  for which ( )V x ( ) ( ) ctf x t, =V x e  is a solution of the equation.  

 

 We have   
2 2

2 2( ) ( ) , ( ) ,ct ct ctf f d Vf x t V x e cV x e e
t x dx
∂ ∂

, = = =
∂ ∂

 

 Then   
2 2

2 2

2

2

( ) ct ctf f d VD cV x e D e
t x d

d V c V
Ddx

∂ ∂
= → =

∂ ∂

→ =

x
 

 The type solution depends on the value of c D : 

 (a) 0c D =   
2

2 0d V V a bx
dx

= → = +  

 (b) 2 0c D λ= >  0 x xc D V ae beλ λλ −= > → = +  

 (c) 2 0c D λ= >  cos sinV a x b xλ λ= +  
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Solutions for Chapter 14  3

 
3. (i) It is shown in Example 14.2 that the function 2( ) exp [ ( ) ]f x t a b x t, = − −v  is a solution of the 

wave equation (14.1). Sketch graphs of ( )f x t,  as a function of x at times 0t = , 2t = v , 4t = v  

(use, for example, ) to demonstrate that the function represents a wave travelling to the 1a b= =

right (in the positive x–direction) at constant speed v . 

 (ii)  Verify that 2( ) exp [ ( ) ]g x t a b x t, = − + v  is also a solution of the wave equation, and hence 

that every superposition ( , ) ( , ) ( , )F x t f x t g= x t+  is a solution. (iii) Sketch appropriate graphs of 

( , ) ( , )f x t g x t+  to demonstrate how this function develops in time. 

 
 (i) The function 2( ) exp [ ( ) ]f x t a b x t, = − −v  represents a Gaussian wave whose centre lies at 

 x t= v .  The centre moves to the right (the positive x-direction) with constant speed 

 dx dt = v . Figure 1 shows the wave at times 0t = , 2t = v , 4t = v . 

 

  Figure 1 

 

  

  

 (ii) Function ( , )g x t  is obtained from ( , )f x t  by replacement if  by v −v ,  and has the same  

  second derivative with respect to time t, proportional to , as in Example 14.2. Thus 2v

     
2 2

2 2 2 2
1 1

( )

2

2
g g g

x t t
∂ ∂ ∂

= =
∂ − ∂ ∂v v

 

  Then  
2 2 2 2 2 2

2 2 2 2 2 2 2

2 2

2 2 2 2

( )

1 1( )

2
F f g a f baf bg a b g

x x x x t

Faf bg
t t

t
∂ ∂ ∂ ∂ ∂

= + = + = +
∂

∂ ∂ ∂ ∂ ∂

∂ ∂
= + =

∂ ∂

v v

v v

∂
 

 (iii) In Figure 2, the component f of F f g= +

0

 moves to the right with constant speed v , the 

 component g to the left with the same speed; that is, the components separate as t increases. 

 The amplitude of the total wave at t =  is twice that of the components, but decrease with t to 

 that of the separate components.  

 

 

  Figure 2 
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Section 14.3 
 
 
Find solutions of the following equations by the method of separation of variables: 

 

4. 2 0f f
x t
∂ ∂

+ =
∂ ∂

 

 Let   ( , ) ( ) ( )f x t F x G t= ×  

 Then  ( ) ( )( ), ( )f dF x f dG tG t F x
x dx t dt
∂ ∂

= × = ×
∂ ∂

 

 and   ( ) ( )2 0 2 ( ) ( )f f dF x dG tG t F x
x t dx dt
∂ ∂ 0+ = → + =
∂ ∂

 

 Division throughout by ( ) ( )f F x G y= ×  gives 

    2 ( ) 1 ( ) 0
( ) ( )

dF x dG t
F x dx G t dt
⎡ ⎤ ⎡

+ =⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

 

 The two sets of terms in square brackets must be separately constant if x and t are independent 

variables. Therefore, if the first set of terms equals the constant C then the second set is equal to  

  (for the total to be zero). The resulting ordinary first-order equation in variable x is  C−

    2 ( ) ( ) ( )
( ) 2

dF x dF x CC F
F x dx dx
⎡ ⎤

= → =⎢ ⎥
⎣ ⎦

x  

 with general solution  2( ) CxF x ae= . The corresponding equation in variable t is 

    1 ( ) ( ) ( )
( )

dG t dG tC C
G t dt dt
⎡ ⎤

= − → = −⎢ ⎥
⎣ ⎦

G t  

 with general solution . A complete solution is therefore ( ) CtG t be−=

    

2 (

( 2 )

( , ) ( ) ( )

Cx Ct C x t

B x t

f x t F x G t

ae be abe

Ae

− −

−

= ×

= × =

=

2 )

 

 where A and B are arbitrary constants. 
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5. 0f fy x
x y
∂ ∂

− =
∂ ∂

 

 Let   ( , ) ( ) ( ) ,f dF f dGf x y F x G y G F
x dx y dy
∂ ∂

= × → = × = ×
∂ ∂

 

 Then  0 0

1 1 0

f f dF dGy x y G xF
x t dx dy

dF dG
xF dx yG dy

∂ ∂
− = → − =

∂ ∂

⎡ ⎤⎡ ⎤
→ − ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
=

 

 Putting each set of terms equal to constant C, we have (see Section 11.3) 

    

2

2

2

ln
2

C x

dF dF xCxF C x dx F C c
dx F

F ae

= → = → = +

→ =

∫ ∫  

 Similarly, 
2 2C ydg CyG G be

dy
= → =  

 Therefore 
2 2 2 2( ) 2 (( , ) C x y B x yf x y abe Ae+ += = )  

 

 

6. 
2 2

2 2 0f f
x y

∂ ∂
+ =

∂ ∂
 

 Let   
2 2 2 2

2 2 2( , ) ( ) ( ) , 2
f d F f d Gf x y F x G y G F

x dx y dy
∂ ∂

= × → = × = ×
∂ ∂

 

 Then  
2 2 2 2 2 2

2 2 2 2 2 2
1 10 0f f d F d G d F d GG F
F Gx y dx dy dx dy

⎡ ⎤ ⎡ ⎤∂ ∂ 0+ = → × + × = → + =⎢ ⎥ ⎢ ⎥
∂ ∂ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 and   
2 2

2 2,d F d GCF CG
dx dy

= = −  

 As in Exercise 2, there are three possible types of solutions: 

 (a) :  0C =
( )

( , ) ( )( )
( )

F x a bx
f x y a bx c dy

G y c dy
= +⎧

→ = + +⎨ = +⎩
 

 (b) : 2 0C λ= >
( ) ( , ) ( )( cos sin )
( ) cos sin

x x
x xF x ae be f x y ae be c y d y

G y c y d y

λ λ
λ λ λ λ

λ λ

−
−⎧ = +⎪ → = + +⎨

= +⎪⎩
 

 (c) :   2 0C λ= <
( ) cos sin

( , ) ( cos sin )( )
( )

y y
y y

F x a x b x
f x y a x b x ce de

G y ce de
λ λ

λ λ

λ λ
λ λ −

−

= +⎧⎪ → = + +⎨
= +⎪⎩
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7. 
2

0f f
x y
∂

+ =
∂ ∂

 

 We have  
2

( , ) ( ) ( ) f dF dGf x y F x G y
x y dx dy
∂

= × → = ×
∂ ∂

 

 Then  
2 1 10  when 1 0f dF dG dF dGf FG
x y dx dy F dx G dy

⎡ ⎤⎡ ⎤∂
+ = × + = + =⎢ ⎥⎢ ⎥∂ ∂ ⎣ ⎦ ⎣ ⎦

 

 and   1,Cx y CdF dGCF F ae G G be
dx dy C

−= → = = − → =  

 Therefore ( )( , ) Cx y Cf x y Ae −=  

 

Section 14.4 
 
 
8. Show that the wave functions (14.23) satisfy the orthonormality conditions 

  , ,
0 0

1 if  and 
( , ) ( , )

0 otherwise          

b a

p q r s
p r q s

x y x y dxdyψ ψ
= =⎧

= ⎨
⎩∫ ∫  

 

 We have  2 π 2 π 2 π 2 πsin sin , sin sinp q r s
p x q y r x s y

a a b b a a b b
ψ ψ, ,

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= × = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎠

 

 Then  , ,
0 0

, ,
0 0

( , ) ( , )

2 π π 2 π πsin sin sin sin

b a

p q r s

a b

p r q s

I x y x y dxdy

p x r x q y s ydx dy I I
a a a b b b

ψ ψ=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫ = ×

 

 Remember 1sin sin cos( ) cos( )
2

Ax Bx A B x A B⎡ ⎤= − − +⎣ ⎦ x   

 Then, if π , πA p a B r a= = , where p and r are integers, 

  ,
0

2

0

sin( )π sin( )π 0 if  
( )π ( )π2 π πsin sin

2 π sin 2 πsin 1 1 if  
2 π

a

p r
a

p q p q p r
p q p qp x r xI dx

a a a p x pdx p r
a a p

⎧⎡ ⎤− +
− = ≠⎪⎢ ⎥− +⎪⎣ ⎦⎪⎛ ⎞ ⎛ ⎞= = ⎨⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎪ ⎡ ⎤⎛ ⎞ = − =⎪ ⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎣ ⎦⎩

∫
∫ =

 

 and similarly for . ,q sI
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9. (i) Find the energies (in units of 2 8h ma2 ) of the lowest 11 states of the particle in a square box of 

side a, and sketch an appropriate energy-level diagram. (ii) The six diagrams in Figure 14.2 are 

maps of the signs and nodes of the wave functions (14.27) for the lowest six states, using the real 

forms of the angular functions. Sketch the corresponding diagrams for the next five lowest states. 

 

 (i) By equation (14.26),  

    
2

2 2
2 ( )

8p q
hE p
ma, = + ,q  

  and the energies of the lowest 11 states are given by the corresponding lowest values of 

 : 2 2p q+

  
p q 2 2p q+  

1 1 2 

1 

2 

2
1
⎫
⎬
⎭

 5 

2 2 8 

1 

3 

3
1
⎫
⎬
⎭

 10 

2 

3 

3
2
⎫
⎬
⎭

 13 

1 

4 

4
1
⎫
⎬
⎭

 17 

3 3 18 

 

 

 

 

 

 

 (1,3), (3,1)     
 

 
(1,2), (2,1)     

(2,3), (3,2)     

(1,1)

(2,2)

(1,4), (4,1)     
(3,3)

5

10

15

20

0

 

 

 

  

 

  (ii)  Figure 3 
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10. (i) Solve the Schrödinger equation for the particle in a three-dimensional rectangular box with 

potential energy function 

  
0 for 0 0 0

( )
elsewhere

x a y b z
V x y z

< < , < < , < <⎧
, , = ⎨ ∞⎩

c
 

 (ii) What are the possible degeneracies of the eigenvalues for a cubic box? 

 
  The Schrödinger equation for a particle of mass m moving in three 3dimensions is 

     
2

2 ( , ) ( , ) ( , ) ( ,
2

)x y z V x y z x y z E x y z
m

ψ ψ− ∇ , + , , = ,
= ψ     

  where  is the 3-dimensional Laplacian operator. For the particle within the box, we have  

  the boundary value problem 

2∇

     
2 2 2 2

2 2 22
E

m x y z
ψ ψ ψ ψ

⎛ ⎞∂ ∂ ∂
− + + =⎜⎜ ∂ ∂ ∂⎝ ⎠

=
⎟⎟       

  with boundary conditions 

     

(0 , ) ( , ) 0 ( 0 when 0 and )

( 0, ) ( , ) 0 ( 0 when 0 and )

( ,0) ( , ) 0 ( 0 when 0 and )

y z a y z x x a

x z x b z y y b

x y x y c z z c

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

, = , = = = =

, = , = = = =

, = , = = = =

   

  As for the 2-dimensional rectangular box, but with 3 components for motion along the x, y,  

  and z directions,  

  let   ( , , ) ( ) ( ) ( )x y z X x Y y Z zψ = × ×  

  then   ,

2 2 2 2

, 2 2 2

2 π 2 π 2 π( , ) sin sin sin

8

p q r

p q r

p x q y r zx y z
a a b b c c

h p q rE
m a b c

ψ ,

,

⎛ ⎞ ⎛ ⎞ ⎛, = × ×⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

⎞,⎟
⎠

 

 (ii) For a cubic box, 

     
2

2 2 2
, 2 ( ), , , 1, 2, 3, 4,

8p q r
hE p q r p q r
ma, = + + = …  

  with   2,2,2

1,1,2 1,2,1 2,1,1

1,2,3 1,3,2 2,3,1 2,1,3 3,1,2 3,2,1

degeneracies: 1 if  ,  and   are all equal  (e.g. )

3 if  two only equal  (e.g. , , )

6 if  all  are different  (e.g. , , , , , )

p q r E

E E E

E E E E E E

 

 

 

© E Steiner 2008 



Solutions for Chapter 14  9

Section 14.5 
 
 
11. Some zeros of the Bessel functions ( )nJ x  are: 

   

0

1

2

3

4

( ) 0 for 2 4048 5 5201 8 6537
( ) 0 3 8317 7 0156 10 1736
( ) 0 5 1356 8 4172
( ) 0 6 3802 9 7610
( ) 0 7 5883

J x x
J x x
J x x
J x x
J x x

= = . , . , .
= = . , . , .
= = . , .
= = . , .
= = .

 (i) Find the energies (in units of 2 2ma= 2 ) of the lowest 10 states of the particle in a circular 

box of radius a, and sketch an appropriate energy-level diagram. (ii) The six diagrams in Figure 

14.3 are maps of the signs and nodes of the wave functions (14.47) for the lowest six states, using 

the real forms of the angular functions. Sketch the corresponding diagrams for the next four states. 

 

 (i) By equation (14.46),  

    
2 2

2 2
2 0 1 2 , 1, 2, 3,

2 2n k n k n kE x n k
m ma

α, , ,= = , = , ± , ± ,… =
= =

…  

  The energies of the lowest 10 states are given by the corresponding lowest values of 2
n kx , : 

  

 

 

 

 

 

 

 

 

 

 

 (ii)   Figure 4 

 

  

 

 

 

 

 

n  k  2
n kx ,  

0 1 5.783 

1±  1 14.682 

2±  1 26.374 

0 2 30.472 

3±  1 40.707 

1±  2 49.219 

50

( )        3, 1±

( )        1, 2±

40

20
( )        1, 1±

( )        2, 1±

(0, 1)

 

(0, 2)30

 

10

0
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Section 14.6 
 
 
12. (i) Make use of Tables 14.1 and 14.2 to write down the total wave function 1,0,0ψ  for the 

hydrogen-like atom. (ii) Substitute this wave function into the Schrödinger equation (14.52), and 

confirm that it is a solution of the equation with E given by (14.82). 

 

 (i) We have  1, 0, 0, 2n l m Zrρ= = = =  

  Then  
1 2

3 2
1,0,0 1,0 0,0

1 23

1( , , ) ( ) ( , ) 2
4π

π

Zr

Zr

r R r Y Z e

Z e

ψ θ φ θ φ
/

/ −

/
−

⎛ ⎞= × = ×⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

   
 (ii) The Schrödinger equation, equation (14.52), is 

     
2

2
2 2 2 2 2

1 1 1 2sin 2 0
sin sin

Zr E
r r rr r r

ψ ψ ψθ ψ
θ θθ θ φ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
ψ+ =  

  The wave function depends only on the radial variable r. Therefore 0ψ ψ
θ φ

∂ ∂
= =

∂ ∂
, and  

     2
2

1 2 2 0d d Zr E
dr dr rr

ψ ψ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  which is the radial equation (4.55) with 0l = . We have 

     
2

2
2,d dZ Z

dr dr
ψ ψψ ψ= − =  

  Therefore 
2

2
2 2

2

2

1 2 2 22 2

2 2 2

0  when  
2

d d Z d d Zr E
dr dr r r dr rr dr

Z ZZ E
r r

ZE

ψ ψ ψ Eψ ψ

ψ ψ ψ ψ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − + +

= = −

 

  and this is 
2

22n
ZE
n

= −  for  1.n =
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13. Repeat Exercise 12 for the wave function 2,1,0ψ . 

 

 (i) We have  2, 1, 0,n l m Zrρ= = = =  

  Then  
1 2

5 2 2
2,1,0 2,1 1,0

1 25
2

1 3( , , ) ( ) ( , ) cos
4π2 6

cos
32π

Zr

Zr

r R r Y Z r e

Z r e

ψ θ φ θ φ θ

θ

/
/ −

/
−

⎛ ⎞= × = ×⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

` 

 (ii) The Schrödinger equation, equation (14.52), is 

     
2

2
2 2 2 2 2

1 1 1 2sin 2 0
sin sin

Zr E
r r rr r r

ψ ψ ψθ ψ
θ θθ θ φ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
ψ+ =  

  We have, for the unnormalized wave function, 2 cosZrreψ θ−= ,  

     

2 2 2

22 2

2 2

2

2

2

2

2

1cos cos
2 2

1 1
2 4

sin tan

0

Zr Zr Zr

Zr

Z Zre e re
r r

Z Z Z
r rr r

re

ψψ θ θ

ψ

ψ

ψ ψ ψ

ψ θ θ ψ
θ

ψ ψ
θ

ψ ψ
φ φ

− − −

−

⎡ ⎤ ⎡ ⎤∂
= → = − = −⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤∂
= − + − = −⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

∂
= − = −

∂

∂
= −

∂

∂ ∂
= =

∂ ∂

 

  Therefore 
2

2
2 2

2

2 2 2 2

1 2 2
4

1 1 1sin
sin tan

Z Zr
r r rr r

r r r

ψ ψ

ψ ψ ψ
2

2
r

θ ψ
θ θ θθ θ θ

⎡ ⎤∂ ∂⎛ ⎞ = − +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦

∂ ∂ ∂ ∂⎛ ⎞ = + = −⎜ ⎟∂ ∂ ∂∂⎝ ⎠

 

  and   
2

2
2 2 2 2 2

2 2

1 1 1 2sin 2
sin sin

2 0  when  
4 8

Zr E
r r rr r r

Z ZE E

ψ ψ ψθ ψ ψ
θ θθ θ φ

ψ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤
= + = = −⎢ ⎥
⎢ ⎥⎣ ⎦

+  

  and this is 
2

22n
ZE
n

= −  for  2.n =
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14. Show that the radial functions  and  in Table 14.2 satisfy the orthogonality condition 1,0R 2,0R

(14.81). 

 

 We have  3 2
1,0

3 2 2
2,0

( ) 2

1( ) (2 )
2 2

Zr

Zr

R r Z e

R r Z Zr e

/ −

/ −

=

= −

 

 Then, ignoring the normalization constants, and making use of the standard integral     

    1
0

!n ar
n
nr e dr

a

∞
−

+
=∫  

 we have   2 2 3 3 2
1,0 2,0

0 0

3 4 4

( ) ( ) (2 )

2! 3! 1 32 4
2(3 2) (3 2) (3 2)

0

ZrI R r R r r dr r Zr e dr

Z 6Z Z
Z Z Z

∞ ∞
−= = −

⎡ ⎤ ⎡ ⎤
= − = × −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦

=

∫ ∫  
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15. The Schrödinger equation for the particle in a spherical box of radius a is   

 ( )2 22m V Eψ ψ ψ− ∇ + == ,  

 with potential energy function 

     for ( , , ) 0V x y z = 2 2 2r x y z= + + < a  and ∞ elsewhere.  

 (i) Show that the equation is separable in spherical polar coordinates, with the same angular wave 

functions, the spherical harmonics (14.68), as for the hydrogen atom. (ii) Show that the radial 

equation reduces to the Bessel equation (13.60) for spherical Bessel functions ( )lj x  where, as in 

Section 14.5 for the particle in a circular box, 22x mE r= = . (iii) Use the boundary condition to 

find an expression for the quantized energy in terms of the zeros of the Bessel functions. (iv) Find 

the wave function and energy of the ground state. 

 

 Put    ( , , ) ( ) ( , )r R r Yψ θ φ θ φ= ×  

 Then as in Section 14.6 for the hydrogen-like atom, but with 2
04πV Ze rε= −  replaced by  0V =

 inside the box, the Schrödinger equation separates into a radial equation,  

     2
2 2

1 ( 1) 2 0d dR l l mEr
dr drr r

+⎛ ⎞ ⎛ ⎞+ − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=2 R    (equation 1)   

 and an angular equation 

     
2

2 2
1 1sin ( 1) 0

sin sin
Y Y l l Yθ

θ θ θ θ φ
∂ ∂ ∂⎛ ⎞ + + + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (equation 2) 

 (i) Equation 2 for ( , )Y θ φ  is the same as equation (14.56) so that the angular functions  are the   

  spherical harmonics ( )l mY θ φ, , . 

 (ii) Equation 1 is 

     
2

2
2 2

2 ( 1) 0d R dR l l R
r drdr r

α +⎛ ⎞+ + − =⎜ ⎟
⎝ ⎠

 

  where 2 22mEα = = . Let x rα= . Then 
2 2

2
2 and  dR dR d R d R

dr dx dr dx
α= = 2α . Equation 1 can   

  then be written as  

     
2

2
2 2

2 ( 1)1 0d R dR l l R
x dxdx x

α
⎡ ⎤+⎛ ⎞+ + − =⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 

  or     2 22 ( 1)x R xR x l l R⎡ ⎤′′ ′+ + − + =⎣ ⎦ 0

  This is the Bessel equation (13.60) for the Bessel functions of half-integral order ( )lj x  and  

  ( )l xη , of which only the spherical Bessel functions ( )lj x  are finite for all 0x ≥ . The radial  
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  wave functions for the particle in a spherical box are therefore 

     ( ) ( ), 0, 1, 2,l lR r j r lα= = …  

 (iii) As for the particle in a circular box, Section 14.5, the wave function is subject to the boundary  

  condition  when . Therefore ( ) 0lR r = r a=

     ( ) ( ) 0l lR a j aα= =  

  so that the possible values of aα  are the zeros of the Bessel function. If the zeros are labelled  

  1, 2, 3,, , ,l l lx x x … , the allowed values of 22mEα = =  are  

     , , , 1, 2, 3,n l n lx a nα = = …  

  The energy is therefore quantized, with values 

     
2 2

2 2
2 1 2 3 , 0 1 2

2 2n l n l n lE x n l
m ma

α, , ,= = , = , , , = , , ,
= = … …     

  and the corresponding wave functions are 

     , , ,( ) ( ) ( ,n l m n l l mr R r Y )ψ θ θ,, = φ  

  where  ,( ) ( )n l l n lR r A j x r a, =     (A is a normalization constant) 

 (iv) For the ground state, 0,0 1 4πY = . From equations (13.55) and (13.59), 0
sin( ) xj x

x
= .  

  Therefore 1,0
1 0 0 1,0

1,0

sin( )
( ) ( )

( )
x r a

R r A j x r a A
x r a, = =  

  The first zero of 0
sin( ) xj x

x
=  is 1,0 πx = , when 1,0sin sin π 0x = = . Then 

     1 0
sin(π )( )

(π )
r aR r A

r a, =  

  and the total ground-state wave function is  

     1,0,0 1,0 0,0
sin(π )( ) ( ) ( , ) r ar R r Y A

r
ψ θ θ φ ′, = =  

  (normalization of the wave function gives 1 2πA a′ = ). The corresponding energy of the  

  ground state  is  

     
2 2 2

1,0 2 2
π
2 8

hE
ma ma

= =
=  

 

 

 

© E Steiner 2008 



Solutions for Chapter 14  15

Section 14.7 
 
 
16. Find the solution of the wave equation for the vibrating string that satisfies the initial conditions 

( ,0) 3sin πy x x l=  and ( ) 0 0ty t =∂ ∂ = . 

 
 By equation (14.103), the general solution of the vibrating string discussed in Section 14.7 is 

     
1

π( ) sin cos sinn n n n
n

n xy x t A t B t
l

ω ω
∞

=

⎡ ⎤, = +⎣ ⎦∑  

 where πn n lω = v .  

 (a) For initial condition ( ,0) 3sin πy x x l= : 

     
1

1

1

π( ,0) sin cos 0 sin 0

πsin

π3sin  when  3 and  0  for  1

n n
n

n
n

n

n xy x A B
l

n xA
l

x A A n
l

∞

=

∞

=

⎡ ⎤= +⎣ ⎦

=

= = =

∑

∑

>

 

  Therefore 1
1

π( ) 3sin cos sin sinn
n

x ny x t t B t
l l

π
n

xω ω
∞

=
, = +∑  (equation 1) 

 (b) For initial condition ( ) 0 0ty t =∂ ∂ = : 

  From Equation 1, we have   

     1 1
1

π π3 sin sin sin cosn n n
n

y x n xt B
t l l

tω ω ω
∞

=

∂
= − +

∂ ∑ ω  

  Therefore 1
0 1

1

π π3 sin sin 0 sin cos 0

πsin

0  when  0  for all  

n n
t n

n n
n

n

y x nB
t l l

n xB
l

B n

ω ω

ω

∞

= =

∞

=

∂⎛ ⎞ = − +⎜ ⎟∂⎝ ⎠

=

= =

∑

∑

x  

  Therefore  1
π π( ) 3sin cos 3sin cos πx x ty x t t
l l

ω, = =
v
l

 

  and this is the fundamental mode of vibration with amplitude 3. 
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17. A homogeneous thin bar of length l and constant cross-section is perfectly insulated along its 

length with the ends kept at constant temperature 0T =  (on some temperature scale). The 

temperature profile of the bar is a function  of position x ( 0( ,T x )t x l≤ ≤ ) and of time t, and 

satisfies the heat-conduction (diffusion) equation 
2

2
T TD
t x

∂ ∂
=

∂ ∂
 where D is the thermal diffusivity 

of the material. The boundary conditions are (0,T t) ( , ) 0T l t= = . Find the solution of the equation 

for initial temperature profile ( ,0) 3sin πx lT x = . 

 
 We consider the solution in 4 steps. 

 (1) Separation of variables:  

  Put , substitute in the diffusion equation, divide by T F . Then ( , ) ( ) ( )T x t F x G t= × G= ×

     
2 2

2 2
1 1 ,d F dG d F dGC CF
F DG dt dtdx dx

= = → = = CDG  

 (2) Solution of the equation in x: 

  The boundary conditions (0, ) ( , ) 0T t T l t= =  mean, for x, that (0) ( ) 0F F l= = . These are the 

 boundary conditions for the particle in a box discussed in Section 12.6, and of the vibrating 

 string in  Section 12.7. The allowed values of the separation constant are therefore  

  2 2 2πnC n l= −  and particular solutions are  

     π( ) sinn
n xF x

l
=  

 (3) Solution of the equation in t for each value of n: 

     
2 2 22 2

2
ππ ( )n

n Dt ldG n D G G t e
dt l

−= − → =  

 (4) Application of the initial condition. 

  The particular solution for each n is  ( , ) ( ) ( )n nT x t F x G tn=  and the general solution is 

     
2 2 2

1 1

ππ( , ) ( ) ( ) sinn n n n
n n

n Dt ln xT x t A F x G t A e
l

∞ ∞

= =

−= =∑ ∑   

   Now  
1

1

π( ,0) sin

π3sin  when  3  and  0  for  1

n
n

n

n xT x A
l

x A A n
l

∞

=
=

= = =

∑

>

 

  The solution that satisfies both boundary and initial conditions is therefore 

     
2 2ππ( , ) 3sin Dt ln xT x t e

l
−=  

  Heat leaks out of the ends of the rod, and T decreases exponentially at each point. 
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18. (i) Find the general solution of the Laplace equation 
2 2

2 2 0u u
x y
∂ ∂

+ =
∂ ∂

 in the rectangle  

   0 ,  0x a y≤ ≤ ≤ ≤ b   

 subject to the boundary conditions 

    
(0 ) 0 ( ) 0

( 0) 0 ( ) ( )

u y u a y

u x u x b f x

, = , , =

, = , , =

 where ( )f x  is an arbitrary function of x. (ii) Find the particular solution for 3π( ) sin xf x
a

= . 

 
 The boundary conditions are shown in Figure 5. 
 
  
 
         
      Figure 5 
     
 
  

 (i) We consider the solution in 4 steps. 

  (1) Separation of variables:  

  Put u x . Then  ( , ) ( ) ( )y F x G y= ×

     
2 2 2 2

2 2 2 20 ,u u d F d GCF CG
x y dx dy
∂ ∂

+ = → = = −
∂ ∂

 

  (2) Solution of the equation in x: 

  The boundary conditions u y(0, ) ( , ) 0u a y= =  mean, for x, that (0) ( ) 0F F a= = . Then, as in 

 Exercise 17, the allowed values of the separation constant are therefore 2 2 2πnC n= − a  and  

  particular solutions are  

     π( ) sinn
n xF x

a
=  

  (3) Solution of the equation in y for each value of n: 

     
2 2 2

2 2
π ππ ( )n n n

n y a n y ad G n G G y A e B e
dy a

−= → = +  

  The boundary condition u x( ,0) 0=  means, for y, that  

     G A  (0) 0n n n nB B= + = → = − nA

  Therefore π π( ) ( )

π2 sinh

n n

n

n y a n y aG y A e e

n yA
a

−= −

=
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   (4) The particular solution for each n is  ( , ) ( ) ( )n n nu x y F x G y=  and a general solution that  

  satisfies the same boundary conditions is  

     
1

π π( ) sin sinhn
n

n x n yu x y A
a a

∞

=
, = ∑   

  The coefficients nA  are determined by the boundary condition ( ) (u x b f x), = . 

 (ii) If 3π( ) sin xf x
a

=  then  

     
1

3

π π( ) sin sinh

3π 3πsin   if  sinh 1  and  0  for  3

n
n

n

n x n bu x b A
a a

x bA A
a a

∞

=
, =

= = =

∑

n ≠

  

  Therefore 

3πsinh
3π( ) sin

3πsinh

y
x au x y

a b
a

⎛ ⎞
⎜ ⎟
⎝ ⎠, = ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 


