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Solutions for Chapter 14

Section 14.2

1. Show that the function f(x,t) = a sin(bx) cos(vbt) (i) satisfies the 1-dimensional wave equation

(14.1), (ii) has the form f(x,t)=F (X+uvt)+G(x—ut).

(i) We have f (x, t) = a sin (bx) cos (vht)

2

Then a =ba cos (bx) cos (vbt), of = —b?a sin (bx) cos (vbt) = —b* f
X ox*

2
% = vba sin (bx) sin (vbt), f;t—; = —v?ba sin (bx) sin (vbt) = —v?b? f

2 2
Therefore % =— %g
OX v Ot

(ii) We have sin AcosB = %I:Sin(A-i— B)+sin(A- B)]

Therefore  f(X,t) =a sin(bx) cos(vbt) = %[sin(bx + vbt) + sin(bx — vbt)}

2

2. The diffusion equation r = D6_2 provides a model of, for example, the transfer of heat from a
X

hot region of a system to a cold region by conduction when f(x,t) is a temperature field, or the
transfer of matter from a region of high concentration to one of low concentration when f is the

concentration. Find the functions V (x) for which f(x,t)=V (x)e® is a solution of the equation.

of o’f  dV
We have f(x,t)=V(x)e*, —=cV(x)e”, —= et
(D =V(e, Zo=eV(0et, =
2 2
Then i=D% - cV(x)e“:Dd—\2/eCt
ot O dx
dv ¢
dx> D

The type solution depends on the value of ¢/D:

d2v

v =0 - V=a+bx
X

(@ ¢/D=0

(b) ¢/D=4*>0 ¢/D=4A>0 — V=ae™ +be™

(c) ¢/D=2*>0 V =acosAx+bsinix
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Solutions for Chapter 14 3

3. (i) It is shown in Example 14.2 that the function f(x,t)=aexp[-b(x— vt)z] is a solution of the
wave equation (14.1). Sketch graphs of f(X,t) as a function of X at times t =0, t=2/v, t =4/v

(use, for example, a =b =1) to demonstrate that the function represents a wave travelling to the

right (in the positive x—direction) at constant speed v .
(if) Verify that g(x,t) =aexp[-b(x+ ut)?] is also a solution of the wave equation, and hence
that every superposition F(X,t) = f(x,t)+g(X,t) is a solution. (iii) Sketch appropriate graphs of

f(Xx,t)+ g(X,t) to demonstrate how this function develops in time.

(i) The function f(x,t)=a exp[-b(x—ut)?] represents a Gaussian wave whose centre lies at
X =ot. The centre moves to the right (the positive X-direction) with constant speed

dx/dt = v . Figure 1 shows the wave at times t =0, t=2/v, t=4/v.

f(z,1)

Figure 1 a | i

| !
—> | — i
I i
! i

t=20 t=2 t=4
(if) Function g(X,t) is obtained from f(X,t) by replacement if v by —v, and has the same

second derivative with respect to time t, proportional to v?, asin Example 14.2. Thus

o%g 1 o*g 1 d%g

W (—v)zy v? ot?

2 2 2 2 2 2
o'F :a_(af +bg):a2—z+ba—g:ia f_bog
X

Then _ _
x> ox? oxr  r et W at?

1 & 1 0°F
=55 @ +bg)=——>-
v” ot v- ot
(iii) In Figure 2, the component f of F = f + g moves to the right with constant speed v , the
component g to the left with the same speed; that is, the components separate as t increases.
The amplitude of the total wave at t =0 is twice that of the components, but decrease with t to

that of the separate components.
F(z,t)

Figure 2

x/v
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Section 14.3

Find solutions of the following equations by the method of separation of variables:

0. 28T
ox ot
Let f(x,t)=F(X)xG(t)
Then izdF(X)XG(t), ——F() dG(t)
OX dx
and PN OII:(X)G(t) F()dG(t) .
ox ot

Division throughout by f = F(x)xG(y) gives

2 dFeo| [t dew]_
F(x) dx G(t) dt |

The two sets of terms in square brackets must be separately constant if X and t are independent

variables. Therefore, if the first set of terms equals the constant C then the second set is equal to

—C (for the total to be zero). The resulting ordinary first-order equation in variable X is

2 ), O _Cp o
F(x) dx dx 2

with general solution F(X)= ae®/? . The corresponding equation in variable t is

{Lde(t)}z_c , 46@m _ o
G(t) dt dt

with general solution G(t) = be . A complete solution is therefore

f(x,t) = F(X)xG(t)

Cx/2 C(x/2-1)

=ae®? xbe ! = abe

— AeBO-2D

where A and B are arbitrary constants.
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Solutions for Chapter 14

of of
y—-x—=0
ox oy

of dF of dG
Lt fX, =F X G _——=— . —:F _
€ (X, y) = F(x)x (y)—>ax = Y Xdy
Then yi—xi=0 - yd_FG—de_G=0

OX ot dx dy

1 de
yG dy

- R L]

Putting each set of terms equal to constant C, we have (see Section 11.3)

2
dx = 5
-~ EF= aer2/2
y
Therefore  f(X,y)= abeC* Y2 _ paBOC+y?)
2 2
ox~ oy
*f  d*F o f 42G
Let f X, =FX)xG — — XG, —FEx
(P=FxB() — 3=t 006, & mFx S
2 2 ) X , ,
Then ngg:O - d zFXG+FX—d (25=0 - 1dF |2: + 1d6 (23 -0
x dx dy F dx G dy
2 2
and —d '2: =CF, _d (23=—CG
dx dy

As in Exercise 2, there are three possible types of solutions:

{

(b) C=4>>0: {

F(x)=a+bx

(a) C=0:
G(y)=c+dy

f(x, y)=(a+bx)(c+dy)

F(x) = ae™ +be ™

G(y)=ccosAy+dsin Ay

F(x) =acos Ax+bsin Ax

c) C=12<0:
© {G(y)zce”1y +de™
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Solutions for Chapter 14

2
7. of f=0
Oxoy
2
We have f(xy)=F)xG(y) — o't :d—de—G
oxoy dx dy
2
Then of +f:d—F><d—G+FG=0When 1dF ) 1d6 +1=0
oxoy dx dy F dx || G dy
and Foer o Foae®, B__lg L gopee
dx dy C
Therefore  f(X, y)= Ae(©Y/©)
Section 14.4
8. Show that the wave functions (14.23) satisfy the orthonormality conditions

I 1 ifp=randq=s
j J‘ WP,q(X’ y)l//r,s(x, Y)dXdy:{
0d0

0 otherwise

We have Ypq= \/% sin (%} X \/% sin (%), Wes= \/% sin [m

b ea
then 1= [ [ wpatnwscp oy
00

(2

a b
=1 (p_j(_]dzj (u](_y)dy..
alJoy a a bJo b b ’ ’

Remember sin Axsin Bx = %[COS(A— B)X—cos(A+ B)] X

Then, if A= pr/a, B=rmr/a, where p and r are integers,

{sin(p—q)n_ sin(p+q)n} _0

a (p-qr  (p+om
lor =£J. sin (mjsin (mjdX=

0 a a

and similarly for I .
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Solutions for Chapter 14

9. (i) Find the energies (in units of h? / 8ma?® ) of the lowest 11 states of the particle in a square box of

side a, and sketch an appropriate energy-level diagram. (ii) The six diagrams in Figure 14.2 are

maps of the signs and nodes of the wave functions (14.27) for the lowest six states, using the real

forms of the angular functions. Sketch the corresponding diagrams for the next five lowest states.

(i) By equation (14.26),
2

p.q

8ma’

(P +9%),

and the energies of the lowest 11 states are given by the corresponding lowest values of

p’+q°:
P a | p*+q?
1 1 2 20
b2 5 (3-3) 1,4), (4,1
. (14), (4.1)
15
228 2.3).3.2)
13
31 10 10 (13), (3,1)
2 3 2.2)
} 13
3 2 5 (1,2), (2,1)
1 4
1} 17 (1,1)
4 0
3003 18
(ii) Figure 3
T L 1 [T T B
e | i = i i i T T T T
ISt I s e IR i I It . R Bt
i i I e
(2,3) (3,2) (1,4) (4,1) (3,3)
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10. (i) Solve the Schrodinger equation for the particle in a three-dimensional rectangular box with

potential energy function

for 0<x<a, O<y<bh, O<z<c

oo elsewhere

{0
Vxy,2)=

(if) What are the possible degeneracies of the eigenvalues for a cubic box?

(i)

The Schrodinger equation for a particle of mass m moving in three 3dimensions is
n s
_%v l//(xa Y, Z) +V (X7 Y, Z)(//(Xa Y, Z) = El//(xa Y, Z)

where V? is the 3-dimensional Laplacian operator. For the particle within the box, we have

the boundary value problem

2 (A2 2 2
Tl o oo
with boundary conditions
v(0,y,2)=w(a,y,2)=0 (w =0 when x=0and X =2a)
w(X,0,2) =w(X,b,2)=0 (w=0when y=0and y=h)
v(XY,0)=w(XYy,c)=0 (w=0whenz=0and z=c)

As for the 2-dimensional rectangular box, but with 3 components for motion along the X, Y,

and z directions,

let w(X%Y,2) = X()xY(Y)xZ(2)
then Vpar(XY.2)= %Sin(pzxjx\/%sm(qu]x\gsm[icz),
2 2 2 2
LN N L
o 8miat bt ¢

For a cubic box,

2

E =

(p2+q+r?), ,q,r=1,2,3,4, ...
par = g3 p°+q ) P, q

with degeneracies: 1if p,q and r are all equal (e.g. E; ;)
3 if two only equal (e.g. E;;,,E 5, By )

6 if all are different (e.g. Ei23-Bi32-B2315 BEorss Bsas BEso)
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Section 14.5

11. Some zeros of the Bessel functions J,(X) are:

Jo(X)=0 for x=2.4048,5.5201,8.6537

J;(x)=0 x=3.8317,7.0156,10.1736
J,(x)=0 X =5.1356,8.4172
J;(X)=0 X =6.3802,9.7610
J,(X)=0 X =7.5883

(i) Find the energies (in units of n? / 2ma? ) of the lowest 10 states of the particle in a circular
box of radius a, and sketch an appropriate energy-level diagram. (ii) The six diagrams in Figure
14.3 are maps of the signs and nodes of the wave functions (14.47) for the lowest six states, using

the real forms of the angular functions. Sketch the corresponding diagrams for the next four states.

(i) By equation (14.46),

n? n?
Enk =ny—=Xoy =, n=0,+1,+2,..., k=123,...
’ 7 2m " 2ma

The energies of the lowest 10 states are given by the corresponding lowest values of X,%’k :

n  k x>
n 50 1= (+1,2)
0 1 5.783
40 (£3,1)
+1 1 | 14.682
30 - ,2)
+2 1 | 26374 _ (£2,1)
0 2 | 30472 200
(£1,1)
+3 1 | 40.707 10—
0, 1)
+1 2 | 49219 0
(i) Figure 4
k=1 n==+1, k=2
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Solutions for Chapter 14

Section 14.6

12. (i) Make use of Tables 14.1 and 14.2 to write down the total wave function y; , , for the

hydrogen-like atom. (ii) Substitute this wave function into the Schrodinger equation (14.52), and
confirm that it is a solution of the equation with E given by (14.82).

(i) We have n=1,1=0, m=0, p=22Zr

1

1/2
Then V100(10,8) = Ry o (N)xYo (6,9) = 2272 & [4—j
T

(if) The Schrodinger equation, equation (14.52), is

2
%i[rza—l’yj—k 5 1 i(sin Ha—wj+%a—yg+£w+2Ew=O
reor or rsin 6 06 00 ) r”sin” 0 o¢ r

The wave function depends only on the radial variable r. Therefore Z—lg = v =0, and

o¢
ii(rzd_l//)+[£+2Ej(//=0
r? dr dr r
which is the radial equation (4.55) with | =0. We have
d_'//__z dz_‘//_ 7?2
2
Therefore Li(rzd—l//) +[ Z+ ZEJ 7% :d—l//+zd—w+ [£+ 2E) 7%
r? dr dr r dr? rdr r

= ZZW_£W+£W + 2El//
r r

2
=0 when E=——
2

72
and this is E, =—2—2 for n=1.
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11

13. Repeat Exercise 12 for the wave function v, | .

(i) We have n=21=1,m=0,p=2r

1/2
L Ssp, -zt ( 3 j .
Then r,0,0)=R, ,(NxY,,(0,0)=——=7Z"""re x| — | cosé
l//z,l,o( P) 2,1( ) 1,0( ) N i

/5 12
| | re??coso
32n

(if) The Schrodinger equation, equation (14.52), is

r2or or r’sin @ 00 r’sin’ 0 o¢*

We have, for the unnormalized wave function, ¥ = re %72 cos @ ,

y=re??cosd — aa—wz[ezr/z —%rezr/z}cos9= F—E}/’

r r 2
2 2 2
A0 R N O B S B Sy 4
or? N L P A
a'// Zr/2 .
——=-re sind =—tand
06
O’y
—s =Y
06?
oy _dv _
op o4
2
Therefore Li(rza—l//j: Z__£+i v
r2 or or 4 r g
1 0. 81//) 1 &%y 1 oy
—|sin— |=— + - =
r2sin¢960[ 00 r2 06%* r’tan@ 060 r2€//
2
and izi(rza—"’}r 21 i(sinaa—"’j+—2 12 —al’;/+£c//+2Et//
re=or or r*sin @ 00 06 r<sin 96¢ r

2 2
= Z—+2E w =0 when E=—Z—
4 8

72
and this is E; =—— for n=2.

© E Steiner 2008
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Solutions for Chapter 14 12

14. Show that the radial functions R, and R, in Table 14.2 satisfy the orthogonality condition

(14.81).

Wehave Ry o(r)=2Z"7e™
Ry o(r) = —2% 732 @2-zrye@?

Then, ignoring the normalization constants, and making use of the standard integral

J r"e”® dr=—

0 an+1

we have |=I Rl’o(r)Rz,O(r)rzdr:J- (2r? —zr¥)e 4 dr
0 0

P SR L PR {4x£—62}
(3z/2°*  3z/2*| (3z/2* 2

=0
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15. The Schrddinger equation for the particle in a spherical box of radius a is
—(h2/2m)V21// +Vy =Ey,
with potential energy function

V(X,y,2)=0 for r =4/x*>+y? +2° <a and « elsewhere.

(i) Show that the equation is separable in spherical polar coordinates, with the same angular wave
functions, the spherical harmonics (14.68), as for the hydrogen atom. (ii) Show that the radial

equation reduces to the Bessel equation (13.60) for spherical Bessel functions j;(X) where, as in

Section 14.5 for the particle in a circular box, X = \/2mE/ 7 . (iii) Use the boundary condition to

find an expression for the quantized energy in terms of the zeros of the Bessel functions. (iv) Find

the wave function and energy of the ground state.

Put w(r,0,4)=R(r)xY(0,¢)

Then as in Section 14.6 for the hydrogen-like atom, but with V = -ze? / 4ngyr replaced by V =0

inside the box, the Schrodinger equation separates into a radial equation,

j+(—l(lgl)+2sz)R=0 (equation 1)
r h

ld[zdR
__r_
r2 dr dr

and an angular equation

2
_1 9 (sin Hﬂj + L oY +I1(1+1)Y =0  (equation 2)
sin@ 00 00) sin® 6 og”

(i) Equation 2 for Y (8,¢) is the same as equation (14.56) so that the angular functions are the

spherical harmonics Y, ., (6, ¢).

(if) Equation 1 is

2
d R+2d_R+(a2_I(I+1)jR:0

dr? rdr r?

dR  dr ddszdeR

where o = 2mE/h2 .Let X=ar .Then —=a— an >~ =0 —. Equation 1 can
dr dx dr dx

then be written as

2
o H+3("—R+[1—'('+1)jR —0
dx?  x dx x>

or sz”+2xR’+[x2—I(I+1)]R=0

This is the Bessel equation (13.60) for the Bessel functions of half-integral order j,(X) and

7, (X) , of which only the spherical Bessel functions j;(X) are finite for all x> 0. The radial
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Solutions for Chapter 14 14

wave functions for the particle in a spherical box are therefore
R()=j(ar), 1=0,1,2,...

(iii) As for the particle in a circular box, Section 14.5, the wave function is subject to the boundary

condition R;(r)=0 when r =a. Therefore

R(@)=j(ea)=0
so that the possible values of za are the zeros of the Bessel function. If the zeros are labelled
Xi.1> X1 X315 - - - » the allowed values of a = «/2mE/h2 are

ony =Xy /a, n=123, ..

The energy is therefore quantized, with values

L
En|=an|—=Xn|—, n=1,2,3, ...,|=0,1,2,
’ “2m 7 2ma’
and the corresponding wave functions are
W, I,m(r, ‘9) =R n,l(r)YI,m (6’5 ¢)
where Roi(n)=Aji (X1 / a) (A is a normalization constant)

(iv) For the ground state, Y, , = 1/\/47'1', . From equations (13.55) and (13.59), j,(x) = Sin X .
’ X

sin(x; o /@)

Therefore R, (N =Aj,(X,,r/a)=A
10(N) Jo(Xio / ) (leor/a)

sin X

The first zero of j,(X) = is X o =m,when sinX , =sinm =0. Then

sin(wr/a)

Rio(N=A
10(N) (ar /)
and the total ground-state wave function is

Y100 0) =R o(NYoo(0,0)=A sin(nr/a)

(normalization of the wave function gives A’ = 1/ \/2ma ). The corresponding energy of the

ground state is
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Section 14.7

16. Find the solution of the wave equation for the vibrating string that satisfies the initial conditions

y(x,0)=3sinmx/l and (dy/ot)_, =0.

By equation (14.103), the general solution of the vibrating string discussed in Section 14.7 is
— . hmX .
y(X,t) = z sin T—[An cos ot + B, sin a)nt}
n=I
where @, =nnv/l .

(a) For initial condition y(x,0)=3sinnx/l :

y(x,0) = i sin @[An cos 0 + B, sin OJ

n=1

:3sinnTX when A, =3 and A, =0 for n>1

. WX < . nmx . .
Therefore  y(x,t) =3sin nl—cos ot+ Z B, sin T—sm w,t  (equation 1)
n=l1

(b) For initial condition (8y/ 8t)t:0 =0:

From Equation 1, we have

. WX . - . nmX
% =3, sin nTsm ot +Z B,w, sin %cos w,t
n=1

Therefore (

2|2

. TX . - . nmX
j =3, sin Tsm0+z B,w, sin I—cosO
t=0 n=I

0 when B, =0 forall n
mot

. X . X
Therefore Y(X, 1) =3sin nTcos ot =3sin T2 cos -

and this is the fundamental mode of vibration with amplitude 3.
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17. A homogeneous thin bar of length | and constant cross-section is perfectly insulated along its

length with the ends kept at constant temperature T =0 (on some temperature scale). The

temperature profile of the bar is a function T (X,t) of position x (0 < x <1 ) and of time t, and

2

satisfies the heat-conduction (diffusion) equation ET = DZ—I where D is the thermal diffusivity
X

of the material. The boundary conditions are T (0,t) =T (I,t) = 0. Find the solution of the equation

for initial temperature profile T(X,0) =3sinnx/I .

We consider the solution in 4 steps.
(1) Separation of variables:
Put T(x,t) = F(x)xG(t), substitute in the diffusion equation, divide by T = F xG . Then
1d°F 1 dG _ d°F dG

-~ 22_C » —_-CF, — =CDG
F dx? DG dt dx? dt

(2) Solution of the equation in X:
The boundary conditions T (0,t) =T(l,t) = 0 mean, for X, that F(0)=F(l)=0. These are the

boundary conditions for the particle in a box discussed in Section 12.6, and of the vibrating

string in Section 12.7. The allowed values of the separation constant are therefore

C, =-n’z’ / I? and particular solutions are
. NmX
F,(x)= s1nT

(3) Solution of the equation in t for each value of n:

dG n’n’D —n222Dt/12
— == G - G, (H)=e "7
dt |2 n()

(4) Application of the initial condition.

The particular solution for each nis T,(X,t) = F,(X)G,(t) and the general solution is
i i .n 2.2 2
TD= 2 AR (06, ()= 3 A sin e "0
n=I n=I

Now T0 =3 A, sin#
n=l1

=3sinnTX when A =3 and A, =0 for n>1
The solution that satisfies both boundary and initial conditions is therefore

2 2
T(x,t)=3sin$e*“ Dyl

Heat leaks out of the ends of the rod, and T decreases exponentially at each point.
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17

2 2
18. (i) Find the general solution of the Laplace equation Z—g + a—l; =0 in the rectangle
X

oy

0<x<a, 0<y<h

subject to the boundary conditions
u(0,y)=0, u(a y)=0
u(x,0)=0, u(x,b)="~f(x)

where f(X) is an arbitrary function of X. (ii) Find the particular solution for f(x) = sin3ix.
a

The boundary conditions are shown in Figure 5. y
U =sin3nz/a
b
Figure 5 ,
U=0 U(zx,y) U=0
0 U=0 a
(i) We consider the solution in 4 steps.
(1) Separation of variables:
Put u(x,y)=F(X)xG(y). Then
2 2 2 2
a_‘zhra_‘;:o L, 4 '2: _cr, 9C c2; --CG
oxX° oy dx dy

(2) Solution of the equation in X:

The boundary conditions u(0,y)=u(a,y) =0 mean, for X, that F(0)=F(a)=0. Then, as in

Exercise 17, the allowed values of the separation constant are therefore C, = —n’z* / a’ and

particular solutions are

F.(x) = sin =X
a
(3) Solution of the equation in Yy for each value of n:

2 2.2
‘ZTS’ =”a—7§G > Gy(y)=Ae™/2 4B e/

The boundary condition u(x,0)=0 means, fory, that
G,(0)=A, +B, =0 — B, =-A,
Therefore G, (y) = A, (e™/3 —¢~"™/2)

= 2A, sinh Y
a
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(4) The particular solution for each nis u,(X,Yy)=F,(X)G,(y) and a general solution that

satisfies the same boundary conditions is

.~ . nhmx . .n
u(x, y)= z A, sin LxsmhLy
n=1 a a

The coefficients A, are determined by the boundary condition u(x, b) = f(x).

(i) If () =sin > then
a

< . NmX . N
u(x, b)= z A, sin Lxsmhib
n=1 a a

—6in™ if Asinh>™ =1 and A, =0 for n#3
a a

Therefore  u(X, y) =sin 3mx X
a
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