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Solutions for Chapter 13

Section 13.2

Use the power-series method to solve:

1. y'-3x*y=0

By equation (13.2), we express the solution as the power series

Then

Also

Therefore

Then

and

Therefore
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y= ap X" =a,+ax+ax +ax + -
m=0

0
y'=> ma X" =a +2a,x+3a;x> + -
m=1

0
=a +2a,X+ Y, (M+3)a,, ;X"

m=0

3x7y =Y 3a, X" =3a, x> +3a x> +3a, X+

m=0

y' =33y =a, +2a,x+ 3 [(M+3)ay,; —3a, |x"

m=0

=0 when the coefficient of each power of X is zero.

a=a=0

(m+3)a,.;—3a, =0 for m=0,1,2, ...

_)

3a, —38, =0
4a,-33, =0
5a;-3a, =0
6a, —3a, =0
7a, —3a, =0
8az —3a; =0
9ay —3a, =0
and so on.

A3nyy = Q340 =0

N

a; =aq, (&, arbitrary)

a, =0

as =0

a=lg -1
6 =385 %

a,=0

ay =0
1,1

B=3% 5%

a, :#a0 for n=0,1,2,...




Solutions for Chapter 13
and the power series expansion is

1 1 21
=, 1+ +=x+=x"+ - |= —0H"
Y =3 FTIEY aonZ_(:)n!( )

. . . . 3
We recognise the sum as the power-series expansion of the function € . Therefore

3
X
y=aye

where @, is an arbitrary constant.

2. (1-x)y'—y=0. Confirm the solution can be expressed as y =a/(1—X) when |x|<1.

o0

Let y=> ap X" =a,+ax+ax +a;x + -
m=0
00
y'=> ma X" =a +2a,x+3a;x” + -

Then (1=x)y"=>" ma,x™" = > ma,x"

m=1 m=1

=a, +(2a, — )X+ (385 —28,)x* + -

—a + i [(m+Day,,, —ma, |x"
m=1

Therefore  (1-X)y'—y=a,—a,+ > [(M+1ay,, —ma, |x" - a,x"
m=1 m=1
=a —ay+ Z (m+1)(am+1 _am)xm
m=1

=0 when a,,, =a,, forall values of m.

All the coefficients are therefore equal, to arbitrary a, say, and the power series expansion is

y=2a, x"

m=0

.. . . . . a
and this is recognized as the geometric series expansion of 1—0 , convergent when | X |<1.
—X

© E Steiner 2008




Solutions for Chapter 13

3. y"—9y=0. Confirm that the solution can be expressed as y = ae®* +be™*.

Let y=> anx"
m=0
Then y'=> m(m-Day, X" =D (m+2)(m+Dag,, x"
m=2 m=0
and y'=9y =Y (m+2)(m+Day,, X" - > 9a, x"
m=0 m=0

=0 when (m+2)(m+1)a,,, =9a,
The recurrence relation for the coefficients gives rise to two independent series:

. 9
(i) meven m=0 — 2a,=9a, N azzzao

2
m=2 — 3x4a,=9%9a, — aé‘:%a0

93
m=4 — 5x6a,=9a, — aé:aa0 and so on

Therefore, for even powers of X,

3’ , 30, 3x°
2! 4! 6!

Yi(x)=a |1+

(i) modd m=1 — 2x3a;=93 — a3:%a1

2

m=3 — 4x5a;,=9a, — aS:%a1

3
m=5 - 6x7a;, =95 — a():%a1 and so on

Therefore, for odd powers of X,

_a 3x)°  (3x° 3x)
yZ(X)_?I[@XH 3 s T +1

We recognize Yy, and Yy, as the hyperbolic functions

y;(X) = 8, cosh 3x = 3_20[63x +e‘3XJ, ¥, (X) = %sinh 3x = %[e3X —e‘3x}

Therefore  y(X) = Y,(X)+ Y,(X) = &, cosh3x + (@, /3) sinh 3x

=ae™ +be™* where 8, =a+b, a/3=a-b
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Solutions for Chapter 13

4. (1-x*)y"-2xy'+2y =0 (The Legendre equation (13.13) for | =1).

Show that the solution can be written as y = a;X+ &, {l + g In G_—XH when | X|<1.
+ X

Let y=> a,x", y'=> max"™", y’'=> mm-la,x"
m=0 m=1 m=2
Then (1-x2)y"—2xy'+2y

['e]

=Y mm-Da,x" = mm-Da,x" -2 ma,x"+2>" a, x"
m=2 m=1 m=0

m=2

o0

= > (M+2)(M+Dap,,x" = > mm-Da,x"-2> ma,x"+2> a, x"
m=0

m=0 m=0 m=0

[
NgE

M+2)[ (Mm+1)ay,, —(m-Da, |x"
0

3
Il

" ’ m-1
and (1-x*)y"-2xy'+2y=0 when a,,, =(m—+1jam

The recurrence relation for the coefficients gives rise to two independent series:

a a 3a a
(i) meven: a,=-a,, a, =2=-_20 a, =420 .. with @, arbitrary
3 3 5 5
5 a == forn=2,46,...

n

(if) modd: &, arbitrary,

a;=0,a,=0 — a,=0 for odd n>1
¢oxs 8
Therefore  y(X)=ax+a,| - x> TS

Now

X 1-x X
l+=In| — |=14+—|In(1-X)=In(1+ X
2 (1+xj 2[ ( ) ( )]

Therefore  y=ax+q, 1+11n (I_—Xj when | X|<1
2 I+X
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Solutions for Chapter 13

5. y"—xy=0 (Airy equation).

Let y=Y a,x" - xy=> a,x™"
m=0 m=0
Then y'=Y mm-Da, X" =2a, + > (M+3)(m+2)a, ; x™"
m=2 m=0
and y'=xy =2a,+ Y (M+3)(M+2)ap,; x"" = a, x™!
m=0 m=0

+ i [(m=+3)(m+2)ay,;-a, |x™!

1

=0 when a, =0 and a =— A
2 " (m+3)(m+2) "

The recurrence relation for the coefficients gives rise to three independent series:

a = _la a; 1x4 A, Ix4x7
3T 0xs 3 TS T e o 8x9 o1
a, =2 -2, U 23, =t _2X58,
ATV 7 6x7 7P 10 = 9%x10 9! 1>
a,
a =0=a, =38, =
5 = 4%5 8 11 =
Therefore
1 14 ¢ 1-4. 2 2. 2.5.
Y0 =g | T+ a + byt LT o0 g a2t 23,7, 20850,
6! 9! 41 7! 10!

Section 13.3

For each of the following, find and solve the indicial equation

6. XY +3xy'+y=0
We have by =3, ¢, =1
and the indicial equation is
r’+@,-Dr+c, =0 — r*+2r+1=(r+1)>=0 when r=-1

Therefore , =r, =-1 (double root)
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Solutions for Chapter 13

7. X2y +xy'+(x* —n?)y =0 (Bessel equation)

We have bp =1, ¢, =-n?

and the indicial equation is

r?+(b,-Dr+c, =0 — r’>—n*=(r—n)(r+n)=0 when r=4+n

8. xy"+(-2X)y'+(x-1)y=0

We write the equation as X*y"+(X—2x%)y'+ (x> =x)y =0

Therefore by =1, ¢,=0 — r*=0

Therefore 1,=r,=0
9. x*y"+6xy'+(6-x*)y=0

Wehave by=6,C =6 — r*+5r+6=(r+2)(r+3)=0

Therefore n=-2,1,=-3
10. (i) Find the general solution of the Euler-Cauchy equation X*y" + byxy’+c,y =0 for distinct

indicial roots, I, # I, . (ii) Show that for a double initial root r, the general solution is

y=(a+bmhx)x".

o0
Let y() =X" (g + X + 3, X” + 43X + ) =x" Y a X"
m=0

Then, by equation (13.7)
> [(r+ m)* + (b, —1)(r + m)+cOJamxm+r =0
m=0

The equation is satisfied if, for every power of X, either a,, =0 or the term in square brackets is

zero. For m =0, the latter is the indicial equation (13.8), so that a particular solution of the

differential equation is

y = X", where I is an indicial root. There are two possible types of solution.

(i) Distinct indicial roots, I # I, . Then by equations (13.10), x" and x" are two independent

particular solutions, and the general solution of the Euler-Cauchy equation is

y(x)=ax" +bx"
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Solutions for Chapter 13

(ii) For a double root, by equations (13.11), one particular solution is Y, = X" . In the present case,

the second particular is just the first term in (13.11b), y, = x" InXx.

Thus  y5=rxX""Inx+x""!

yy =r(r=Dx" 2 Inx+Q2r-1Hx"?
Then  X*yj +byXys +CyY, = [rz +(b, —1)r+c0Jxr Inx+[ 2r +y =1 ]x"

The first set of terms in square brackets is zero be cause r is an indicial root, a solution of the
indicial equation r? + (b, —1)r +¢, = 0 . The second set of terms is also zero because r is a

double root. Thus,

r2 +(b0—1)r+c0=0 when r:%[_(bo_l)iM}
=—(by—1)/2 for a double root
—2r+b,-1=0

The general solution of the Euler-Cauchy equation for a double indicial root is therefore

y(r) =ay, +by, =(a+blnx)x"

Solve the differential equations:

2.r 1 Pyl
11 xy"=3xy'+5y=0
This is an Euler-Cauchy equation with by =—1/2, ¢, =1/2 . The indicial equation is

r?=3r/2+1/2=(r =1/2)(r-1)
=0 when r=1/2 and r =1

Therefore  y(x) = ax”? +bx

12. X2y —xy'+y=0

This is an Euler-Cauchy equation with b, = -1, ¢, =1. The indicial equation is

r2—2r+1=(r-1)>°
=0 when r =1 (double)

Therefore  y(X) =(a+blnx)x
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Solutions for Chapter 13

13. (i) Solve the Bessel equation X>y” + Xy’ +(x* —%)y =0 for indicial root r =—1/2 (see Example

13.4 for r =1/2). (ii) Confirm that the solution can be written as

y(X) = B coS X+i sin x=aJ_;,,(X)+bJy,(X)

Jx Jx

(i)

(i)

As in Example 13.4, but with r =—1/2 instead of r =+1/2:

o0

o0
-1/2 m m-1/2
Wehave  y=x"2Y ax"=> ax"
0

m= m=0
Then y = i (m—%)amxm‘m, y" = i (m—%)(m—%)amxm‘S/2
m=0 m=0
and Xy +xy + (X — Ly = x72 i a, [m(m —Dx™ + x”“ﬂ
m=0

=x2% [(m+D)(m+2)ay,, +a, X"
m=0
am

= 0 When a, =
™2 (m+1)(m+2)

The recurrence relation for the coefficients gives rise to two independent series:

(a) m even: a ——La ——i a ——La —+ia 1! a —_l
IO Y o TR L I vr ke B ri b
1 1 1 1 1 1
b)modd: a,=——a,=——a,, A& =—=ay=+—2a,, a =-— a.=——a,
®) 3T T TR BT LSBT & s TR

2 4 6 3 5 7
Therefore,  y(X) = a,x "2 {I—X—+X——X—+--- }a]x‘l/2 [X—X—+X——X—+ }
21 4! 6! 3157

We recognize the two set of terms in square brackets as the power series expansions of cos X

and sin X . Therefore

y(x) =a,x " cosx+ax ?sinx=a 3 (0 +bJ3_ 5 (%)

2 2
where J X)= |—cosX and J,,(X)= [—sinX
“2(0) "nx 12 (X) Jnx

are the Bessel functions of order n=—1/2 and n=+1/2. But, as shown in Example 13.4,
Ji2(X) 1s the particular solution of the Bessel equation for indicial root r = +1/2 . Both

particular solutions of the Bessel equation for n=+1/2 have therefore been obtained. This is

a common feature of type 3 solutions, equations (13.12), when no logarithmic term is present

and the lower of the two values of r is used to find a solution of the equation.
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Solutions for Chapter 13 10

14. (i) Use the expansion method to find a particular solution Yy, (X) of xy"+(1-2x)y'+(x-1)y=0.

(ii) confirm that y,(X) = y;(X)InX is a second solution.

As in Exercise 8, the indicial equation has double root r = 0 . The solutions are therefore of type 2,

equations (13.11).

(i) Let y=Y a,x", ¥y =Y max"", y'=> mm-Da,x"?
m=1 m=2
Then

Xy +(1-2x)y +(x-y = [m(m —Da,x™ " +m(1-2x)a,x™" + (x—l)amxm}

m=0

o0
=> [mzamxm‘l —2m+1Da,x" +a, xm“}
=0

= (a,—8y)+ X[ (M+1)7ay, —Cm+Day, +a,., [x"
m=1

=0
Therefore @, =a,
and (m+1)%a,,, —2m+Da, +a, , =0
Then, by considering m=1, 2,3, ... in turn, we obtain a, =@, / m!. Alternatively, we can
write
(M+1)7ay,, —(2m+Day, +a,  =(m+D[(M+Day,, —a, |-[ma, —a,_, |

1
=0 when a,, =—a - a,=—a,
W m m m-1 m m! 0
0 Xm
Therefore yl(X):aoZW:aoex
m=0 '
n ’ ' 1 " " 2 ' 1
(i) Let Y, =y, InXx, Y2:y11nx+;)’1, Y2ZY1lnX+;Y1_X—2Y1
Then Xy; +(1=2x)y5 +(x-1)y, :[xyl"+(1—2x)yl’+(x—1)lelnx+[2y1’ —2yl]

The first set of terms is zero because Y, is a solution. The second set of terms is zero because

yl' =Y, = a,e". Therefore y,(X)=Y,(X)InX is a second solution of the differential equation.
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Solutions for Chapter 13 11

15. Find the general solution of xy”+2y’+4xy =0 . Assume that there is no logarithmic term in the

solution.

By Example 13.3(iii), the indicial roots are I, =0 and r, = -1 and the solutions are nominally of

type 3, equations (13.12). In the present case, however, there is no logarithmic term. Thus, for

r=-1,
let y=x"> ax"=> ax""
m=0 m=0
Then y'=Y (m-Da,x"?2, y" = (m-1)(m-2)a,x""
m=0 m=0
and Xy +2y +4xy = [m(m—l)amx"“2 +4amme
m=0

= i [(m+D(m+2)a,, +4a, |

m=

(=}

-4

=0 when a =—FFFa
W ™2 m+)(m+2) "

The recurrence relation for the coefficients gives rise to two independent series:

. 4 & _
(a) m even: az_jao, a4_ma2_Ta0 s > Ay, = an)! a, n=123,...
-4 (Y (-4

b) modd: a,=—a,, a.=
®) 373 TS 4k

a, ... — n=1273,...

.  =————a
4 = oy !
The corresponding solution of the differential equation is therefore

20° (2%

y(x)=

3y _(2x)2 (2x)4_(2x)6 A
X ! TRRT ol }rzx{

We recognize the terms in square brackets as cos2x and sin2X, so that

cos2X sin 2X
X)=a———+b
y(x) < <

The solution for r = —1 therefore consists of a combination of the two independent particular
solutions, Y,(X) = (1/ X) cos 2x containing odd powers of X, and y,(X) = (I/X)sin2x containing
even powers (compare Example 13.2). These two particular solutions form a basis for the general
solution, without a logarithmic term. The solution for indicial parameter r =0 is therefore

redundant; in fact it merely duplicates the particular solution Y, (X) (see also Exercise 13).
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Section 13.4

16. Show that the polynomial R (X)is a solution of the Legendre equation, Table 13.1 for (i) | =2 and
@iy 1=5.

We have A-x2)y"=2xy" +1(1+1)y =0

(i) 1=2: y:Pz(x):%ze—l), y'=3x, y"=3

Therefore  (1-x*)y"—2xy'+6y =(1—X2)><3—2X><3X+6><%(3X2 -1
A+ -F=0
(i) 1=5:

y:Ps(x):é(63x5—70x3+15x), y’:%(315x4—210x2+15), y"=%(1260x3—420x)

(1-x*)y"—2xy' +30y =%{M—EE@(—Q€O§S/+M—W
+M—)@(+W—M+B§@i}:0

Therefore

17. Find the Legendre polynomial P,(X) (i) by means of the recurrence relation (13.21), (ii) from the

general expression (13.19) for B (X).

We have (T+DR,, () - CI+D)xB(x) +IR_;(x)=0

Putl=5: P, :%(uxp5 _5P,)

_1Ix

- —[63x5 — 703 + 15x}— i[35x4 —30%2 + 3]
48 48

- 4%[693x6 —945x* +315x2 —15} = %[231x6 ~315x* +105%2 —5}

(i) By equation (13.19),

_ Ix3x5x7x9x11
6 6x5%x4x3x2
6 6x5 4 6x5x4x%x3 2 6x5%x4x3x2
X4 X — X + X =
2x11 2x4x11x9 2x4x6x11x9x7

—E{xé 1503 5}

T6 |0 110 110 231

:%[23“6 —315x* +105%2 —5}
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13

18. Use the formula (13.24) to find the associated Legendre functions (i) F’l1 (x), (ii) P"(x) for

m =1, 2, 3, 4. Express the functions in terms of cos@ = x and sinf = (1—-x )1/ 2

(i) We have R (x) =X

12 AR dPl

Then PI(x)=(1-x?) =(1—x2)‘/2=sin9

(ii) P, (X) =%(35x4 —30x% +3)

Therefore P} = (1-x?)"2 (Lﬁ = %(1 —x3H2 (7% = 3x) = %sin (7 cos® 6 — 3cos 0)
X

2
P
P7=(- xz)d—4 = 1—5(1— xX2)(7x2=1) = 13 gin 0(7 cos* 0-1)
dx?> 2 2

d’p,
P} =(1-x3)¥2—*% — =105(1-x%)’?x =105sin’ O cos &

=105(1-x*)* =105sin* @

4p
Pl =13 T
X

19. Show that (i) P, is orthogonal to P, and P, (ii) P, is orthogonal to P, and Pj.

. +1 1! 4 5
Q) .[-1 F’l(x)P4(x)dx:§J‘_1 X(35x" —30x” + 3)dx

=0 because the integrand is an odd function of x

+1 +1
(ii) j P (X)Ps(x)dx = %J X(63%° — 70x° +15x) dx
-1

+1
= %I (63x° = 70x* +15x%) dx
-1

1[ 7 5 3]” 1
=—| 9x’ = 14x" +5X =—| (9-14+5)-(-9+14-5
: 1 8[( )—( )]

=0
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20. Show that P, is orthogonal to P! and P; .

We have R'(x) = (1-x%)"2, P} (x)=3x(1-x*)"2, Pj(x):g(l—x2)1/2(7x3—3x).

+1 +1
(i) j Py (x)P (x)dx = 3I x(1—x2)dx
-1 —1
=0 because the integrand is an odd function of x
.. o | 15 ¢! 5 3
(i) I Pz(x)P4(x)dx:?J' x(1-x*)(7x = 3x) dx
,1 71
+1
= 15j (=7x% +10x* =3x?)dx
-1
+1

- 15[—x7 +2%° —xﬂ -0
-1

Section 13.5

21. (i) Use the series expansion (13.31) to find Hs(X) . (ii) Verify by substitution in (13.30) that
H;(x) is a solution of the Hermite equation. (iii) Use the recurrence relation (13.33) to find

He(x).

2x)°* (2x) = 32x° —160x> +120x

(i Hy(0 = (20" - 22

Sx4x3x2
+
2!

(i) We have Hy'(x) =160x* — 480x* +120, HJ"(x) = 640x> —960x
Then

HY—2xH. + 10H; = [640x3 - 960x} - 2x[160x4 — 4802 +120J+10[32x5 ~160x° +120x}

= GR0xC_— DBOK — 3205 + 960K 26K + 3205 — 16005+ 1260%

=0

(iii) The recurrence relation for n=5 is H; —2xHs +10H, =0. Then

H = 2xHs —10H, = 2x[32x5 ~160x° +120x}—10[16x4 482 +12J

= 64x° —480x* +720%x% =120

© E Steiner 2008
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22. Sketch the graph of the Hermite function e’xz/ 2 H;(x).

We have y = 2H(x) = e (85 ~12x).
For the nodes, y=0 when 8%’ —12x=0 — x=0,+,/3/2.
For the stationary values (maxima and minima),

y' =462 (2x* —9x2 1 3x)

+ +
=0 when x* = 957 - x=% 957 ~+0.60, +2.03
4 4
X y The sketch of the Hermite function should look like:
-5 —-0.004
4 | 016 e 2 Hy(x)
-3 -2.00
2 -5.41 o
-J3/2 0
—4
-1 +2.43 ' , T
0 4
-0.6 +4.57
0 0
0.6 -4.57 R
1 -2.43
3/2 0
2 541
3 2.00
4 0.16
5 0.004
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Section 13.6

23. (i) Use the power series method to find a solution of the Laguerre equation (13.38). (ii) Show that
this solution reduces to the polynomial (13.39) when n is a positive integer or zero (and when the

arbitrary constant is given its conventional value n!.

The Laguerre equation is xy"+ (1-X)y'+ny =0.

(i) By the power-series method,

M8

Let y=Y a,x", y'=

o0
ma,x"", Y= mm-Da,x">
m=0 m=2

3
T

o0

o0 o0 o0
Then  xy"+(1-x)y' +ny="> mm-Da,x"" +> ma,x™" => ma,x"+ > na, x"
m=2 m=1 m=1 m=0

= i [(m+Dmay,,, +(M+Day,, —(m-n)a, |x"
m=0

Therefore

:(l—n)a _h(-1 :(2—n)a __n(n-1)(n-2)

) =

n
a = —1—230’ &

R (31> o
and a solution of the Laguerre equation is
y=a,|1- n > X+ n(n _21) — n(n—l)(g—z) X+ (equation A)
an (2YH (39

(i) If n is an nonzero integer then the expansion terminates at term X" . Giving the arbitrary
coefficient its conventional value a, =n!, we obtain

2 2 2
n 1 nh°(n-1
n 1+ ( ) X2

y(x)=(-D" {X" - X

= 2' —-~~+(—l)”n!}: L, (x) (equation B)

Thus, the general term in equation A above is, with a;, =n!,

2
n!
2 Xr
rx(n-r)!

I =(D"

2 2 2
I =(=D"X", 1, :(_1)“—‘%%“1, 1, , =2 =D (g’ D™yt g =

Hence equation B
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24. Find L, (x) (i) from equation (13.39), (ii) from L,(x) and L;(X) by means of the recurrence
relation (13.41).

2 2 2 2 2 2 2 2 2 2
(i) From (13.39) L, (%) =(~1)" x4—%x3+4 ;3 -3 Xé'xz x+ X3 ;2 <,

=x* — 16X + 72x* —96x + 24
(if) From equations (13.40),
LX) =2—-4x+x*, Li(x)=6-18x+9x* - x°
Then, with n=3 in (13.41),

Ly(X)=(7 = X)( 6 — 18X+ 9x* = X*)=9(2 — 4x + x?)

=24-96x+72x> —16x> + x*

Section 13.7

25. (i) Find the Bessel function J,(X) (i) from the series expansion (13.50). (ii) from J,(x) and

J;(X) by means of the recurrence relation (13.56).

(i 3 (x)—(ijzi_(—l)m (ﬁjm
2 2) 2 mesmy2
(5] LL(&)ZL(&)“_L(EJZW
o) 2 ml2) 2al2) st
y 2
(i) Jz(x):;‘h(x)_‘]o(x)

_2 E_L(ﬁf+L(§)5_L(£Y+L(ﬁj9_...
Txl2 on2tl2) 2aml2) o 3al2) a2
_ I_L(zjﬁ ! (1}“_ ! (z)ﬂ ! (1)8_...
a*\2) @y (2) @ 2) @?’\2
11 (x| 1 1Y | 1 (x)°
:D‘@{W‘ﬁ}@ ‘ngz Z} ) *ngz ‘ﬁ}@
NI H
(4n? 415\ 2
H L_L@ZL@“_L@]‘Z...
l2) (2 ml2) 2arl2) sz
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Solutions for Chapter 13

26. Use the recurrence relation (13.56) to find (i) Js/2(x) and (i) I (%)

. 3 2 |(3sinX 3cosX .
(i) For n=3/2: J5/2(X):;J3/2(X)_JI/Z(X): RK I j—smx}

2 K 3 j ) 3cosx}
= = || =—1|sinx—-—/—2=
x|\ x2 X

.. 3 2 |(3cosx 3sinX
1) For n=-3/2: J X)=—-—1J X)—J X)= [— + - X
(ii) For / —5/2(X) X 32 (¥) =32 . K 2 X j cos }

2 3 3sin X
=.|—|| = ~1|cosx+
X |\ X X

27. Confirm that the spherical Bessel function j;(x) satisfies equation (13.60).

. T T
We have J(x)= \/; Jip(¥) = \/; y(x), say

Then Yy = X" 3,,1,(%)
V00 ==X 300+ x 3,500
V00 =0 3500 X 000+ 300
Therefore
XY+ 2+ =10+ |y = B X2 3100 =% 3y () + X7 J.’Ll/z(X)}
[ 3004260230, (0]
+[x3/2 32 (0 =10+ DX J,H/z(x)}

=x? {x2 J|”+1/2(X)+ X~]|'+1/2(X)+[X2 -1 +1)]‘]|+1/2(X)}

=0 because Jj,;/,(X) is a solution of the Bessel equation (13.47)
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