The Chemistry Maths Book

Erich Steiner

University of Exeter

Second Edition 2008

Solutions

Chapter 11 First-order differential equations

- 11.1 Concepts
- 11.2 Solution of a differential equation
- 11.3 Separable equations
- 11.4 Separable equations in chemical kinetics
- 11.5 First-order linear equations
- 11.6 An example of linear equations in chemical kinetics
- 11.7 Electric circuits

State the order of the differential equation and verify that the given function is a solution:

1.
$$\frac{dy}{dx} - 2y = 2;$$
 $y = e^{2x} - 1$

First order.

$$y = e^{2x} - 1 \rightarrow \frac{dy}{dx} = 2e^{2x}$$

Therefore
$$\frac{dy}{dx} - 2y = 2e^{2x} - 2(e^{2x} - 1) = 2$$

2.
$$\frac{d^2y}{dx^2} + 4y = 0$$
; $y = A\cos 2x + B\sin 2x$

Second order.

$$y = A\cos 2x + B\sin 2x \rightarrow \frac{dy}{dx} = -2A\sin 2x + 2B\cos 2x$$
$$\rightarrow \frac{d^2y}{dx^2} = -4A\cos 2x - 4B\sin 2x = -4y$$

Therefore
$$\frac{d^2y}{dx^2} + 4y = 0$$

3.
$$\frac{d^3y}{dx^3} = 12$$
; $y = 2x^3 + 3x^2 + 4x + 5$

Third order

$$y = 2x^{3} + 3x^{2} + 4x + 5 \rightarrow \frac{dy}{dx} = 6x^{2} + 6x + 4$$
$$\rightarrow \frac{d^{2}y}{dx^{2}} = 12x + 6$$

Therefore
$$\frac{d^3y}{dx^3} = 12$$

4.
$$\frac{dy}{dx} + \frac{3y}{x} = 3x^2$$
; $y = \frac{x^3}{2} + \frac{c}{x^3}$

First order

$$y = \frac{x^3}{2} + \frac{c}{x^3} \rightarrow \frac{dy}{dx} = \frac{3x^2}{2} - \frac{3c}{x^4}$$

Therefore
$$\frac{dy}{dx} + \frac{3y}{x} = \frac{3x^2}{2} - \frac{3c}{x^4} + \frac{3}{x} \left(\frac{x^3}{2} + \frac{c}{x^3} \right) = \frac{3x^2}{2} - \frac{3c}{x^4} + \frac{3x^2}{2} + \frac{3c}{x^4}$$
$$= 3x^2$$

Find the general solution of the differential equation:

$$5. \quad \frac{dy}{dx} = x^2$$

Integrate:
$$\int \frac{dy}{dx} dx = \int x^2 dx \rightarrow y = \frac{1}{3}x^3 + c$$

$$6. \quad \frac{dy}{dx} = e^{-3x}$$

Integrate:
$$\int \frac{dy}{dx} dx = \int e^{-3x} dx \rightarrow y = -\frac{1}{3}e^{-3x} + c$$

$$7. \quad \frac{d^2y}{dx^2} = \cos 3x$$

Integrate twice:
$$\int \frac{d^2 y}{dx^2} dx = \int \cos 3x dx \qquad \to \frac{dy}{dx} = \frac{1}{3} \sin 3x + a$$
$$\int \frac{dy}{dx} dx = \int \left[\frac{1}{3} \sin 3x + a \right] dx \to y = -\frac{1}{9} \cos 3x + ax + b$$

8.
$$\frac{d^3y}{dx^3} = 24x$$

Integrate three times:

$$\int \frac{d^3 y}{dx^3} dx = \int 24x dx \qquad \Rightarrow \frac{d^2 y}{dx^2} = 12x^2 + a$$

$$\int \frac{d^2 y}{dx^2} dx = \int \left[12x^2 + a\right] dx \qquad \Rightarrow \frac{dy}{dx} = 4x^3 + ax + b$$

$$\int \frac{dy}{dx} dx = \int \left[4x^3 + ax + b\right] dx \qquad \Rightarrow \quad y = x^4 + a'x^2 + bx + c \quad (a' = a/2)$$

- 9. A body moves along the x direction under the influence of the force $F(t) = \cos 2\pi t$, where t is the time. (i) Write down the equation of motion. (ii) Find the solution that satisfies the initial conditions x(0) = 0 and $\dot{x}(0) = 1$.
 - (i) By Newton's second law of motion, for a body of mass m,

$$F(t) = m \frac{d^2x}{dt^2} = \cos 2\pi t$$

(ii) Integrating twice with respect to time t,

$$\int \frac{d^2x}{dt^2} dt = \frac{1}{m} \int \cos 2\pi t \, dt \qquad \to \frac{dx}{dt} = \frac{1}{2\pi m} \sin 2\pi t + a$$

$$\int \frac{dx}{dt} dt = \int \left[\frac{1}{2\pi m} \sin 2\pi t + a \right] dt \quad \to \quad x(t) = -\frac{1}{4\pi^2 m} \cos 2\pi t + at + b$$

By the initial conditions:

$$x(0) = 0 = -\frac{1}{4\pi^2 m} + b \rightarrow b = \frac{1}{4\pi^2 m}$$

$$\dot{x}(0) = \left(\frac{dx}{dt}\right)_{t=0} = 1 = a$$

Therefore
$$x(t) = \frac{1}{4\pi^2 m} (1 - \cos 2\pi t) + t$$

Verify that the given function is a solution of the differential equation, and determine the particular solution for the given initial condition:

10.
$$x \frac{dy}{dx} = 2y$$
; $y = cx^2$; $y = 24$ when $x = 2$

$$y = cx^2$$
 \rightarrow $\frac{dy}{dx} = 2cx$ \rightarrow $x\frac{dy}{dx} = 2cx^2 = 2y$

The initial condition is y = 24 when x = 2.

Therefore $24 = 4c \rightarrow c = 6$

and
$$y = 6x^2$$

11.
$$\frac{dy}{dx} + 2xy = 0$$
; $y = ce^{-x^2}$; $y = 2$ when $x = 2$

$$y = ce^{-x^2}$$
 \to $\frac{dy}{dx} = -2cxe^{-x^2} = -2xy$ \to $\frac{dy}{dx} + 2cxe^{-x^2} = 0$

The initial condition is y = 2 when x = 2.

Therefore
$$2 = ce^{-4} \rightarrow c = 2e^4$$

and
$$y = 2e^{4-x^2}$$

12.
$$\frac{dy}{dx} + 2y + 2 = 0;$$
 $y = ce^{-2x} - 1;$ $y(0) = 4$

$$y = ce^{-2x} - 1 \rightarrow \frac{dy}{dx} = -2ce^{-2x} = -2(y+1) \rightarrow \frac{dy}{dx} + 2y + 2 = 0$$

The initial condition is y = 4 when x = 0.

Therefore
$$4 = c - 1 \rightarrow c = 5$$

and
$$y = 5e^{-2x} - 1$$

Section 11.3

Find the general solution of the differential equation:

13.
$$\frac{dy}{dx} = \frac{3x^2}{y}$$
: Put $y \, dy = 3x^2 \, dx$.

Then
$$\int y \, dy = \int 3x^2 \, dx \rightarrow \frac{1}{2} y^2 = x^3 + c'$$

and
$$y^2 = 2x^3 + c$$

14.
$$\frac{dy}{dx} = 4xy^2$$
: Put $\frac{dy}{y^2} = 4x \, dx$

Then
$$\int \frac{dy}{y^2} = \int 4x \, dx \quad \to \quad -\frac{1}{y} = 2x^2 + c$$

and
$$y = \frac{-1}{2x^2 + c}$$

15.
$$\frac{dy}{dx} = 3x^2 y$$
: Put $\frac{dy}{y} = 3x^2 dx$.

Then
$$\int \frac{dy}{y} = \int 3x^2 dx \quad \to \quad \ln y = x^3 + c$$

and
$$y = e^{x^3 + c} = ae^{x^3}$$
 $(a = e^c)$

16.
$$y^2 \frac{dy}{dx} = e^x$$
: Put $y^2 dy = e^x dx$.

Then
$$\int y^2 dy = \int e^x dx \rightarrow \frac{1}{3} y^3 = e^x + c'$$

and
$$y^3 = 3e^x + c$$
 $(c = 3c')$

17.
$$\frac{dy}{dx} = y(y-1)$$

We have
$$\frac{dy}{y(y-1)} = dx \rightarrow \int \frac{dy}{y(y-1)} = \int dx = x + c$$

Now
$$\int \frac{1}{y(y-1)} dy = \int \left[\frac{1}{(y-1)} - \frac{1}{y} \right] dy = \ln(y-1) - \ln y = \ln\left(\frac{y-1}{y}\right)$$

Therefore
$$\ln\left(\frac{y-1}{y}\right) = x + c \rightarrow \frac{y-1}{y} = ae^x$$

Then, solving for y,

$$\frac{y-1}{y} = a \quad \Rightarrow \quad y = \frac{1}{1 - ae^x}$$

18.
$$\frac{dy}{dx} = \frac{y}{x}$$
: Put $\frac{dy}{y} = \frac{dx}{x}$

Then
$$\int \frac{dy}{y} = \int \frac{dx}{x} \rightarrow \ln y = \ln x + a \rightarrow \ln \frac{y}{x} = a$$

and
$$\frac{y}{x} = e^a = c \rightarrow y = cx$$

Solve the initial value problems:

19.
$$\frac{dy}{dx} = \frac{y+2}{x-3}$$
; $y(0) = 1$

Separation of variables and integration gives

$$\frac{dy}{y+2} = \frac{dx}{x-3} \rightarrow \int \frac{dy}{y+2} = \int \frac{dx}{x-3} \rightarrow \ln(y+2) = \ln(x-3) + c$$

Then, putting, $c = \ln a$,

$$ln(y+2) = ln a(x-3) \rightarrow y+2 = a(x-3)$$

The initial condition is y = 1 when x = 0.

Therefore $3 = -3a \rightarrow a = -1$

and y = 1 - x

20.
$$\frac{dy}{dx} = \frac{x^2 - 1}{2y + 1}$$
; $y(0) = -1$

Separation of variables and integration gives

$$\int (2y+1) \, dy = \int (x^2-1) \, dx \quad \to \quad y^2 + y = \frac{1}{3}x^3 - x + c$$

The initial condition is y = -1 when x = 0. Then c = 0

and $y^2 + y = \frac{1}{3}x^3 - x$

21.
$$\frac{dy}{dx} = \frac{y(y+1)}{x(x-1)}$$
; $y(2) = 1$

We have $\int \frac{dy}{y(y+1)} = \int \frac{dx}{x(x-1)}$

and, by the method of partial fractions,

$$\int \left[\frac{1}{y} - \frac{1}{y+1} \right] dy = \int \left[\frac{1}{x-1} - \frac{1}{x} \right] dx \rightarrow \ln \frac{y}{y+1} = \ln a \left(\frac{x-1}{x} \right)$$

Then $\frac{y}{y+1} = a \left(\frac{x-1}{x} \right)$.

The initial condition is y = 1 when x = 2. Then a = 1

and $\frac{y}{y+1} = \frac{x-1}{x} \rightarrow xy = xy - y + x - 1 \rightarrow y = x - 1$

22.
$$\frac{dy}{dx} = e^{x+y}$$
; $y(0) = 0$

Separation of variables and integration gives

$$e^{-y} dy = e^x dx$$
 $\rightarrow \int e^{-y} dy = \int e^x dx$
 $\rightarrow -e^{-y} = e^x + c$

The initial condition is y = 0 when x = 0.

Then $-e^{-y} = e^x + c \rightarrow -1 = 1 + c \rightarrow c = -2$

Therefore $e^{-y} = 2 - e^x$

and, taking the log of each side,

$$y = -\ln(2 - e^x)$$

Solve the initial value problems:

23. $\frac{dy}{dx} = \frac{x+y}{x}$; y(1) = 2

Let u = y/x

Then $\frac{dy}{dx} = \frac{x+y}{x} = 1 + \frac{y}{x} \rightarrow 1 + u = f(u)$

The general solution is given by equation (11.19),

 $\int \frac{du}{f(u) - u} = \ln x + c$

The left side is $\int \frac{du}{f(u) - u} = \int du = u = \frac{y}{x}$

Therefore $\frac{y}{x} = \ln x + c \rightarrow y = x(\ln x + c)$

The initial condition, y = 2 when x = 1, gives c = 2. The particular solution of the differential equation is therefore

$$y = x(\ln x + 2)$$

24.
$$2xy\frac{dy}{dx} = -(x^2 + y^2);$$
 $y(1) = 0$

We have
$$2xy \frac{dy}{dx} = -(x^2 + y^2) \rightarrow \frac{dy}{dx} = -\frac{(x^2 + y^2)}{2xy} = -\frac{1}{2} \left(\frac{x}{y} + \frac{y}{x} \right)$$

Let u = y/x

Then $\frac{dy}{dx} = -\frac{1}{2} \left(\frac{1}{u} + u \right) = f(u); \ f(u) - u = -\frac{1}{2} \left(3u + \frac{1}{u} \right)$

By equation (11.19), the general solution is

$$\int \frac{du}{f(u) - u} = \ln x + c$$

The left side is $\int \frac{du}{f(u) - u} = -2 \int \frac{du}{3u + 1/u} = 2 \int \frac{udu}{3u^2 + 1} = -\frac{1}{3} \ln(3u^2 + 1)$

Therefore $-\frac{1}{3}\ln\left(\frac{3y^2}{x^2} + 1\right) = \ln x + c \rightarrow \ln(3y^2 + x^2) = -\ln ax \qquad (\ln a = 3c)$

and the general solution of the differential equation is

$$\ln(3y^2 + x^2) = \ln\frac{1}{ax} \rightarrow 3y^2 + x^2 = \frac{1}{ax} \rightarrow y^2 = \frac{1}{3} \left[\frac{1}{ax} - x^2 \right]$$

The initial condition, y = 0 when x = 1, gives a = 1. The particular solution of the homogeneous differential equation is therefore

$$y^2 = \frac{1}{3} \left[\frac{1}{x} - x^2 \right]$$

25.
$$xy^3 \frac{dy}{dx} = x^4 + y^4; \quad y(2) = 0$$

We have $xy^3 \frac{dy}{dx} = x^4 + y^4 \rightarrow \frac{dy}{dx} = \frac{x^3}{y^3} + \frac{y}{x} = \frac{1}{u^3} + u = f(u) \text{ where } u = \frac{y}{x}$

Then $\int \frac{du}{f(u) - u} = \int u^3 du = \frac{1}{4}u^4$

and the general solution of the differential equation is

$$\frac{y^4}{4x^4} = \ln x + c$$

The initial condition, y = 0 when x = 2, gives $c = -\ln 2$.

Therefore $y^4 = 4x^4 \ln \frac{x}{2}$

10

26. Show that a differential equation of the form

$$\frac{dy}{dx} = f(ax + by + c)$$

is reduced to separable form by means of the substitution u = ax + by.

Let u = ax + by

Then $\frac{du}{dx} = a + b \frac{dy}{dx} = a + f(u + c)$

Therefore, by separation of variables,

$$\frac{du}{a+f(u+c)} = dx \rightarrow \int \frac{du}{a+f(u+c)} = x+c$$

Use the method of Exercise 26 to find the general solution:

27. $\frac{dy}{dx} = 2x + y + 3$

Let u = 2x + y

Then $\frac{du}{dx} = 2 + \frac{dy}{dx} = u + 5$

Then, by separation of variables,

 $\int \frac{du}{u+5} = \int dx \rightarrow \ln(u+5) = x+c \rightarrow u+5 = e^{x+c} = ae^x \quad (a=e^c)$

Therefore $y = ae^x - 2x - 5$

 $28. \quad \frac{dy}{dx} = \frac{x - y}{x - y + 2}$

Let u = x - y

Then $\frac{du}{dx} = 1 - \frac{dy}{dx} = 1 - \frac{x - y}{x - y + 2} = 1 - \frac{u}{u + 2} = \frac{2}{u + 2}$

Then, by separation of variables,

 $\frac{1}{2} \int (u+2) \, du = \int dx \quad \to \quad \frac{1}{2} \left(\frac{u^2}{2} + 2u \right) = x + c$

and $\frac{1}{2} \left(\frac{(x-y)^2}{2} + 2(x-y) \right) = x+c \rightarrow (x-y)^2 - 4y = a \quad (a=4c)$

29. Find the interval $\tau_{1/n}$ in which the amount of reactant in a first-order decay process is reduced by factor n.

As for the half-life (n = 2),

$$x(t+\tau_{1/n}) = \frac{1}{n}x(t)$$

and, for first-order exponential decay,

$$x(t) = ae^{-kt}$$

$$x(t + \tau_{1/n}) = ae^{-k(t + \tau_{1/n})} = ae^{-kt} \times e^{-k\tau_{1/n}}$$

$$= e^{-k\tau_{1/n}} x(t)$$

Then
$$\frac{1}{n} = e^{-k\tau_{1/n}} \quad \to \quad \ln\frac{1}{n} = -k\tau_{\tau_{1/n}} \quad \to \quad \ln n = k\tau_{\tau_{1/n}}$$

30. Solve the initial value problem for the *n*th-order kinetic process $A \rightarrow \text{products}$

$$\frac{dx}{dt} = -kx^n \qquad x(0) = a \qquad (n > 1)$$

By separation of variables and integration,

$$-\int \frac{dx}{x^n} = k \int dt \quad \to \quad \frac{1}{(n-1)x^{n-1}} = kt + c$$

The initial condition, x = a when t = 0, gives $c = \frac{1}{(n-1)a^{n-1}}$

Therefore
$$\frac{1}{x^{n-1}} - \frac{1}{a^{n-1}} = (n-1)kt$$

31. The reversible reaction $A \rightleftharpoons B$, first-order in both directions, has rate equation

$$\frac{dx}{dt} = k_1(a-x) - k_{-1}x$$

Find x(t) for initial condition x(0) = 0.

We have
$$\frac{dx}{dt} = k_1(a-x) - k_{-1}x = k_1a - (k_1 + k_{-1})x$$

Then, by separation of variables and integration,

$$\int \frac{dx}{k_1 a - (k_1 + k_{-1})x} = \int dt \rightarrow \frac{-1}{k_1 + k_{-1}} \ln \left[k_1 a - (k_1 + k_{-1})x \right] = t + c$$

The initial condition, x = 0 when t = 0 gives $c = \frac{-1}{k_1 + k_{-1}} \ln \left[k_1 a \right]$.

Therefore
$$\ln \left[\frac{k_1 a}{k_1 a - (k_1 + k_{-1})x} \right] = (k_1 + k_{-1})t \rightarrow \frac{k_1 a}{k_1 a - (k_1 + k_{-1})x} = e^{(k_1 + k_{-1})t}$$

and
$$x = \frac{k_1 a}{k_1 + k_{-1}} \left[1 - e^{(k_1 + k_{-1})t} \right]$$

32. A third-order process $A + 2B \rightarrow$ products has rate equation

$$\frac{dx}{dt} = k(a-x)(b-2x)^2$$

where a and b are the initial amounts of A and B, respectively. Show that the solution that satisfies the initial condition x(0) = 0 is given by

$$kt = \frac{1}{(2a-b)^2} \ln \frac{a(b-2x)}{b(a-x)} + \frac{2x}{b(2a-b)(b-2x)}$$

Separation of variables and integration gives

$$\int \frac{dx}{(a-x)(b-2x)^2} = k \int dt = kt + c$$

Now, by the method of partial fractions,

$$\frac{1}{(a-x)(b-2x)^2} = \frac{1}{(2a-b)^2} \left[\frac{1}{(a-x)} - \frac{2}{b-2x} + \frac{2(2a-b)}{(b-2x)^2} \right]$$

Therefore
$$\int \frac{dx}{(a-x)(b-2x)^2} = \frac{1}{(2a-b)^2} \int \left[\frac{1}{(a-x)} - \frac{2}{b-2x} + \frac{2(2a-b)}{(b-2x)^2} \right] dx$$
$$= \frac{1}{(2a-b)^2} \left[-\ln(a-x) + \ln(b-2x) + \frac{2a-b}{b-2x} \right] = kt + c$$

The initial condition, x = 0 when t = 0, gives

$$c = \frac{1}{(2a-b)^2} \left[-\ln a + \ln b + \frac{2a-b}{b} \right] = \frac{1}{(2a-b)^2} \ln \frac{b}{a} + \frac{1}{b(2a-b)}$$

Therefore $kt = \frac{1}{(2a-b)^2} \left[\ln \frac{a(b-2x)}{b(a-x)} \right] + \frac{2x}{b(2a-b)(b-2x)}$

Section 11.5

Find the general solution:

33.
$$\frac{dy}{dx} + 2y = 4$$

The linear differential equation has the form (11.47) with p(x) = 2, r(x) = 4. Then

 $\int p(x) dx = 2x$, and the integrating factor is

$$F(x) = e^{\int p(x) dx} = e^{2x}$$

Then, by formula,

$$e^{2x}y = 4\int e^{2x} dx + c = 2e^{2x} + c$$

and

$$y = 2 + ce^{-2x}$$

$$34. \ \frac{dy}{dx} - 4xy = x$$

We have p(x) = -4x, r(x) = x, and integrating factor $F(x) = e^{\int -4x \, dx} = e^{-2x^2}$.

Therefore, by formula,

$$e^{-2x^2}y = \int e^{-2x^2}x \, dx + c = -\frac{1}{4}e^{-2x^2} + c$$

and

$$y = ce^{2x^2} - \frac{1}{4}$$

35.
$$\frac{dy}{dx} + 3y = e^{-3x}$$

We have p(x) = 3, $r(x) = e^{-3x}$, and integrating factor $F(x) = e^{\int 3 dx} = e^{3x}$.

Then, by formula,

$$e^{3x}y = \int e^{3x} \times e^{-3x} dx = \int dx = x + c$$

and

$$y = e^{-3x}(x+c)$$

We have p(x) = 2/x, $r(x) = 2\cos x$. Then $\int p(x) dx = 2\int \frac{dx}{x} = 2\ln x = \ln x^2$ and the integrating

factor is $F(x) = e^{\int p(x) dx} = e^{\ln x^2} = x^2$. Then, by formula,

$$x^2 y = 2 \int x^2 \cos x \, dx + c$$

and integration by parts, as in Example 6.11, gives

$$x^{2}y = 2\left[x^{2}\sin x + 2x\cos x - 2\sin x + c\right]$$
$$y = \frac{2}{x^{2}}\left[x^{2}\sin x + 2x\cos x - 2\sin x + c\right]$$

37.
$$\frac{dy}{dx} - \frac{y}{x^2} = \frac{4}{x^2}$$

$$p(x) = -1/x^2$$
, $r(x) = 4/x^2$,

and the integrating factor is $F(x) = e^{\int p \, dx} = e^{1/x}$. Then, by formula,

$$e^{1/x}y = 4\int e^{1/x} \times \frac{1}{x^2} dx + c$$

Let
$$u = \frac{1}{x}, du = -\frac{1}{x^2} dx$$
.

Then
$$e^{1/x}y = 4\int e^{1/x} \times \frac{1}{x^2} dx + c = -4\int e^u du + c = -4e^u + c = -4e^{1/x} + c$$

and
$$e^{1/x}y = -4e^{1/x} + c \rightarrow y = ce^{-1/x} - 4$$

38.
$$\frac{dy}{dx} + (2 \tan x)y = \sin x$$

We have $p(x) = 2 \tan x$, $r(x) = \sin x$.

Then
$$\int p(x) dx = 2 \int \tan x dx = -2 \ln(\cos x) = \ln(1/\cos^2 x)$$

and the integrating factor is $F(x) = e^{\ln(1/\cos^2 x)} = \frac{1}{\cos^2 x}$.

Then
$$\frac{1}{\cos^2 x} y = \int \frac{1}{\cos^2 x} \times \sin x \, dx + c = \frac{1}{\cos x} + c$$

and $y = \cos x + c \cos^2 x$

$$39. \ \frac{dy}{dx} + ax^n y = bx^n, \quad (n \neq -1)$$

We have $p(x) = ax^n$, $r(x) = bx^n$, and

$$F(x) = e^{\int ax^n dx} = e^{ax^{n+1}/(n+1)}$$

Then
$$e^{ax^{n+1}/(n+1)} y = \int e^{ax^{n+1}/(n+1)} \times bx^n dx + c$$

Let
$$t = x^{n+1}/(n+1)$$
, $dt = x^n$.

Then
$$e^{ax^{n+1}/(n+1)}y = b\int e^{at} dt + c = \frac{b}{a}e^{at} + c = \frac{b}{a}e^{ax^{n+1}/(n+1)} + c$$

and
$$y = \frac{b}{a} + ce^{-ax^{n+1}/(n+1)}$$

$$40. \quad \frac{dy}{dx} + a\frac{y}{x} = x^n$$

We have p(x) = a/x, $r(x) = x^n$, and integrating factor $F(x) = e^{\int a/x \, dx} = e^{a \ln x} = x^a$.

Then
$$x^{a}y = \int x^{a} \times x^{n} dx + c = \frac{x^{a+n+1}}{a+n+1} + c$$

and
$$y = \frac{x^{n+1}}{a+n+1} + cx^{-a}$$

41. The system of three consecutive first-order processes $A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D$ is modelled by the set of equations

$$\frac{d(a-x)}{dt} = -k_1(a-x), \quad \frac{dy}{dt} = k_1(a-x) - k_2y, \quad \frac{dz}{dt} = k_2y - k_3z$$

where (a-x), y, and z are the amounts of A, B, and C, respectively, at time t. Given the initial conditions x=y=z=0 at t=0, find the amount of C as a function of t. Assume

$$k_1 \neq k_2, \ k_1 \neq k_3, \ k_2 \neq k_3$$
 .

For the first-order step $A \rightarrow B$,

$$\frac{d(a-x)}{dt} = -k_1(a-x)$$

Separation of variables and integration gives

$$\int \frac{d(a-x)}{(a-x)} = -\int k_1 \, dt \quad \to \quad \ln(a-x) = -k_1 t + c \quad \to \quad a - x = A e^{-k_1 t} \quad (A = e^c)$$

The initial condition for this step is x = 0 when t = 0. Therefore A = a and

$$a - x = ae^{-k_1 t}$$
 (equation 1)

For step $B \rightarrow C$, making use of equation 1 above,

$$\frac{dy}{dt} = k_1(a - x) - k_2 y = ak_1 e^{-k_1 t} - k_2 y \quad \to \quad \frac{dy}{dt} + k_2 y = ak_1 e^{-k_1 t}$$

We have a linear equation with $p(t) = k_2$, $r(t) = ak_1e^{-k_1t}$ and integrating factor

$$F(t) = e^{\int k_2 \, dt} = e^{k_2 t} \, .$$

Then
$$e^{k_2 t} y = \int e^{k_2 t} \times a k_1 e^{-k_1 t} dt = a k_1 \int e^{(k_2 - k_1)t} dt = \frac{a k_1}{k_2 - k_1} e^{(k_2 - k_1)t} + c$$

and
$$y = \frac{ak_1}{k_2 - k_1} e^{-k_1 t} + ce^{-k_2 t}$$

The initial condition for this step is y = 0 when t = 0. Therefore $c = -\frac{ak_1}{k_2 - k_1}$ and

$$y = \frac{ak_1}{k_2 - k_1} \left[e^{-k_1 t} - e^{-k_2 t} \right]$$
 (equation 2)

For step $C \rightarrow D$, making use of equation 2,

$$\frac{dz}{dt} = k_2 y - k_3 z \quad \to \quad \frac{dz}{dt} + k_3 z = k_2 y = \frac{ak_1 k_2}{k_2 - k_1} \left[e^{-k_1 t} - e^{-k_2 t} \right]$$

This is a linear equation with $p(t) = k_3$, $r(t) = \frac{ak_1k_2}{k_2 - k_1} \left[e^{-k_1t} - e^{-k_2t} \right]$ and integrating factor e^{k_3t} .

Then
$$e^{k_3 t} z = \frac{a k_1 k_2}{k_2 - k_1} \int \left[e^{(k_3 - k_1)t} - e^{(k_3 - k_2)t} \right] dt = \frac{a k_1 k_2}{k_2 - k_1} \left[\frac{e^{(k_3 - k_1)t}}{k_3 - k_1} - \frac{e^{(k_3 - k_2)t}}{k_3 - k_2} \right] + c$$

and
$$z = \frac{ak_1k_2}{k_2 - k_1} \left[\frac{e^{-k_1}}{k_3 - k_1} - \frac{e^{-k_2t}}{k_3 - k_2} \right] + ce^{-k_3t}$$

The initial condition for this step is z = 0 when t = 0. Therefore $c = -\frac{ak_1k_2}{k_2 - k_1} \left[\frac{1}{k_3 - k_1} - \frac{1}{k_3 - k_2} \right]$,

and

the amount of substance C at time t is

$$z = \frac{ak_1k_2}{k_2 - k_1} \left[\frac{e^{-k_1t} - e^{-k_3t}}{k_3 - k_1} - \frac{e^{-k_2t} - e^{-k_3t}}{k_3 - k_2} \right]$$

- 18
- **42.** The first-order process $A \xrightarrow{k_1} B$ is followed by the parallel first-order processes $B \xrightarrow{k_2} C$ and $B \xrightarrow{k_3} D$, and the system is modelled by the equations

$$\frac{d(a-x)}{dt} = -k_1(a-x), \quad \frac{dy}{dt} = k_1(a-x) - (k_2 + k_3)y,$$
$$\frac{dz}{dt} = k_2 y, \quad \frac{du}{dt} = k_3 y$$

where (a-x), y, z and u are the amounts of A, B, C, and D, respectively, at time t. Given the initial conditions x = y = z = u = 0 at t = 0 find the amount of C as a function of time.

 $A \rightarrow B$: as in Exercise 41.

$$\frac{d(a-x)}{dt} = -k_1(a-x) \quad \to \quad a-x = ae^{-k_1t}$$

 $B \rightarrow C + D$: as in Exercise 41, but with k_2 replaced by $k_2 + k_3$.

$$\frac{dy}{dt} = k_1(a-x) - (k_2 + k_3)y \quad \to \quad y = \frac{ak_1}{k_2 + k_3 - k_1} \left[e^{-k_1 t} - e^{-(k_2 + k_3)t} \right]$$

 $B \rightarrow D$:

$$\frac{dz}{dt} = k_2 y = \frac{ak_1 k_2}{k_2 + k_3 - k_1} \left[e^{-k_1 t} - e^{-(k_2 + k_3)t} \right]$$

Integration with respect to t gives

$$z = \frac{ak_1k_2}{k_2 + k_3 - k_1} \left[-\frac{e^{-k_1t}}{k_1} + \frac{e^{-(k_2 + k_3)t}}{k_2 + k_3} \right] + c$$

The initial condition, z = 0 when t = 0, gives $c = \frac{ak_1k_2}{k_2 + k_3 - k_1} \left[\frac{1}{k_1} - \frac{1}{k_2 + k_3} \right]$. The amount of

substance C at time t is therefore,

$$z = \frac{ak_1k_2}{k_2 + k_3 - k_1} \left[\frac{1 - e^{-k_1t}}{k_1} - \frac{1 - e^{-(k_2 + k_3)t}}{k_2 + k_3} \right]$$

43. The current in an RL-circuit containing one resistor and one inductor is given by the equation

$$L\frac{dI}{dt} + RI = E$$

Solve the equation for a periodic e.m.f. $E(t) = E_0 \sin \omega t$, with initial condition I(0) = 0.

This is the problem discussed in Example 11.7, but with a periodic e.m.f. Thus, by equation (11.66), the solution of the linear differential equation is

$$I(t) = e^{-Rt/L} \left[\int e^{Rt/L} \frac{E}{L} dt + c \right]$$

and, inserting $E = E_0 \sin \omega t$,

$$I(t) = e^{-Rt/L} \left[\frac{E_0}{L} \int e^{Rt/L} \sin \omega t dt + c \right]$$

The integral is evaluated by parts, as described in Example 6.13. Let a = R/L and $b = \omega$, then (see also Exercises 49 and 50 in Chapter 6)

$$\int e^{at} \sin bt \, dt = \frac{1}{a} e^{at} \sin bt - \frac{b}{a} \int e^{at} \cos bt \, dt$$
$$= \frac{1}{a} e^{at} \sin bt - \frac{b}{a^2} e^{at} \cos bt - \frac{b^2}{a^2} \int e^{at} \sin bt \, dt$$

Solving for $\int e^{at} \sin bt \, dt$,

$$\int e^{at} \sin bt \, dt = \frac{e^{at}}{a^2 + b^2} \Big[a \sin bt - b \cos bt \Big] .$$

Then

$$I(t) = e^{-Rt/L} \left[\frac{E_0}{L} \int e^{Rt/L} \sin \omega t dt + c \right]$$
$$= e^{-Rt/L} \left\{ \frac{e^{Rt/L} E_0 L}{R^2 + \omega^2 L^2} \left[\frac{R}{L} \sin \omega t - \omega \cos \omega t \right] + c \right\}$$

The initial condition, I = 0 when t = 0, gives $c = \frac{E_0 \omega L}{R^2 + \omega^2 L^2}$.

Therefore
$$I(t) = \frac{E_0}{R^2 + \omega^2 L^2} \left[\omega L e^{-Rt/L} + R \sin \omega t - \omega L \cos \omega t \right]$$

44. Show that the current in an RC–circuit containing one resistor and one capacitor is given by the equation

$$R\frac{dI}{dt} + \frac{I}{C} = \frac{dE}{dt}$$

Solve the equation for (i) a constant e.m.f., $E=E_0$, (ii) a periodic e.m.f., $E(t)=E_0\sin\omega t$.

By Kirchoff's law and equations (11.62) and (11.64),

$$RI + \frac{Q}{C} = E$$

Then, because $\frac{dQ}{dt} = I$

we have $R\frac{dI}{dt} + \frac{1}{C}\frac{dQ}{dt} = \frac{dE}{dt} \rightarrow R\frac{dI}{dt} + \frac{I}{C} = \frac{dE}{dt}$

(i) For constant e.m.f., $\frac{dE}{dt} = 0$ and the differential equation is separable. Thus

$$R\frac{dI}{dt} + \frac{I}{C} = 0 \rightarrow \int \frac{dI}{I} = -\frac{1}{RC} \int dt \rightarrow \ln I = -\frac{t}{RC} + c$$

Therefore $I = I_0 e^{-t/RC}$, where I_0 is the current at time t = 0.

(ii) We have $E = E_0 \sin \omega t \rightarrow \frac{dE}{dt} = E_0 \omega \cos \omega t$.

Then $\frac{dI}{dt} + \frac{I}{RC} = \frac{E_0 \omega}{R} \cos \omega t$

is a linear equation with p = 1/RC, $r = \frac{E_0 \omega}{R} \cos \omega t$ and integrating factor $F(t) = e^{t/RC}$.

Then $I(t) = e^{-t/RC} \left\{ \frac{E_0 \omega}{R} \int e^{t/RC} \cos \omega t \, dt + c \right\}$

The integral is evaluated by parts, as in Exercise 43 above and Exercise 50 in Chapter 6:

$$\int e^{at} \cos bt \, dt = \frac{e^{at}}{a^2 + b^2} \left[a \cos bt + b \sin bt \right]$$

where a = 1/RC and $b = \omega$. Therefore

$$\int e^{t/RC} \cos \omega t \, dt = \frac{RCe^{t/RC}}{q + (\omega RC)^2} \Big[\cos \omega t + \omega RC \sin \omega t \Big]$$

and $I(t) = \frac{\omega E_0 C}{1 + (\omega R C)^2} \Big[\cos \omega t + \omega R C \sin \omega t \Big] + c e^{-t/RC}$