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Solutions for Chapter 11

Section 11.2

State the order of the differential equation and verify that the given function is a solution:

1. ﬂ—2y=2; y=e-1
dx
First order.
y=e*-1 - W _ e
dx

Therefore %—Zyz}ez{—2(9}{—l)=2
X

2

2. %+4y:0; y = Acos 2X+ B sin 2x
X
Second order.
. dy .
y =Acos 2X+ B sin 2x — d—z—2Asm2X+2Bcos2X
X
d?y
- —2:—4Acos 2X—4B sin 2x = -4y
dx
2
Therefore d_g/ +4y=0
dx
3
3. d—g'=12; y=2xC +3x% + 4x+5
dx
Third order.
3 2 dy 2
y=2X"+3X"+4x+5 > d—=6x +6Xx+4
X
2
N d—¥=12x+6
dx

Therefore M =12

3
4, d—y+3—y:3x2; y=X—+i
dx X 2 X

First order

2 3 2 2
Therefore %+3_y=3i_3_c+i(x_+iJ=3L_ 34 +3L+%
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Solutions for Chapter 11

Find the general solution of the differential equation:

5. W_yp
dx
Integrate: Id—y dX=J‘X2 dx — y=1X3+C
dx 3
5. Y_en
dx
Integrate: Jd—y dx = J.e_3x dx — y= L,
dx 3
2
7. d_;/ =cos3X
dx

2
Integrate twice: Id—y dx = Jcos3x dx - L7 :lsin3X +a
dx? dx 3

J'd_y dx :J[ésin3x+a} dx — y=—écos3x+ax+b

3
8. 9 _ gy
dx?

Integrate three times:

o 3 2
d—gldx=JA24xdx —>d—Z=12x2+a
J dx dx
[d? dy
—dx=j[12x2+a]dx - ZL=4x+ax+b
J dx? dx

o_lo_
<
o
=<
1]
—_—
|

4x3+ax+b]dx > y=x'+ax’+bx+c (@'=a/2)
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Solutions for Chapter 11

9. A body moves along the x direction under the influence of the force F(t) =cos2nt, where t is the

time. (i) Write down the equation of motion. (ii) Find the solution that satisfies the initial

conditions X(0)=0 and x(0)=1.

(i) By Newton’s second law of motion, for a body of mass m,

d*x
F()=m—-=cos2nt
dt?

(i) Integrating twice with respect to time t,

2
ﬂdt:i cos2ztdt - %: ! sin 2wt +a
dt? m dt  2mm

cos2nt+at+b

I%dt:j ! sin2nt+a |dt — x({t)=-— !
dt 2mtm 47*m

By the initial conditions:

dx
X(O)z[—j =l=a
dt )i
1
4’m

Therefore  X(t) = (I—cos2mt)+t

Verify that the given function is a solution of the differential equation, and determine the particular

solution for the given initial condition:

10. x%=2y; y=cx’; y=24 whenx=2
X

y=cx* — Y o o xﬂzzcx2=2y
dx d

X
The initial condition is y =24 when x=2.

Therefore 24=4¢c — c=6

and y= 6x>
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Solutions for Chapter 11

11. j_y+2xy:0; y:cefxz; y:2whenX=2
X

dy

y=ce o Yo ek = =2xy —> =+ 2exe X =0
d dx

X
The initial conditionis y =2 whenx=2.

4

Therefore 2=ce — c=2¢*

4-x*

and y=2e

12. j—y+2y+2=o; y=ce -1 y0)=4
X

dy dy

-2X

y=ce -1 » L=2ceP=2(y+l) » —=+2y+2=0
X dx

The initial condition is Yy =4 when x=0.
Therefore 4=c-1 — c=5

and y=5e2*-1

Section 11.3

Find the general solution of the differential equation:

2
13, W3y ydy =3x%dx .
dx vy

Then Iydy=J'3x2dx - %y2=x3+c’

and y2 =2x>+c¢
1, W _ 4xy?: Put Y _4xdx
dx y2

Then JAd—y=JA4xdx - —l:2x2+c
y’ y

_ -1
2x2 +¢

and
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Solutions for Chapter 11
15, Vo3 y: Put Y 32 .
dx y
Then J.ﬂzj‘mzdx - Iny=x>+c
y

and y=e* =g (a=e°)

16. yzﬂ:exz Put y?dy=e”dx.
dx
Then Iyzdyzjexdx - %y3:ex+c’
and y’=3e"+c (c=3c")
d
7. Z=yy-1
X
We have dy =dx —>I dy =Idx=x+c
y(y-1) y(y-1)
1 11 y—1
Now dyz.ﬂ———}dy=1n(y—1)—1ny=1n(—}
J‘y(y—l) (y=bH vy y
Therefore 1n(y—_1jzx+c - y_—1:an
y y
Then, solving fory,
Ylog oy !
y 1-ae*
18. d—y:l: Putﬂ:ﬂ
dx x y X
Then J.ﬂzj‘ﬂ — Iny=Ihx+a — lnlza
y X X
and Y_er_¢ 5 y =CX
X
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Solutions for Chapter 11

Solve the initial value problems:

19.

20.

21.

dy y+2
— = 0)=1
dx x-3 ¥

Separation of variables and integration gives

S SN J.i:jﬂ — In(y+2)=In(x-3)+c
y+2 x-3 y+2 X=3

Then, putting, c=Ina,
In(y+2)=lna(x-3) > y+2=a(x-3)
The initial conditionis y =1 when x=0.

Therefore 3=-3a —» a=-1

and y=1-x
dy x*-1

—= ; 0)=-1
dx 2y+1 ¥

Separation of variables and integration gives
2 2 1 3

The initial condition is Yy =—1 when Xx=0.Then c=0

and y2+y:éx3—x

dy y(y+1

—= ; 2)=1

dx x(x-1) y)

We have j dy = o
y(y+D) J x(x-1)

and, by the method of partial fractions,

ﬂi_;},y: HL_l}dx N mL:lna(X_‘lj
y y+1 x—-1 X y+1 X

Then L:a(x—_lj.
y+1 X

The initial conditionis y =1 when x=2.. Then a=1

and —:X—l = Xy=Xxy—-y+x-1 —» y=x-1
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22. d—yze”y; y(0)=0
dx

Separation of variables and integration gives
eVdy=e"dx — Ie‘y dy = Iex dx
- -eV=¢e"+c
The initial condition is y =0 when x=0.
Then —eV=e"+c > -l=l+c > c=-2
Therefore eV =2-¢"

and, taking the log of each side,

y=—In(2-¢¥)

Solve the initial value problems:

23, W_X+Y. gy o
dx X
Let u=y/x
Then Y XY 1Y st
dx X X

The general solution is given by equation (11.19),

J’ du
=Inx+c
f(uy-u

The left side is J. . :J.du:u:X
f(u)—u X

Therefore lzlnx+c - y=X(Inx+c)
X

The initial condition, y =2 when X =1, gives ¢ =2 . The particular solution of the differential

equation is therefore

y=x(nx+2)
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Solutions for Chapter 11 9

24, 2xyj—y= Sy y1)=0
X

dy

2 2
We have 2xy—==—(+y*) — dy_ X+y)_ 1 Xy
dx dx 2xy 2ly X
Let u=y/x
Then ﬂz—l(lJruJ: f(u); f(u)—u:—l(3u+lj
dx 2\u 2 u

By equation (11.19), the general solution is

J’ du
=Inx+c
f(uy-u

The left side is I du :—2I du :2j udi_ _Linsu? 41
f(uy—u 3u+l/u 3ul+1 3

2
Therefore —%ln(% +1J:1nx+c — InBy?’+x*)=-lnax (Ina=3c)
X

and the general solution of the differential equation is
In(3y* +x*) = n 3y? +x? _ y? :l{i_xﬂ
ax ax
The initial condition, y =0 when x =1, gives a =1. The particular solution of the homogeneous

differential equation is therefore

3
sAY e, dy l=%+u=f(u) where u ="
X X u X

Then I du :ju3du:lu4
f(uy—u 4

and the general solution of the differential equation is
= Inx+c
4x

The initial condition, y =0 when x=2, gives C=—1In2.

Therefore yt=ax* lng
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26. Show that a differential equation of the form
Y _ f(ax+ by +¢)
dx

is reduced to separable form by means of the substitution u = ax+by .

Let u=ax+hy
Then d—u:a+bﬂ=a+f(u+c)
dx dx

Therefore, by separation of variables,

du J’ du
————=dx > |———=x+¢c
a+ fu+c) a+ fu+c)

Use the method of Exercise 26 to find the general solution:

27. d—y=2x+ y+3
dx

Let u=2x+y
Then d—u=2+d—y=u+5
dx dx

Then, by separation of variables,

du

5:J.dx - In@U+5)=x+c — u+5=e"""=ae* (a=¢%
u+

Therefore y=ae*-2x-5

28. d_y:i
dx Xx—-y+2
Let u=x-y

d—uzl—ﬂ—l— X-y _,__u 2

Then =1- =
dx dx X—y+2 u+2 u+2

Then, by separation of variables,

1 1(u?
—J@U+2)du=] dx —» —|—+2U|=X+C
2 2( 2

1
2

and

2
{%+2(x—y)]=x+c - (x-y)y’-4y=a (a=4c)
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Solutions for Chapter 11 11

Section 11.4

29. Find the interval 7,/, in which the amount of reactant in a first-order decay process is reduced by

factor n.

As for the half-life (n=2),

K+ 5) = X()

and, for first-order exponential decay,

X(t) =ae ™
Kt Ktk
X(t+7y,) =ae I = ap™M xe
&
=e ()
| B 1
Then —=e¢ " 5 In—=-kr, — Inn=ke,
n n 1/n 1/n

and Ty = Inn

30. Solve the initial value problem for the nth-order kinetic process A — products

dx

E_—kx x(0)=a (n>1)

By separation of variables and integration,

—J‘ﬂzkj‘dt 5 — ks
X" (n=Dx"™

The initial condition, X =a when t =0, gives C = ;1
(n-DHa""
1 1
Therefore - =(n—-1D)kt
NERE
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Solutions for Chapter 11 12

31.

The reversible reaction A = B, first-order in both directions, has rate equation

dx
e ki(a—x)—k_x

Find x(t) for initial condition X(0)=0.

We have %:kl(a—x)—k%x:kla—(kl+k71)x

Then, by separation of variables and integration,

dx -
— = -]t In| kja—(k, +k_)x|=t+c
J.kla—(k1+k_l)x _[ - K +k_, n[ ja—(k+k ) ]

The initial condition, X =0 when t=0 gives c=———In[ka].
kK, +k_,
Therefore In L =k +k )t - — kia = elkirkt
kia—(k, +k_;)x kia — (k, +k_;)x
and X =£|:l—e(k‘+k*‘)t:|
k, +k_;

32.

A third-order process A + 2B — products has rate equation

dx
i k(a - x) (b—2x)*

where a and b are the initial amounts of A and B, respectively. Show that the solution that satisfies
the initial condition x(0) =0 is given by

1 a(b —2x) 2X

kt = n
(2a-b)>  b@a-x) b2a-b)(b-2x)

Separation of variables and integration gives

jszjdt:m
(a-x) (b —2x)>

Now, by the method of partial fractions,

1 _ 1 L2 2Qa-b
(@a-x)(b-2x)*> (a-b)’|(@=-x) b-2x (b-2x)*

Therefore J. dx ! J.[ I 2 + 2(2a-b) ‘|dx

(a—x)(b—2x)2:(2a—b)2 (@a-x) b-2x (b-2x)>

2a-b
b-2x

{—ln(a—x)+ln(b—2x)+ }:kt+c

-
(2a-h)?
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Solutions for Chapter 11 13

The initial condition, X =0 when t=0, gives

2a-b 1 b 1
C:—{—lna+lnb+ }: n= 4
(2a-b)’ b (2a—b)> a b(2a—b)
Therefore  kt = 1 In a(b-2x) N 2%
(2a-b)’| b@a-x) | ba-b)b-2x)

Section 11.5

Find the general solution:

33. d_y +2y=4
dx
The linear differential equation has the form (11.47) with p(x) =2, r(x) =4 . Then
J p(x)dx = 2x, and the integrating factor is
F(x) = oJ POV _ 2

Then, by formula,

ety =4.[ e dx+c=2e"+c
and y=2+ce >

34. d—y—4xy =X
dx

I—4x dx _ox?

We have p(x)=—4X, r(X) = X, and integrating factor F(X) =e =e

Therefore, by formula,

a2 o2 1 -2
e y=JAe2X xdx+c=—ze X 4c

and y=ce” ——
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Solutions for Chapter 11 14

35 . 3y=eX
dx

_[3dx 3%

We have p(x)=3, r(x)= e>*, and integrating factor F(x)=¢ =e

Then, by formula,

e3xy=J. e x e~ dx:J dx=x+c

and y=eX(x+¢)
36. ﬂ+2—y=2cos X
dx X

We have p(X)=2/x, r(x)=2cosx . Then '[ p(x)dx = ZI % =2Inx=Inx> and the integrating
X

[peodx _ inx

factoris F(x)=¢ X’ =y, Then, by formula ,

X2y = 2j x? cos Xdx +¢
and integration by parts, as in Example 6.11, gives
X2y = 2[x2 sinx+2mosx—2sinx+c}

2 . .
y:—z[x2 smx+2XcosX—251nX+CJ
X

pX) =—-1/x%, r(x)=4/x*,

Ipdx

and the integrating factor is F(X)=¢ =el/x, Then, by formula,

el/xy=4j el/x xizdx+c
X

Let u:l, du:—izdx.
X X
Then el/xy=4f el/xxizdx+c=—4j‘ e'du+c=—4e" +c=—4e"" +c
X
and e*y=—4e+c > y=ceV -4
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38.

39.

40.

d—y+ (2 tan X)y =sin X
dx

We have p(X)=2tan X, r(x)=sinX.

Then '[ p(x)dx = 2j tan X dx = —21In(cos X) = ln(l/cos2 X)

. . . 2 1
and the integrating factor is F(X) = gin/eos™) _ 1

0052 X '
1 1 .

Then 5 y:I 5 xsin Xdx+c = +C

Ccos™ X Ccos™ X COos X
and y=cosx+Ccos2 X
9X+aﬂy:bﬂl (n=-1)
dx
We have p(x) =ax", r(x) =bx", and

F(x) = el & _ g™
Then M+ I D) gy
Let t=x"/(n+1), dt=x".
Then e“m%mﬂy:bfemm+c=9em+c:9e“m%mﬂ+c

a a
and y= b e
a

gx+a1=xn
dx X
We have p(x)=a/x, r(x)=x", and integrating factor F(X)= eja/x 0 _ galnx

a+n+l
Then X2y = | x¥xx"dx+c= +C
a+n+1
n+l
X _
and = +cx72
a+n+1

© E Steiner 2008
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Section 11.6

41. The system of three consecutive first-order processes A Y B 55 5D is modelled
by the set of equations
d(@a-x) dy dz
———=-k((@a-x), —=k@-x)-ky, —=ky-k,z
at 1 ( ) at 1 ( ) =Ky i y—K

where (a—X), Y, and z are the amounts of A, B, and C, respectively, at time t. Given the initial
conditions Xx=y=2z=0 at t =0, find the amount of C as a function of t. Assume

ki 2Ky, ki =K, Ky #Ks.

For the first-order step A — B,

d(a-x)
———==-k(a-x

i 1(@=x)
Separation of variables and integration gives

d@a-x) _
@a-x

Jkldt - In@a-x)=-kt+c — a-x=Aek (A=¢°)

The initial condition for this step is X =0 when t=0. Therefore A=a and
a—x=ae ™ ! (equation 1)
For step B — C, making use of equation 1 above,

ﬂ:kl(a—x)—kzy:akle’klt—kzy S v it

—+k,y=ake
dt a ey T

We have a linear equation with p(t) =k,, r(t)= aklefklt and integrating factor
Ikz dt k,t
F(t)=e =e7.

- - ak -
Then elly = jekzt x ak e~ dt = akIJ‘e(kz kgt = ﬁe(kZ "ty
27N

and y=———¢

ak,

——— and
ky =k

The initial condition for this step is y =0 when t =0. Therefore ¢ =—

y= ilk[e_klt - e_kzt] (equation 2)
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For step C — D, making use of equation 2,

dz dz ak,k
Zoky-kz o> —4kz=ky=—12 ekt g7t
at 2Y — K5 P 2Y kz_kl[ ]

L . . akik, - - . .
This is a linear equation with p(t) =k;, r(t)= ﬁ[e kt _e kzt] and integrating factor ekt

275
ks —kp)t Ky —ky )t

Then ek3tZ _ ak1k2 J‘|:e(k3_kl)t —e(k3_k2)t:|dt _ ak1k2 |:e( 3-Kp) ~ e( 3-Ky) :|+C

k, —k, Ky =k | ky—k — ky—k,

-k —kyt
and . Lol U +ce !
Ky =k [ ks =k ks =k,
The initial condition for this step is z=0 when t =0. Therefore ¢ = - akiky 1 ,
ky—ki ks =k ks —k,

and

the amount of substance C at time t is

Kt okt kgt

R
kZ _kl k3 _kl k3 _k2
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42. The first-order process A L> B is followed by the parallel first-order processes B L) C

and B—% D, and the system is modelled by the equations

d(a—x d

e @-0. Fok@-0-lo+k)y,
E— y d_u—ky

a2 dt °

where (a—Xx), ¥, z and U are the amounts of A, B, C, and D, respectively, at time t. Given the

initial conditions X=y=z=U=0 at t =0 find the amount of C as a function of time.

k, C

k

A —» B’///* z
a—x y *A

3 D

u

A — B:as in Exercise 41.

d(a—x)

=k(@-X) - a-x=ae
™ (@-x)

B — C+D: as in Exercise 41, but with k, replaced by k, +k;.

@ ki@-x)—(k, +ky)y — y :a—kl[e‘klt _e*("ﬁ"sﬁJ

dt Ky +K; — K,
B—D

E =K,y = —aklkz |:e*k1t _ e—(kz +ks)t :|

dt Ky +K; — K,

Integration with respect to t gives

ak. k e—klt e—(kz +k)t
= 12| _ + +C
k, +k; —k k, Kk, + Ky

o .. . ak,k
The initial condition, z=0 when t=0, gives C= 172

= L ! . The amount of
ky +k; =k

K ky +k

substance C at time t is therefore,

L akk 1—e Mt gtk
k, +k; —k k, k, +k;

© E Steiner 2008




Solutions for Chapter 11 19

Section 11.7

43. The current in an RL—circuit containing one resistor and one inductor is given by the equation

Ld—|+ RI=E
dt

Solve the equation for a periodic e.m.f. E(t) = E; sin wt , with initial condition 1(0)=0.

This is the problem discussed in Example 11.7, but with a periodic e.m.f. Thus, by equation (11.66),

the solution of the linear differential equation is
RUL rL E
I(t)=e Ue tdt+c}

and, inserting E = E; sinwt ,

I(t)=e "t {E—LO I eR'L sin otdt + c}

The integral is evaluated by parts, as described in Example 6.13. Let a=R/L and b =® , then

(see also Exercises 49 and 50 in Chapter 6)
at 1 at . b [ at
e“ sinbtdt =—e® sin bt—— | e cosbtdt
a a

| b a b’ at
=—e% sin bt——ze cosbt——2 e” sin bt dt
a a a

Solving for Ieat sinbtdt,

at
e sinbtdt = asinbt—bcosbt | .
j a2 +b2 |: :|
—reL | Eo RUL _:
Then I(t)=e T e sinwtdt + ¢
RU/L
e E, L
gL = —0- Bsina)t—a)cosa)t +C
R+’ | L
E oL
The initial condition, | =0 when t=0, gives C= %
R +w”L

E
Therefore  I(t) = ﬁ[a)Le_Rm‘ + Rsin ot — wl cos cot}
R +w°L
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44. Show that the current in an RC—circuit containing one resistor and one capacitor is given by the

equation
a1 e
dt C dt

Solve the equation for (i) a constant e.m.f., E = E,, (ii) a periodic e.m.f., E(t) = E, sinwt .

By Kirchoff’s law and equations (11.62) and (11.64),

RI+Q:E
C
Then, because d—Q:I
dt
we have Rd—I id—de—E Rd—I L dE

+ - =—
dt C dt dt dt C dt

(i) For constant e.m.f., ((jj—f =0 and the differential equation is separable. Thus

Rd—|+|—:0 - ﬂ:—L d — lan—L-l-C
d¢ C I RC
Therefore | = Ioe’t/ RC where I, is the current at time t = 0.

(if) We have E=E,sinot — % _ Ejwcosat .

dt

dl I E
+—:Lwcosa)t

Then —
dt RC R

E
is a linear equation with p=1/RC, r = %wcos wt and integrating factor F(t) = el/Re

Then I(t)=e"RC {E%:)J‘etmc cos wtdt + C}

The integral is evaluated by parts, as in Exercise 43 above and Exercise 50 in Chapter 6:

e at

a’ +b?

Ieat coshtdt = [acosbt+bsin bt]

where a=1/RC and b = ®. Therefore

t/RC
J‘et/RC cos wt dt = Rce—z[cos ot + wRC sin a)tJ
g+(wRC)

and I(t :L%[cosa)t+a)RCsina)tJ+ce
1+ (wRC)

~t/RC
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