The Chemistry Maths Book

Erich Steiner

University of Exeter

Second Edition 2008

Solutions

Chapter 3 Transcendental functions

- 3.1 Concepts
- 3.2 Trigonometric functions
- 3.3 Inverse trigonometric functions
- 3.4 Trigonometric relations
- 3.5 Polar coordinates
- 3.6 The exponential function
- 3.7 The logarithmic function
- 3.8 Values of exponential and logarithmic functions
- 3.9 Hyperbolic functions

1. The right-angled triangle ABC has sides a = 12 and b = 5 (Figure 1). Find c and the sin, cos, tan, cosec, sec and cot of the internal angles A and B.

By Pythagoras, $c^2 = a^2 + b^2$.

Therefore
$$c = \sqrt{12^2 + 5^2} = \sqrt{169} = 13$$
.
Then $\sin A = \frac{a}{c} = \frac{12}{13}$, $\cos A = \frac{b}{c} = \frac{5}{13}$, $\tan A = \frac{a}{b} = \frac{12}{5}$, $\cos A = \frac{c}{a} = \frac{13}{12}$, $\cot A = \frac{b}{a} = \frac{5}{12}$, $\cos B = \frac{b}{c} = \frac{5}{13}$, $\cos B = \frac{a}{c} = \frac{12}{13}$, $\tan B = \frac{b}{a} = \frac{5}{12}$, Figure 1 $\cos B = \frac{13}{5}$, $\sec B = \frac{13}{12}$, $\cot B = \frac{12}{5}$

- 2. For the triangle in Exercise 1, find (i) $\sin^2 A + \cos^2 A$, (ii) $\sin^2 B + \cos^2 B$.
 - (i) $\sin^2 A + \cos^2 A = \left(\frac{12}{13}\right)^2 + \left(\frac{5}{13}\right)^2 = \frac{144 + 25}{169} = 1$
 - (ii) $\sin^2 B + \cos^2 B = \left(\frac{5}{13}\right)^2 + \left(\frac{12}{13}\right)^2 = \frac{25 + 144}{169} = 1$
- 3. Express the following angles in radians: (i) 5° , (ii) 87° , (iii) 120° , (iv) 260° , (v) 540° , (vi) 720°

We have $180^{\circ} = \pi$ (π rad). Therefore

(i)
$$5^{\circ} = 5 \times \frac{\pi}{180} = \frac{\pi}{36} \approx 0.0873 \text{ (0.0873 rad)}$$

(ii)
$$87^\circ = 87 \times \frac{\pi}{180} \approx 1.5184$$

(iii)
$$120^{\circ} = \frac{2\pi}{3} \approx 2.0944$$

(iv)
$$260^\circ = 260 \times \frac{\pi}{180} = \frac{13\pi}{9} \approx 4.5349$$

(v)
$$540^{\circ} = 3\pi \approx 9.4248$$

(vi)
$$720^{\circ} = 4\pi \approx 12.5664$$

4. Express the following angles in degrees:

(i)
$$\pi/10 = 180^{\circ}/10 = 18^{\circ}$$

(ii)
$$\pi/4 = 45^{\circ}$$

(iii)
$$\pi/6 = 30^{\circ}$$

(iv)
$$\pi/3 = 60^{\circ}$$

(v)
$$3\pi/8 = 3 \times 180^{\circ}/8 = 67.5^{\circ}$$

(vi)
$$7\pi/8 = 157.5^{\circ}$$

5. For a circle of radius r = 4, find

(i) the angle subtended at the centre of the circle by arc of length 6:

$$s = r\theta$$
, $\theta = s/r = 6/4 = 3/2 \text{ rad} \approx 85.9437^{\circ}$

(ii) the length of arc that subtends angle $\pi/10$ at the centre of the circle:

$$s = r\theta = 4 \times \pi/10 = 2\pi/5 \approx 1.2566$$

(iii) the length of arc that subtends angle $\pi/2$ at the centre of the circle:

$$s = r\theta = 4 \times \pi/2 = 2\pi \approx 6.2832$$

(iv) the circumference of the circle:

$$s = 2\pi r = 8\pi \approx 25.1327$$

6. Use Table 3.2 to find the sine, cosine and tangent of (i)
$$3\pi/4$$
, (ii) $5\pi/4$, (iii) $7\pi/4$.

From Table 3.2, $\sin \pi/4 = \cos \pi/4 = 1/\sqrt{2}$, $\tan \pi/4 = 1$.

Then

(i)
$$\sin 3\pi/4 = +1/\sqrt{2}$$
, $\cos 3\pi/4 = -1/\sqrt{2}$, $\tan 3\pi/4 = -1$

(ii)
$$\sin 5\pi/4 = -1/\sqrt{2}$$
, $\cos 5\pi/4 = -1/\sqrt{2}$, $\tan 5\pi/4 = +1$

(iii)
$$\sin 7\pi/4 = -1/\sqrt{2}$$
, $\cos 7\pi/4 = +1/\sqrt{2}$, $\tan 7\pi/4 = -1$

Figure 2

- 7. By considering the limit $\theta \to 0$ of an internal angle of a right-angled triangle (Figure 3), show that
 - (i) $\sin 0 = 0$, (ii) $\cos 0 = 1$.

In Figure 3,

as
$$\theta \to 0$$
, $a \to 0$ and $b \to c$.

Therefore

- (i) $\sin \theta = a/c \rightarrow 0$
- (ii) $\cos \theta = b/c \rightarrow 1$

Figure 3

8. Use the properties of the right-angled isosceles triangle to verify the values of the trigonometric functions for $\theta = \pi/4$ in Table 3.2.

By Pythagoras, $c = \sqrt{2}a$.

Therefore

$$\sin \pi/4 = \cos \pi/4 = a/c = 1/\sqrt{2}$$

$$\tan \pi/4 = a/a = 1$$

Figure 4

- Sketch a diagram to show that
 - (i) $\sin(\pi \theta) = \sin \theta$
- (ii) $\cos(\pi \theta) = -\cos\theta$ (iii) $\sin(\pi + \theta) = -\sin\theta$

- (iv) $\cos(\pi + \theta) = -\cos\theta$ (v) $\sin(\pi/2 \theta) = \cos\theta$ (vi) $\cos(\pi/2 \theta) = \sin\theta$

From Figure 5, $\sin \theta = a/r$, $\cos \theta = b/r$

Therefore

(i)
$$\sin(\pi - \theta) = a/r = \sin \theta$$

(ii)
$$\cos(\pi - \theta) = -b/r = -\cos\theta$$

(iii)
$$\sin(\pi + \theta) = -a/r = -\sin\theta$$

(iv)
$$\cos(\pi + \theta) = -b/r = -\cos\theta$$

(v)
$$\sin(\pi/2 - \theta) = b/r = \cos \theta$$

(vi)
$$\cos(\pi/2 - \theta) = a/r = \sin \theta$$

Figure 5

- 10. Find the period and sketch the graph $(-\pi \le x \le 2\pi)$ of (i) $\sin 2x$, (ii) $\cos 3x$.
 - (i) If $f(x) = \sin 2x$ then $f(x+a) = \sin(2x+2a) = f(x)$ if $2a = 2\pi$, and the period of $\sin 2x$ is $a = \pi$.

In the graph, $\sin 2x = 0$ when 2x is zero or an integer multiple of π ; that is, when

$$x = 0, \pm \pi/2, \pm \pi, \pm 3\pi/2, \dots$$

and $\sin 2x = \pm 1$ when 2x is an odd integer multiple of $\pi/2$; that is, when

$$x = \pm \pi/4$$
, $\pm 3\pi/4$, ...

The sketch of $\sin 2x$ should look like

Figure 6

(ii) If $f(x) = \cos 3x$ then $f(x+a) = \cos(3x+3a) = f(x)$ if $3a = 2\pi$, and the period of $\cos 3x$ is $a = 2\pi/3$

In the graph, $\cos 3x = 0$ when 3x is an odd integer multiple of $\pi/2$; that is, when

$$x = \pm \pi/6$$
, $\pm 3\pi/6 = \pm \pi/2$, $\pm 5\pi/6$,...

and $\cos 3x = \pm 1$ when 3x is zero or an integer multiple of π ; that is, when

$$x = 0, \pm \pi/3, \pm 2\pi/3, \dots$$

The sketch of $\cos 3x$ should look like

Figure 7

11. Sketch the graph of the harmonic wave $\phi(x,t) = \sin 2\pi(x-t)$ as a function of $x(-1 \le x \le 2)$ for values of time, (i) t = 0, (ii) t = 1/4, (iii) t = 1/2.

In the graphs, $\phi(x,t) = \sin 2\pi(x-t) = 0$ when $2\pi(x-t)$ is zero or an integer multiple of π ; that is, when

$$x = t + n/2$$
 for $n = 0, \pm 1, \pm 2, ...$

(i)
$$\phi(x,0) = 0$$
 when $x = 0, \pm 1/2, \pm 1, \pm 3/2, ...$

The function is represented by the solid line in Figure 8 below.

(ii)
$$\phi(x,1/4) = 0$$
 when $x = \pm 1/4$, $\pm 3/4$, $\pm 5/4$, ...

The function is represented by the long dashes in Figure 8.

(iii)
$$\phi(x,1/2) = 0$$
 when $x = 0, \pm 1/2, \pm 1, \pm 3/2, \dots$

The function is represented by the short dashes Figure 8.

The sketches of $\phi(x,t) = \sin 2\pi(x-t)$ should look like

Figure 8

12. Find the principal values of:

- (i) $\theta = \sin^{-1}(1/2)$: The principal value of the inverse sine lies in quadrant I or IV. But $\sin \theta = 1/2 > 0$. Therefore $\theta = \pi/6$, in the first quadrant.
- (ii) $\theta = \sin^{-1}(1)$: $\theta = \pi/2$, on the I/II border.
- (iii) $\theta = \cos^{-1}(1/2)$: The principal value of the inverse cosine lies in quadrant I or II. But $\cos \theta = 1/2 > 0$. Therefore $\theta = \pi/3$, in the first quadrant.
- (iv) $\theta = \cos^{-1}(-1)$: $\theta = \pi$, on the II/III border.
- 13. The Bragg equation for the reflection of radiation of wavelength λ from the planes of a crystal is $n\lambda = 2d\sin\theta$ where d is the separation of the planes, θ is the angle of incidence of the radiation, and n is an integer. Calculate the angles θ at which X-rays of wavelength 1.5×10^{-10} m are reflected by planes separated by 3.0×10^{-10} m.

We have,
$$d = 3.0 \times 10^{-10}$$
 m and $\lambda = 1.5 \times 10^{-10}$ m, so that $\frac{\lambda}{2d} = \frac{1.5 \times 10^{-10}}{2 \times 3 \times 10^{-10}} = \frac{1}{4}$.

Therefore
$$\theta = \sin^{-1} \left(\frac{n\lambda}{2d} \right) = \sin^{-1} \left(\frac{n}{4} \right)$$
:

$$n = 1$$
 $\sin^{-1}(1/4) \approx 14.48^{\circ}$

$$n = 2$$
 $\sin^{-1}(1/2) = 30^{\circ}$

$$n = 3$$
 $\sin^{-1}(3/4) \approx 48.59^{\circ}$

$$n = 4 \qquad \sin^{-1}(1) = 90^{\circ}$$

14. Given the side a = 1 and angles $A = \pi/4$ and $B = \pi/3$ of a triangle ABC (Figure 9), find the third angle and the other two sides.

The third angle is $C = \pi - A - B = \pi - \pi/4 - \pi/3 = 5\pi/12 = 75^{\circ}$

By the sine rule,
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
.

Therefore
$$b = a \frac{\sin B}{\sin A} = \frac{\sqrt{3}/2}{1/\sqrt{2}} = \sqrt{3/2}$$

$$c = a \frac{\sin C}{\sin A} = \sqrt{2} \sin 75^{\circ} \approx 1.3660$$

Figure 9

15. Given the sides a = 2, b = 2.5 and c = 3 of a triangle ABC (Figure 9), find the angles.

By the cosine rule, $a^2 = b^2 + c^2 - 2bc \cos A$.

Therefore
$$\cos A = (b^2 + c^2 - a^2)/2bc = 0.75$$

and
$$A = \cos^{-1}(0.75) \approx 41.41^{\circ}$$
.

Similarly
$$\cos B = (a^2 + c^2 - b^2)/2ac = 0.5625$$

and
$$B = \cos^{-1}(0.5625) \approx 55.77^{\circ}$$
.

Then
$$C = 180^{\circ} - A - B \approx 82.82^{\circ}$$
.

16. Given the sides a = 3, b = 4, and included angle $C = \pi/4$ of triangle ABC (Figure 9), find the third side and the other two angles.

By the cosine rule, $c^2 = a^2 + b^2 - 2ab \cos C = 25 - 24/\sqrt{2} \approx 8.0294$.

Therefore $c \approx 2.8336$.

By the cosine rule, $\cos A = \frac{b^2 + c^2 - a^2}{2bc} \approx 0.6630$ and $\cos B = \frac{a^2 + c^2 - b^2}{2ac} \approx 0.0605$.

Therefore, taking principal values,

$$A \approx \cos^{-1}(0.6630) \approx 48.47^{\circ}$$

$$B \approx \cos^{-1}(0.0605) \approx 86.53^{\circ}$$

Check: $A + B + C = 45^{\circ} + 48.47^{\circ} + 86.53^{\circ} = 180^{\circ}$

17. Given the sides $a = \sqrt{2}$, b = 3, and included angle $C = \pi/4$ of the triangle ABC (Figure 9), find the third side and the other two angles.

By the cosine rule, $c^2 = a^2 + b^2 - 2ab \cos C = 2 + 9 - 2 \times \sqrt{2} \times 3 \times 1/\sqrt{2} = 5$.

Therefore, $c = \sqrt{5} \approx 2.2361$.

By the cosine rule, $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{2}{\sqrt{5}} \approx 0.8944$ and $\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{-1}{\sqrt{10}} \approx -0.3162$.

Therefore, taking principal values,

$$A \approx \cos^{-1}(2/\sqrt{5}) \approx 26.57^{\circ}$$

$$B \approx \cos^{-1}(-1/\sqrt{10}) \approx 108.43^{\circ}$$

Check: $A + B + C = 45^{\circ} + 26.57^{\circ} + 108.43^{\circ} = 180^{\circ}$

10

18. Express in terms of in terms of the sines and cosines of 2θ and 5θ :

(i)
$$\sin 7\theta = \sin (5\theta + 2\theta) = \sin 5\theta \cos 2\theta + \cos 5\theta \sin 2\theta$$

(ii)
$$\sin 3\theta = \sin (5\theta - 2\theta) = \sin 5\theta \cos 2\theta - \cos 5\theta \sin 2\theta$$

(iii)
$$\cos 7\theta = \cos (5\theta + 2\theta) = \cos 5\theta \cos 2\theta - \sin 5\theta \sin 2\theta$$

(iv)
$$\cos 3\theta = \cos (5\theta - 2\theta) = \cos 5\theta \cos 2\theta + \sin 5\theta \sin 2\theta$$

19. Express (i) $\sin 3\theta$ in terms of $\sin \theta$, (ii) $\cos 3\theta$ in terms of $\cos \theta$.

(i)
$$\sin 3\theta = \sin(2\theta + \theta) = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$$

 $= (2\sin \theta \cos \theta)\cos \theta + (1 - 2\sin^2 \theta)\sin \theta$
 $= 2\sin \theta \cos^2 \theta + \sin \theta - 2\sin^3 \theta$
 $= 2\sin \theta (1 - \sin^2 \theta) + \sin \theta - 2\sin^3 \theta$
 $= 3\sin \theta - 4\sin^3 \theta$

(ii)
$$\cos 3\theta = \cos(2\theta + \theta) = \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$$

 $= (2\cos^2 \theta - 1)\cos \theta - (2\sin \theta \cos \theta)\sin \theta$
 $= 2\cos^3 \theta - \cos \theta - 2\sin^2 \theta \cos \theta$
 $= 2\cos^3 \theta - \cos \theta - 2(1-\cos^2 \theta)\cos \theta$
 $= 4\cos^3 \theta - 3\cos \theta$

20. Express $\cos 4x$ in terms of (i) $\sin 2x$ and $\cos 2x$, (ii) $\sin 2x$ only, (iii) $\cos 2x$ only, (iv) $\sin x$ only, (v) $\cos x$ only.

(i)
$$\cos 4x = \cos^2 2x - \sin^2 2x$$

(ii)
$$\cos 4x = 1 - 2\sin^2 2x$$

(iii)
$$\cos 4x = 2\cos^2 2x - 1$$

(iv)
$$\cos 4x = 1 - 2\sin^2 2x$$

 $= 1 - 2(2\sin x \cos x)^2 = 1 - 8\sin^2 x \cos^2 x$
 $= 1 - 8\sin^2 x (1 - \sin^2 x)$
 $= 1 - 8\sin^2 x + 8\sin^4 x$

11

(v)
$$\cos 4x = 2\cos^2 2x - 1$$

= $2(2\cos^2 x - 1)^2 - 1$
= $8\cos^4 x - 8\cos^2 x + 2 - 1$
= $1 - 8\cos^2 x + 8\cos^4 x$

21. Given $\sin 10^\circ = 0.1736$, $\sin 30^\circ = 1/2$, $\sin 50^\circ = 0.7660$, find $\cos 20^\circ$ (without using a calculator).

We have
$$\sin 50^\circ = \sin(30^\circ + 20^\circ) = \sin 30^\circ \cos 20^\circ + \cos 30^\circ \sin 20^\circ$$

 $\sin 10^\circ = \sin(30^\circ - 20^\circ) = \sin 30^\circ \cos 20^\circ - \cos 30^\circ \sin 20^\circ$
Then $\sin 50^\circ + \sin 10^\circ = 2\sin 30^\circ \cos 20^\circ = 2 \times \frac{1}{2} \times \cos 20^\circ$

and
$$\cos 20^\circ = 0.7660 + 0.1736 = 0.9396$$

22. Express in terms of the sines of 8x and 2x: (i) $\sin 5x \cos 3x$, (ii) $\cos 5x \sin 3x$

By equation (3.21),

$$\sin 8x = \sin(5x + 3x) = \sin 5x \cos 3x + \cos 5x \sin 3x$$

$$\sin 2x = \sin(5x - 3x) = \sin 5x \cos 3x - \cos 5x \sin 3x$$

Therefore (i)
$$\sin 5x \cos 3x = \frac{1}{2} \left[\sin 8x + \sin 2x \right]$$

(ii)
$$\cos 5x \sin 3x = \frac{1}{2} \left[\sin 8x - \sin 2x \right]$$

23. Express in terms of the cosines of 8x and 2x: (i) $\sin 5x \sin 3x$, (ii) $\cos 5x \cos 3x$.

By equation (3.22),

$$\cos 8x = \cos (5x + 3x) = \cos 5x \cos 3x - \sin 5x \sin 3x$$
$$\cos 2x = \cos (5x - 3x) = \cos 5x \cos 3x + \sin 5x \sin 3x$$

Therefore (i)
$$\sin 5x \sin 3x = \frac{1}{2} \left[\cos 2x - \cos 8x\right]$$

(ii)
$$\cos 5x \cos 3x = \frac{1}{2} \left[\cos 2x + \cos 8x \right]$$

24. Express (i) $\sin(\pi \pm \theta)$ and (ii) $\cos(\pi \pm \theta)$ in terms of $\sin \theta$ and $\cos \theta$.

(i) We have $\sin(\pi \pm \theta) = \sin \pi \cos \theta \pm \cos \pi \sin \theta = \mp \sin \theta$

Therefore $\sin(\pi + \theta) = -\sin \theta$ $\sin(\pi - \theta) = +\sin \theta$

(ii) We have $\cos(\pi \pm \theta) = \cos \pi \cos \theta \mp \sin \pi \sin \theta = -\cos \theta$

Therefore $\cos(\pi + \theta) = \cos(\pi - \theta) = -\cos\theta$

- **25.** The function $\psi(x,t) = \sin \pi x \cos 2\pi t$ represents a standing wave. Find the values of time t for which ψ has (i) maximum amplitude, (ii) zero amplitude. (iii) Sketch the wave function between x = 0 and x = 3 at (a) t = 0, (b) t = 1/8.
 - (i) $|\cos 2\pi t| = 1$ when $2\pi t = n\pi$ for integer values of n.

Then t = n/2, n = 0, 1, 2, ...

(ii) $\cos 2\pi t = 0$ when $2\pi t = n\pi/2$ for odd integer values of *n*:

Then t = (2n+1)/4, n = 0, 1, 2, ...

- (iii) (a) At t = 0, $\psi(x, 0) = \sin \pi x$ is represented by the solid line in Figure 10.
 - (b) At t = 1/8, $\psi(x, 1/8) = \sin \pi x \cos \pi/4 = \frac{\sin \pi x}{\sqrt{2}}$ is represented by the dashed line.

The sketches should look like

Figure 10

26. The function

$$\phi(x) = a \sin \frac{2\pi x}{\lambda} + b \cos \frac{2\pi x}{\lambda}$$

represents the superposition of two harmonic waves with the same wavelength . Show that ϕ is

- (i) also harmonic with the same wavelength, and
- (ii) can be written as $\phi(x) = A \sin\left(\frac{2\pi x}{\lambda} + \alpha\right)$ where $A = \sqrt{a^2 + b^2}$ and $\tan \alpha = b/a$.

(i)
$$\phi(x+\lambda) = a \sin\left(\frac{2\pi x}{\lambda} + 2\pi\right) + b \cos\left(\frac{2\pi x}{\lambda} + 2\pi\right)$$

 $= a \left[\sin\frac{2\pi x}{\lambda}\cos 2\pi + \cos\frac{2\pi x}{\lambda}\sin 2\pi\right] + b \left[\cos\frac{2\pi x}{\lambda}\cos 2\pi - \sin\frac{2\pi x}{\lambda}\sin 2\pi\right]$
 $= a \sin\frac{2\pi x}{\lambda} + b \cos\frac{2\pi x}{\lambda} = \phi(x)$

Therefore $\phi(x)$ is periodic with period λ , and represents a harmonic wave with wavelength λ .

(ii)
$$A \sin\left(\frac{2\pi x}{\lambda} + \alpha\right) = A \sin\frac{2\pi x}{\lambda}\cos\alpha + A\cos\frac{2\pi x}{\lambda}\sin\alpha$$

= $a \sin\frac{2\pi x}{\lambda} + b\cos\frac{2\pi x}{\lambda}$ if $a = A\cos\alpha$ and $b = A\sin\alpha$

Then $b/a = \tan \alpha$

and
$$a^2 + b^2 = A^2 \left(\cos^2 \alpha + \sin^2 \alpha\right) = A^2$$

so that $\sqrt{a^2 + b^2} = A$

27. Find the cartesian coordinates of the points whose polar coordinates are

(i)
$$r = 3, \theta = \pi/3$$
: $x = r\cos\theta = 3\cos\pi/3 = 3/2$
 $y = r\sin\theta = 3\sin\pi/3 = 3\sqrt{3}/2$

(ii)
$$r = 3, \theta = 5\pi/3$$
: $x = r\cos\theta = 3\cos 5\pi/3 = 3/2$
 $y = r\sin\theta = 3\sin 5\pi/3 = -3\sqrt{3}/2$

Figure 11

28. Find the cartesian coordinates of the points whose polar coordinates are

(i)
$$r = 3, \theta = 2\pi/3$$
: $x = r\cos\theta = 3\cos 2\pi/3 = -3/2$
 $y = r\sin\theta = 3\sin 2\pi/3 = 3\sqrt{3}/2$

(ii)
$$r = 3$$
, $\theta = 4\pi/3$: $x = r\cos\theta = 3\cos 2\pi/3 = -3/2$
 $y = r\sin\theta = 3\sin 2\pi/3 = -3\sqrt{3}/2$

(see Figure 11)

29. Find the polar coordinates of the points whose cartesian coordinates are

(i) (3, 2): The point lies in the quadrant I, and

$$r = \sqrt{3^2 + 2^2} = \sqrt{13}$$
$$\theta = \tan^{-1}\left(\frac{2}{3}\right) \approx 33.7^{\circ}$$

Figure 12

(ii) (3, -2): The point lies in the quadrant IV, and

$$r = \sqrt{13}$$
, $\theta = \tan^{-1} \left(-\frac{2}{3} \right) \approx -33.7^{\circ}$

But angle θ is conventionally defined to lie in the range $0 \to 2\pi$, with $\tan(2\pi + \theta) = \tan \theta$. In the present case,

Figure 13

- **30.** Find the polar coordinates of the points whose cartesian coordinates are
 - (i) (-3, 2): The point lies in the quadrant II, and

$$r = \sqrt{3^2 + 2^2} = \sqrt{13}$$

 $\theta = \tan^{-1} \left(-\frac{2}{3} \right) + \pi \approx 146.3^\circ$

Figure 14

(ii) (-3, -2): The point lies in the quadrant III, and

$$r = \sqrt{13}$$

$$\theta = \tan^{-1}\left(\frac{2}{3}\right) + \pi \approx 213.7^{\circ}$$

Figure 15

31. A solution of the equation of motion for the harmonic oscillator is given in Example 3.8 as $x(t) = A \cos \omega t$.

Show that x(t) can be interpreted as the x-coordinate of a point moving with constant angular speed ω in a circle in the xy-plane, with centre at the origin and radius A.

The point $x(t) = A\cos\omega t$ is interpreted in Figure 16 as the x-coordinate of point P on a circle. The angle ωt increases at constant rate with time t, and the point moves round the circle at constant speed.

Figure 16

32. Simplify

(i)
$$e^2 e^3 = e^{2+3} = e^5$$

(ii)
$$e^3e^{-3} = e^{3-3} = e^0 = 1$$

(iii)
$$e^3 e^{-4} = e^{3-4} = e^{-1} = 1/e$$

(iv)
$$e^3/e^2 = e^{3-2} = e^1 = e$$

(v)
$$e^5/e^{-4} = e^{5+4} = e^9$$

33. (i) Write down the expansion of $e^{-x/3}$ in powers of x to terms in x^5 . (ii) Use the expansion to calculate an approximate value of $e^{-1/3}$. Determine how many significant figures of this value are correct, and quote your answer to this number of figures.

(i)
$$e^{-x/3} = 1 + \left(-\frac{x}{3}\right) + \frac{1}{2!} \left(-\frac{x}{3}\right)^2 + \frac{1}{3!} \left(-\frac{x}{3}\right)^3 + \frac{1}{4!} \left(-\frac{x}{3}\right)^4 + \frac{1}{5!} \left(-\frac{x}{3}\right)^5 + \cdots$$

= $1 - \frac{x}{3} + \frac{x^2}{18} - \frac{x^3}{162} + \frac{x^4}{1944} - \frac{x^5}{29160} + \cdots$

(ii) Holding 6 decimal places throughout,

$$e^{-1/3} = 1 - \frac{1}{3} + \frac{1}{18} - \frac{1}{162} + \frac{1}{1944} - \frac{1}{29160} + \cdots$$

$$\approx 1 - 0.333333 + 0.055555 - 0.006173 + 0.000514 - 0.000034$$

$$\approx 0.716529$$

The terms are decreasing by a factor greater than 10, and the truncated series is accurate to 5 significant figures: $e^{-1/3} \approx 0.71653$

34. (i) Write down the expansion of e^{-x^3} in powers of x to terms in x^{15} . Use the expansion to calculate an approximate value of e^{-x^3} that is correct to 12 significant figures for the following values of x, in each case giving the smallest number of terms required: (ii) 10^{-1} , (iii) 10^{-2} , (iv) 10^{-3} , (v) 10^{-4} , (vi) 10^{-5} .

(i)
$$e^{-x^3} = 1 - x^3 + \frac{x^6}{2} - \frac{x^9}{6} + \frac{x^{12}}{24} - \frac{x^{15}}{120} + \dots$$

Then

(iii)
$$\exp(-10^{-6}) \approx 1 - 10^{-6} + \frac{1}{2} \times 10^{-12} - \frac{1}{6} \times 10^{-18}$$

 $\approx 1 - 0.000\ 001 + 0.000\ 000\ 000\ 000\ 50$
 $\approx 1.000\ 000\ 000\ 000\ 50 - 0.000\ 001\ 000\ 000$
 $\approx 0.999\ 999\ 000\ 001\ (3\ terms)$

(iv)
$$\exp(-10^{-9}) \approx 1 - 10^{-9} + \frac{1}{2} \times 10^{-18}$$

 $\approx 1 - 0.000\ 000\ 001$
 $\approx 0.999\ 999\ 000\ (2\ terms)$

(v)
$$\exp(-10^{-12}) \approx 1 - 10^{-12} +$$

 $\approx 1 - 0.000\ 000\ 000\ 001$
 $\approx 0.999\ 999\ 999\ (2\ terms)$

(v)
$$\exp(-10^{-15}) \approx 1.000\ 000\ 000\ 00\ (1\ term)$$

35. Sketch the graphs of
$$e^{2x}$$
 and e^{-2x} for values $-1.5 \le x \le 1.5$.

$$x$$
 e^{2x}
 e^{-2x}
 -1.5
 0.050
 20.09
 -1
 0.135
 7.389
 -0.5
 0.368
 2.718
 0
 1
 1
 0.5
 2.718
 0.368
 1.0
 7.389
 0.135
 1.5
 20.09
 0.050

Figure 17

18

36. For a system composed of *N* identical molecules, the Boltzmann distribution

$$\frac{n_i}{N} = e^{-\varepsilon_i/kT}$$

gives the average fraction of molecules in the molecular state i with energy ε_i . (i) Show that the ratio n_i/n_j of the populations of states i and j depends only on the difference in energy of the two states.

(ii) What is the ratio for two states with the same energy (degenerate states)?

(i)
$$\frac{n_i}{n_j} = \frac{n_i}{N} / \frac{n_j}{N} = e^{-\varepsilon_i/kT} / e^{-\varepsilon_j/kT} = e^{-(\varepsilon_i - \varepsilon_j)/kT}$$

Therefore n_i/n_j depends only on $\Delta \varepsilon = \varepsilon_i - \varepsilon_j$ (and T)

(ii)
$$\frac{n_i}{n_j} = e^0 = 1$$
 if $\varepsilon_i = \varepsilon_j$

Section 3.7

37. Simplify:

(i)
$$\log_{10} 100 = \log_{10} 10^2 = 2$$

(ii)
$$\log_2 16 = \log_2 2^4 = 4$$

(iii)
$$\ln e^{-5} = \log_e e^{-5} = -5$$

(iv)
$$\ln e^{x^2} = x^2$$

(v)
$$\ln e^{-(ax^2+bx+c)} = -(ax^2+bx+c)$$

$$(\mathbf{vi}) \ \ln e^{-kt} = -kt$$

38. Express the following as the log of a single number:

(i)
$$\ln 2 + \ln 3 = \ln (2 \times 3) = \ln 6$$

(ii)
$$\ln 2 - \ln 3 = \ln (2/3)$$

(iii)
$$5 \ln 2 = \ln 2^5 = \ln 32$$

(iv)
$$\ln 3 + \ln 4 - \ln 6 = \ln \frac{3 \times 4}{6} = \ln 2$$

39. Simplify:

(i)
$$\ln x^3 - \ln x = \ln \frac{x^3}{x} = \ln x^2$$

(ii)
$$\ln(2x^3 - 3x^2) + \ln x^{-2} = \ln\frac{2x^3 - 3x^2}{x^2} = \ln(2x - 3)$$

(iii)
$$\ln(x^5 - 3x^2) + 2\ln x^{-1} - \ln(x^3 - 3) = \ln\frac{x^5 - 3x^2}{x^2(x^3 - 3)} = \ln\frac{x^2(x^3 - 3)}{x^2(x^3 - 3)} = \ln 1 = 0$$

(iv)
$$\ln e^x = x$$

(v)
$$\ln e^{x^2+3} - \ln e^3 = \ln \frac{e^{x^2+3}}{e^3} = \ln e^{x^2} = x^2$$

40. The barometric formula

$$p = p_0 e^{-Mgh/RT}$$

gives the pressure of a gas of molar mass M at altitude h, when p_0 is the pressure at sea level. Express h in terms of the other variables.

$$p = p_0 e^{-Mgh/RT} \rightarrow p/p_0 = e^{-Mgh/RT} \rightarrow \ln(p/p_0) = -Mgh/RT$$

Therefore
$$h = -\frac{RT}{Mg} \ln(p/p_0)$$

41. The chemical potential of a gas at pressure p and temperature T is

$$\mu = \mu^{\circ} + RT \ln \left(f / p^{\circ} \right)$$

where $f = \gamma p$ is the fugacity and γ is the fugacity coefficient. Express p as an explicit function of the other variables.

$$\mu = \mu^{\oplus} + RT \ln \left(f / p^{\oplus} \right) \rightarrow \frac{\mu - \mu^{\oplus}}{RT} = \ln \left(f / p^{\oplus} \right) \rightarrow e^{\left(\mu - \mu^{\oplus} \right) / RT} = f / p^{\oplus}$$

Therefore, putting $f = \gamma p$,

$$p = \frac{p^{\bullet}}{\gamma} \exp\left[\left(\mu - \mu^{\bullet}\right) / RT\right]$$

42. In a first-order decomposition reaction, $A \rightarrow \text{products}$, the amount of substance A at time t is

$$x(t) = x(0)e^{-kt}$$

where x(0) is the initial amount of A, and k is the rate constant. The time taken for the amount of A to fall to half of its initial value is called the half-life, $\tau_{1/2}$, of the reaction. Find the half-life for rate

constants: (i)
$$k = 3 \text{ s}^{-1}$$
, (ii) $k = 10^{-5} \text{ s}^{-1}$.

We have
$$x(\tau_{1/2}) = x(0)e^{-k\tau_{1/2}} = x(0)/2$$
.

Therefore
$$\frac{x(\tau_{1/2})}{x(0)} = e^{-k\tau_{1/2}} = \frac{1}{2} \rightarrow -k\tau_{1/2} = \ln\frac{1}{2} = -\ln 2$$

$$\tau_{1/2} = \frac{\ln 2}{k} \approx \frac{0.6931}{k}$$

(i)
$$k = 3 \text{ s}^{-1}$$
, $\tau_{1/2} = \frac{\ln 2}{3 \text{ s}^{-1}} \approx 0.2310 \text{ s}$

(ii)
$$k = 10^{-5} \text{ s}^{-1}$$
, $\tau_{1/2} = \frac{\ln 2}{10^{-5} \text{ s}^{-1}} \approx 0.6931 \times 10^{5} \text{ s}$

Section 3.8

43. As in Example 3.30, sketch graphs of (i) x^2 , e^{-x} , x^2e^{-x} , (ii) x^{-2} , e^x , $x^{-2}e^x$

х	x^2	e^{-x}	x^2e^{-x}	x^{-2}	e^x	$x^{-2}e^x$
0	0	1.0000	0.0000	-	1.0000	-
1	1	0.3679	0.3679	1.0000	2.7183	2.7183
2	4	0.1354	0.5413	0.2500	7.3891	1.8473
3	9	0.0498	0.4481	0.1111	20.0855	2.2317
4	16	0.0183	0.2931	0.0625	54.5982	3.4124

