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Solutions for Chapter 3

Section 3.2

1. The right-angled triangle ABC has sides a=12 and b=35 (Figure 1). Find ¢ and the sin, cos, tan,

cosec, sec and cot of the internal angles A and B.

By Pythagoras, ¢? =a*+b?.
Therefore  c=+122+5> =169 =13 .

Then sinA=E=—, cosAzgzi, tanAzgz—,
1 13 b

sinB:E:i, cosBzgzz, tanBzgzi,
c 13 c 13 a 12

1
cosecB=—3,secB=£,cotB=2
5 12 5

B
c=13 a=12
A C
b=5
Figure 1

2. For the triangle in Exercise 1, find (i) sin® A +cos” A, (ii) sin> B+cos’B.

2 2
(i) sin *A+cos® A = 12 + 5 :144+25:1
13 13 169

2 2
ii) sin?B+cos’B= El + 2 :25+144:1
(i)
13 13 169

3. Express the following angles in radians: (i) 5°, (ii) 87°, (iii) 120°, (iv) 260°, (v) 540°, (vi) 720°

We have 180°=n (m rad) . Therefore

(i) 5°=5x—— =" ~0.0873 (0.0873 rad)
180 36

(i) 87°=87x—— ~1.5184
180
(ifi) 120° = % ~2.0944

(iv) 260° = 260x—"— = 3™ + 4 5349
180 9
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Solutions for Chapter 3 3

(V) 540° =3m ~9.4248
(Vi) 720° = 4 ~12.5664

4. Express the following angles in degrees:

(i) m/10=180°/10=18°

(i) n/4=45°

(iii) /6 =30°

(iv) m/3=60°

(V) 37/8=3x180°/8 = 67.5°

(Vi) 7m/8=157.5°

5. For acircle of radius r =4, find

(i) the angle subtended at the centre of the circle by arc of length 6:
s=r0, @=s/r=6/4=3/2rad ~85.9437°

(ii) the length of arc that subtends angle m/10 at the centre of the circle:
s=rf=4xn/10=2n/5 ~1.2566

(iii) the length of arc that subtends angle m/2 at the centre of the circle:
S=rf=4xn/2=2n~6.2832

(iv) the circumference of the circle:

S=2nr =8n~25.1327

6. Use Table 3.2 to find the sine, cosine and tangent of (i) 3m/4, (ii) 5n/4, (iii) 7n/4.

From Table 3.2, sinm/4 = cosn/4=1/N2, tanm/4=1. (i)

Then
(i) sin3m/4=+1/N2, cos3n/4=-1/N/2, tan3n/4=-1

(i) sin5m/4=—1/N2, cos5n/4=-1/N2, tan5m/4=+1

(i) (iii)

(iiii) sin7n/4=—-1/N2, cos7n/4=+1/N2, tan7n/4=—1

Figure 2
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Solutions for Chapter 3

7. By considering the limit & — 0 of an internal angle of a right-angled triangle (Figure 3), show that
(i) sin0=0, (ii) cosO=1.

In Figure 3,

as @—>0, a—0 and b—>c. c

Therefore (i) sinfd=a/c—>0
(i) cos@=b/c—>1
Figure 3

8. Use the properties of the right-angled isosceles triangle to verify the values of the trigonometric

functions for € =n/4 in Table 3.2.

By Pythagoras, C = J2a.

Therefore
sinm/4 =cosm/4=ajc=1/\2

tann/4 =a/a=1

9.  Sketch a diagram to show that
(i) sin(r—0)=sind (if) cos(m—@)=—cos@ (iii) sin(n+6)=-sinb
(iv) cos(n+8)=—cos@ (V) sin(n/2—0)=cosf (Vi) cos(n/2—6O)=sind

From Figure 5, sinf =a/r, cos@=b/r

3

\
S
S

Therefore (i) sin(m—6)=a/r =sin@ m/2—0

r|r

(i) cos(m—6@)=-b/r=—cosd o, 5l
7T O
(iii) sin(z+80)=-a/r =—sin@ —b b
—a

r

(iv) cos(n+8)=—-b/r =—cosé
T+ 0

(V) sin(m/2-6)=b/r =cosd
(vi) cos(n/2—0)=a/r =sind Figure 5
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Solutions for Chapter 3

10. Find the period and sketch the graph (- < x < 2m) of (i) sin2X, (ii) cos3x.

(i) If f(x)=sin2x then f(x+a)=sin(2x+2a)= f(x) if 2a=2n, and the period of sin2X is

a=rm.

In the graph, sin2x =0 when 2X is zero or an integer multiple of = ; that is, when
x=0, +n/2, t=n, £3n/2, ...

and sin2x =+1 when 2x is an odd integer multiple of m/2 ; that is, when
X=1tmn/4, +3n/4, ...

The sketch of sin2x should look like

0 /2 0 3n/2 2«

-7 —7/2

Figure 6

(i) If f(x)=cos3x then f(x+a)=cos(3x+3a)= f(x) if 3a=2mn, and the period of cos3Xx is

a=2n/3

In the graph, cos3x =0 when 3x is an odd integer multiple of n/2 ; that is, when
X=+mn/6, +3n/6=+n/2, +5n/6,...

and cos3X ==x1 when 3X is zero or an integer multiple of «; that is, when
x=0, +n/3, +2x/3, ...

The sketch of cos3x should look like

Figure 7
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Solutions for Chapter 3 6

11. Sketch the graph of the harmonic wave @(X,t) =sin2n(Xx—t) as a function of X (—1 < x £2) for values

of time, (i) t=0, (ii) t=1/4, (iii) t=1/2.

In the graphs, @(x,t) =sin2n(Xx—t) =0 when 2n(X—t) is zero or an integer multiple of = ; that is,

when

x=t+n/2 forn=0, +1, +2, ...

(i) ¢(x,00=0 when x=0, £1/2, £1, +3/2, ...

The function is represented by the solid line in Figure 8 below.

(i) 4(x.1/4)=0 when x=+1/4, +3/4, £5/4, ...

The function is represented by the long dashes in Figure 8.

(iii) #(x,1/2)=0 when x=0, £1/2, +1, £3/2, ...

The function is represented by the short dashes Figure 8.

The sketches of ¢(x,t) =sin2n(X —t) should look like

Figure 8
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Section 3.3

12. Find the principal values of:

(i) @=sin"'(1/2): The principal value of the inverse sine lies in quadrant I or IV. But

sin@ =1/2 > 0. Therefore & = 7/6, in the first quadrant.
(iiy @=sin"'(1):  @=mn/2,onthe I/II border.

(iii) @ =cos™ (1/ 2) : The principal value of the inverse cosine lies in quadrant I or II. But

cos@=1/2>0. Therefore 6 = /3, in the first quadrant.

(iv) =cos'(-1): @=m,onthe II/Il border.

13. The Bragg equation for the reflection of radiation of wavelength A from the planes of a crystal is

nA =2dsin@ where d is the separation of the planes, @1is the angle of incidence of the radiation, and n

is an integer. Calculate the angles @ at which X-rays of wavelength 1.5x107'° m are reflected by

planes separated by 3.0x 107" m.

-10
We have, d =3.0x107"" m and 2 =1.5x10"'" m, so that i:& l

24 2x3x100 4
Therefore @ =sin”! M =sin”! (Ej :
2d 4

n=1  sin”'(1/4)~14.48°
n=2 sin"'(1/2)=30°
n=3 sin"'(3/4)~48.59°

n=4  sin"'(1)=90°
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Section 3.4

14. Given the side a =1 and angles A =n/4 and B=mn/3 of a triangle ABC (Figure 9), find the third

angle and the other two sides.

The third angle is C=n —A-B=n-n/4—-n/3=>51/12=75°

sinA _sinB _sinC
b c
sinB _ \/5/2 3

Thereft b=a——= =./3/2
erefore SnA 12 J3/

By the sine rule,

Figure 9

sinC

c=a =+/25in75° ~1.3660

S

15. Given the sides a=2, b=2.5 and ¢ =3 of a triangle ABC (Figure 9), find the angles.

By the cosine rule, a* =b? +c* —2bccos A .
Therefore  cosA = (b? +c* —a’ )/2bC =0.75
and A =cos1(0.75) ~ 41.41°.
Similarly  cosB =(a® +¢% —b?)/2ac = 0.5625
and B =cos ' (0.5625) ~ 55.77°.

Then C=180°-A-B~82.82°.
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16.

Given the sides a =3, b =4, and included angle C =n/4 of triangle ABC (Figure 9), find the third

side and the other two angles.

By the cosine rule, ¢* = a* +b* —2abcosC =25 —24/x/§ ~8.0294 .
Therefore ¢ ~2.8336.

. b2 +c? — g2 2,62 _p?
By the cosine rule, cos A =~——~ %~ 0.6630 and cosB =" "2 ~0.0605.
2bc 2ac

Therefore, taking principal values,
A =~ cos ' (0.6630) ~ 48.47°
B ~ cos ' (0.0605) ~ 86.53°

Check: A+B+C=45°+48.47°+86.53°=180°

17.

Given the sides a = «/5, b =3, and included angle C =mr/4 of the triangle ABC (Figure 9), find the

third side and the other two angles.

By the cosine rule, ¢ :a2+b2—2abcosC:2+9—2><\/§><3><1/\/§=5.

Therefore, c= \/g ~2.2361.

2

2,2 2,2 2
By the cosine rule, cos A = b+c-a’ = 2 ~ 0.8944 and cosB = a’+C -b = ! ~—-0.3162.
2bc J5 2ac J1o0

Therefore, taking principal values,
A ~cos”'(2/\/5) ~ 26.57°
B~ cos™' (—1/4/10) ~ 108.43°

Check: A+B+C=45°+26.57°+108.43° =180°
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10

18. Express in terms of in terms of the sines and cosines of 26 and 56 :

(i) sin76 =sin (560 + 26) = sin 50 cos 20 + cos 50'sin 20
(if) sin30 = sin (50 —26) = sin 50 cos 26 — cos 50sin 20
(iii) cos76 = cos (56 + 26) = cos 56 cos 20 —sin 50sin 20

(iv) cos36 =cos(50—26) = cos 56 cos 26 +sin 50sin 20

19. Express (i) sin36 in terms of sin@, (ii) cos36 in terms of cos®.

(i) sin360 =sin(26 + 0) = sin 20 cos & + cos 20sin &
= (2sin @ cos ) cos @ + (1—2sin* H)sin &
=2sin @ cos’ O +sind—2sin’ &
= 2sin O(1 —sin* 0) +sin @ — 2sin> &
=3sind—4sin® @

(if) cos36 =cos(20 +6) = cos20 cos & —sin 26sin
= (2cos* @—1)cos @ — (2sin O cos &) sin &
=2cos’ @—cos@—2sin’ Ocos b

=2cos® O —cosd—2(1—cos’ O) cos

=4cos’ 0—3cosd

20. Express cos4x in terms of (i) sin2x and cos2x, (ii) sin2X only, (iii) cos2x only, (iv) sinX

only, (V) cosXx only.

(i) cos4x =cos® 2x—sin? 2X
(i) cos4x =1-2sin’ 2x
(iii) cos4x =2cos?2x—1

(iv) cos4x =1-2sin*2x
=1-2(2sin xcos X)> =1—8sin” xcos” X

=1-8sin” x(1-sin” x)

=1-8sin’ X +8sin* x
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Solutions for Chapter 3 11

(V) cos4x=2cos’2x-1
=2(2cos’> x—1)* -1

=8cos* x—8cos® x+2—1

=1-8cos> X+8cos* X

21.

Given sin10°=0.1736,sin30° =1/2,sin50° = 0.7660 , find cos20° (without using a calculator).

We have sin 50° = sin(30° + 20°) = sin 30° cos 20° + cos 30°sin 20°
sin10° = sin(30° —20°) = sin 30°cos 20° — cos 30°sin 20°

Then sin 50° +sin10° = 2sin 30°cos 20° = ZX%XCOS 20°
=c0s20°
and c0s20°=0.7660+0.1736 = 0.9396

22.

Express in terms of the sines of 8x and 2x: (i) sin5xcos3X, (ii) cos5Xsin3x

By equation (3.21),

sin8X = sin(5X + 3X) = sin 5Xcos 3X + cos 5xsin 3X

sin 2X = sin(5X —3X) = sin 5X cos 3X — cos 5X sin 3X

N Ir. .
Therefore (i) sin5xcos3x = E[sm 8X +sin 2X]

.. . 1r. .
11) cos5Xsin3X =—| sin8X—sin2X
(i) ol ]

23.

Express in terms of the cosines of 8x and 2x: (i) sin5xsin3X, (ii) cos5xcos3x .

By equation (3.22),

cos8X = cos(5X +3X) = cos5xcos3X—sin 5xsin 3X
cos 2X = cos (5X —3X) = cos 5x cos 3X + sin 5Xsin 3X

Therefore (i) sin5xsin3x= %[cos 2X—cos 8x]

(if) cos5xcos3x = !

=—| cos2X + cos 8X
L ]
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24. Express (i) sin(nx#) and (ii) cos(n* ) in terms of sind and cos@ .

(i) We have sin(n £0) =sinn cos@xcosn sinf = Fsinf

Therefore  sin(mw +6)=—sin@
sin(n — @) =+sind

(ii) We have cos(m £0)=cosm cos@Fsinm sinf = —cos

Therefore  cos(m +8)=cos(n —0) =—cosd

25. The function y(X,t) =sinwXcos2xnt represents a standing wave. Find the values of time t for which
v has (i) maximum amplitude, (ii) zero amplitude. (iii) Sketch the wave function between X =0 and

x=3 at(a) t=0,(b) t=1/8.

(i) |cos2mt|=1 when 2xnt =nn for integer values of n.
Then t=n/2, n=0,1,2,...
(ii) cos2mt=0 when 2nt =nm/2 for odd integer values of n:
Then t=(2n+1)/4, n=0,1,2,...
(iii) (a) At t=0, w(x,0) =sinmX is represented by the solid line in Figure 10.

sin X

(b) At t=1/8, w(x,1/8) =sinmXxcosn/4 = is represented by the dashed line.

N

The sketches should look like

1v2

Figure 10
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26. The function
. 27mX 27X
#(X) = asin 2 ¢ bcos%
represents the superposition of two harmonic waves with the same wavelength . Show that ¢ is

(i) also harmonic with the same wavelength, and

(ii) can be written as @(X) = Asin (%-ﬁ-a} where A=+/a’+b? and tana = b/a.

() ¢(X+/1)=asin(m+2nj+bcos(@+znj
A vl
=a sinﬁcos2n+cosﬁsin2n +b cos%coﬂn—sin—zﬂx sin2mn
27X 27X
=asin——+bcos—— = ¢(X
7 =)

Therefore ¢(x) is periodic with period 4, and represents a harmonic wave with wavelength A.

(if) Asin m+oz =Asin%cosa+Acos%sina
A A A

:asin?+bcos2}biX if a=Acosa and b= Asina

Then b/a=tana
and aZ+b?=A2 (0052 a +sin® a) = A?
so that al+b?=A
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Section 3.5

27. Find the cartesian coordinates of the points whose polar coordinates are

(i) r=3,0=n/3: Xx=rcosf=3cosn/3=3/2
y:rsin0:3sinn/3=3\/§/2 (=3/2, 3v3/2) (3/2, 3v3/2)

3

(i) r=3,0=5n/3: Xx=rcosf=3cos5n/3=3/2 /s
y = rsin@ =3sin5n/3 =—-3+/3/2

(-3/2, —3V3/2) (3/2, —3V3/2)

Figure 11

28. Find the cartesian coordinates of the points whose polar coordinates are

(i) r=3,0=2n/3: x=rcosf=3cos2n/3=-3/2
y = rsin @ =3sin2n/3 =3/3/2

(i) r=3,0=4n/3: X=rcosf=3cos2n/3=-3/2
y = rsin @ = 3sin2n/3 = —3+/3/2

(see Figure 11)

29. Find the polar coordinates of the points whose cartesian coordinates are

(i) (3,2): The point lies in the quadrant I, and

2
r=v32+22 =413 .

0 =tan! @) ~33.7° | '

Figure 12
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(if) (3,—2): The point lies in the quadrant IV, and
z s
I’Z\/B, 9:tan_l(—§jz—33.7° K L

But angle 6 is conventionally defined to lie in the range 0 — 2=, r
9+

with tan(2n+ @) = tan @ . In the present case,

0 =tan™' (—%J +2n~326.3 Figure 13

30. Find the polar coordinates of the points whose cartesian coordinates are

(i) (-3, 2) : The point lies in the quadrant II, and

0
r=v32+22 =413
|
-3
0 =tan™' (—3} T ~146.3°
3 Figure 14

(if) (-3, -2): The point lies in the quadrant III, and

0
I’:\/B ] K-\

0 =tan! (%J-ﬁ-n ~213.7°

2k

Figure 15

31. A solution of the equation of motion for the harmonic oscillator is given in Example 3.8 as

X(t) = Acos wt .
Show that x(t) can be interpreted as the X-coordinate of a point moving with constant angular speed @

in a circle in the xy-plane, with centre at the origin and radius A.

The point X(t) = Acoswt is interpreted in Figure 16 as the X-coordinate of point P on a circle. The

angle wt increases at constant rate with time t, and the point moves round the circle at constant speed.

wt

Figure 16
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Section 3.6

32. Simplify

(i) e =g =¢’
(i) ele? = =e’=1
(iii) e'e? ="t =" =1/e
(iv) /e =e’2=¢' =¢

(V) eS/e—4 _ e5+4 _ e9

33. (i) Write down the expansion of e in powers of X to terms in X . (i) Use the expansion to calculate

-1/3

an approximate value of €/~ . Determine how many significant figures of this value are correct, and

quote your answer to this number of figures.

(|) e—X/3:1+ _5 +i _é 2+i _1 3+l _1 4+i _5 5+
3) 210 3 3103 410 3 5103

x x2 X  x* x>

=l-=4+—-—+
3 18 162 1944 29160

+ cee

(if) Holding 6 decimal places throughout,

3 1 1 1 1 1
=l ——— ...
318 162 1944 29160
~1-0.333333+0.055555—0.006173 + 0.000514 — 0.000034
~0.716529

e

The terms are decreasing by a factor greater than 10, and the truncated series is accurate to 5 significant

figures: e ~0.71653

- . . - 3 . . .
34. (i) Write down the expansion of € in powers of X to terms in x'> . Use the expansion to calculate an

3
approximate value of e that is correct to 12 significant figures for the following values of X, in each

case giving the smallest number of terms required: (ii) 107", (iii) 107, (iv) 107, (v) 107*, (vi) 107.
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Then

(i) exp(—10‘3)z1—10‘3+lx10‘6—lx10‘6+ix10‘12—ix10‘15
2 6 24 120

~1-0.001+0.000 000 5—0.000 000 000 166 67 +0.000 000 000 000 04
~1.000 000 500 000 04 —0.001 000 000 166 67
~0.999 000 499 833 (4 terms)

(iii) exp(—10_6)z1—10_6+%><10_12—é><10_18

~1-0.000 001+ 0.000 000 000 000 50
~1.000 000 000 000 50—0.000 001 000 000 00
=~ 0.999 999 000 001 (3 terms)

(iv) exp(-107)~1-107" +%x10718

~1-0.000 000 001
~0.999 999 999 000 (2 terms)
(v) exp(-10"?)=1-107" +
~1-0.000 000 000 001
~0.999 999999 999 (2 terms)

(v) exp(=107"%) ~1.000 000 000 00 (1 term)

35. Sketch the graphs of e** and e™* for values —1.5<x<1.5.

20

-1.5] 0.050 20.09
-11]0.135 7.389

-0.5 | 0.368 2.718 10

0.51] 2718 0.368

1.0 | 7.389 0.135

1.5 ] 20.09 0.050

Figure 17
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36. For a system composed of N identical molecules, the Boltzmann distribution

N —anT

=€

gives the average fraction of molecules in the molecular state i with energy &. (i) Show that the ratio

n; / n; of the populations of states i and j depends only on the difference in energy of the two states.

(if) What is the ratio for two states with the same energy (degenerate states)?

Loonoon /N —&ei KT —(g-&)KT
(I) _|:|/J:e gl/kT/e £j —e (&i—¢j)
n; N/ N

Therefore n; / n; dependsonlyon Ae=¢ —¢; (and T)

.. n:
(i) —=e"=1if g =¢
nj

Section 3.7

37. Simplify:

(i) logo100=log,,10> =2
(i) log,16=1log,2* =4
(ifi) Ine~ =log, e =5
(iv) Ine =x2

—(ax*+bx+c) _

(v) Ine —(ax* +bx+c)

(vi) Ine™ =—kt

38. Express the following as the log of a single number:

(i) In2+mIn3=In(2x3)=1In6
(i) In2-1In3=1n(2/3)
(iii) 5In2=1n2° =In32

(iv) 1n3+1n4—1n6:1n%: In2
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39.

Simplify:

3
Q) lnxz’—lnX:lnx—:lnX2

X

3 a2
(i) In(2x* —3x*)+1Inx> =lnuzln(2x—3)

X

5 a2 2,03
(iii) In (¢ =3x*)+2In X" =l (¢ =3) = In—> 33" - nxz("3 3 _ini=
X“(x* =3) X7 (x* =3)
(iv) Ine* =x
x> +3

(V) ne ™ —ned =In"— = neX = x>

e3

40.

The barometric formula

b = p,eMIRT
— MO

gives the pressure of a gas of molar mass M at altitude h, when pj is the pressure at sea level. Express h

in terms of the other variables.

p=pee MI"RT 5 p/p, =e MR 1n(p/p,)=-Mgh/RT
RT
Thereft h=——-1I
erefore Mg n(p/p,)

41.

The chemical potential of a gas at pressure p and temperature T is
,u=/19+RTln(f/pe)
where f =y p is the fugacity and yis the fugacity coefficient. Express p as an explicit function of the

other variables.

,uz,u€'+RTln(f/p€') - %:ln(f/p") - e(”_ye)/RT =f/p°®

Therefore, putting f =yp,

©

p=p76Xp[(ﬂ—ﬂ“)/RT]
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42. In a first-order decomposition reaction, A — products, the amount of substance A at time t is
X(t) = x(0)e ™™
where X(0) is the initial amount of A , and K is the rate constant. The time taken for the amount of A

to fall to half of its initial value is called the half-life, 7, , of the reaction. Find the half-life for rate

constants: (i) k=3 s, (i) k=107 s7.

Wehave  X(z,) = x(0)e " = x(0) /2.

X(z ks
Therefore M:e keiy2 :l—> —kz'l/z :lnl:—ln2
X(0) 2 2
In2 0.6931
2T
(i) k=3s", Ty = 1n21 ~0.2310s
3s”
In2

(i) k=10"s", 7, = 0.6931x10° s

057!

Section 3.8

43. As in Example 3.30, sketch graphs of (i) x>, e, x%e7*, (i) x2, e*, x7%e*

X X e x*e™* X2 e x2e*
0 0 1.0000 0.0000 - 1.0000 -

1 1 0.3679 0.3679 1.0000 2.7183 2.7183
2 4 0.1354 0.5413 0.2500 7.3891 1.8473
3 9 0.0498 0.4481 0.1111 20.0855 2.2317
4 16 0.0183 0.2931 0.0625 54.5982 3.4124
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