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Solutions for Chapter 2  2

Section 2.1 

 
 
1. Find the values of 2 3y x= −  for (i) 0x = ,  (ii) 2x = ,  (iii) 3x = − ,  (iv) 2 3x =  

 

 (i)  2 3 0 2 0 2− × = − =

 (ii) 2 3  2 2 6 4− × = − = −

 (iii) 2 3  ( 3) 2 9 11− × − = + =

 (iv) 22 3 2 2 0
3

− × = − =  

 
 
2. Find the values of 22 3 1y x x= + −  for (i) 0x = ,  (ii) 1x = ,  (iii) 1x = − ,  (iv) 2 3x = −  

 

 (i) 0 0  1 1+ − = −

 (ii) 2 3  1 4+ − =

 (iii)  22 ( 1) 3 ( 1) 1 2 3 1 2× − + × − − = − − = −

 (iv) 
22 2 8 8 18 92 3 1 2 1

3 3 9 9
− −⎛ ⎞ ⎛ ⎞× − + × − − = − − = = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

19
9

 

 
 
3. Given 3 2( ) 3 4 3f x x x x= − + − , find  (i) (5)f ,  (ii) (0)f ,  (iii) ( 2)f − ,  (iv) ( 2 3)f −  

 

 (i)  3 2(5) 5 3 5 4 5 3 125 75 20 3 67f = − × + × − = − + − =

 (ii) (0)  0 0 0 3 3f = − − − = −

 (iii)  3 2( 2) ( 2) 3 ( 2) 4 ( 2) 3 8 12 8 3 31f − = − − × − + × − − = − − − − = −

 (iv) 2 8 4 2 8 36 72 81 1973 4 3
3 27 9 3 27 2

f + + +⎛ ⎞− = − − × − × − = − = −⎜ ⎟
⎝ ⎠ 7

 

 
 
4. If 2( ) 2 4 3f x x x= + + , what is  (i) ( )f a ,  (ii)  2( )f y  ? 

 

 (i)  2( ) 2 4 3f a a a= + +

 (ii)  2 2 2 2 4 2( ) 2( ) 4 3 2 4 3f y y y y y= + + = + +
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5. If , what are (i) 2( ) 3 4f x x x= − − ( 3f a )+ ,  (ii) 2( 1f a )+ ,  (iii) ( 1)f x + ,  (iv) ? 2( 3 4f x x− − )

 

 (i) f a  2 2

2

( 3) ( 3) 3( 3) 4 6 9 3 9 4

3 4

a a a a a

a a

+ = + − + − = + + − − −

= + −

 (ii)  2 2 2 2 4 2 2

4 2

( 1) ( 1) 3( 1) 4 2 1 3 3 4

6

f a a a a a a

a a

+ = + − + − = + + − − −

= − −

 (iii)  2 2

2

( 1) ( 1) 3( 1) 4 2 1 3 3 4

6

f x x x x x x

x x

+ = + − + − = + + − − −

= − −

 (iv)   2 2 2 2

4 3 2 2 2

4 3 2

( 3 4) ( 3 4) 3( 3 4) 4

6 8 9 24 16 3 9 12 4

6 2 33 24

f x x x x x x

x x x x x x x

x x x x

− − = − − − − − −

= − − + + + − + + −

= − − + +

  
 
6. If ( ) 2 1f x x= −  and ( ) 3 1g x x= + , express ( )f g  as a function  of x. 

  

   
( ) (3 1) 2(3 1) 1

6 1

f g f x x

x

= + = + −

= +

 

Section 2.2  

  
 
Make a table of ( , )x y  values and sketch a fully labelled graph of the quadratic: 

 

7. 2 4y x x= −   

 We have y x  so that ( 4x= − ) 0y =  when 0x =  and 4x = . Also, y  as  

 .  

→ +∞

x → ±∞

   

 The sketch should look like 

           

 
 

 

               

x y 

–2 12 

–1 5 

0 0 

1 –3 

2 −4 

3 −3 

4 0 

5 5 

6 12 
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8    2 2y x x= − − +

  
 We have  so that 2( 2) ( 2)(y x x x x= − + − = − + −1) 0y =  when  and 

 . Also,  as  .  

2x = −

1x = y → −∞ x → ±∞

 

 The sketch should look like                    

 

 
  
 

x y 

 −4 −10 

–3 −4 

–2 0 

−1 2 

0 2 

1 0 

2 −4 

3 −10 
             

 

Section 2.3 

 
 
Factorize: 

 

9. 2 2 3 26 2 4x y xy y− −  

 22y  is a common factor.  

 Therefore 6 2  2 2 3 2 2 24 2 (3x y xy y y x xy− − = − − 2)

10. 2 26 5 ( )( ) ( )x x x a x b x a b x+ + = + + = + + + ab 6 if a b+ =  and a b 5× = .  

 Therefore  a , b  5= 1=

 and    2 6 5 ( 5)( 1x x x x+ + = + + )

11. 2 26 ( )x x x a b x a+ − = + + + b  if 1a b+ =  and 6a b× = − .  

 Therefore  a , b  3= 2= −

 and    2 6 ( 3)( 2)x x x x+ − = + −

12. 2 28 15 ( )x x x a b x− + = + + + ab 8 if a b+ = −  and a b 15× = . 

 Therefore a , b   5= − 3= −

 and    2 8 15 ( 5)( 3x x x x− + = − − )
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13.  2 2 24 2 ( 2)(x x x x− = − = + − 2)

14.  2 2 24 9 (2 ) 3 (2 3)(2 3)x x x x− = − = + −

15. 2 22 6 (2 )( ) 2 ( 2 )x x x a x b x a b x+ − = + + = + + + ab 2 1a b if + =  and 6a b× = − . 

 Therefore   and   3a = − 2b =

 and    22 6 (2 3)(x x x x+ − = − + 2)

16.  4 210 9x x− +

 This a quadratic in 2x . Thus 4 2 2 210 9 ( )( )x x x a x− + = + + b 9a if = −  and 1b = − . 

 Therefore . 4 2 2 210 9 ( 9)( 1)x x x x− + = − −

 Now    and 2 9 ( 3)( 3)x x x− = + − 2 1 ( 1)( 1)x x x− = + − . 

 Therefore  4 210 9 ( 3)( 3)( 1)( 1)x x x x x x− + = + − + −

 
 
Simplify if possible: 

 

17. 23 2
x

x x+
 

 x  is a common factor. 

 Therefore 2 2
1

3 23 2 3 2
x x

xx x x x
= =

++ +
 

18. 2
4

x
x

+
+

 No simplification is possible.  

19. 
2 4

2
x
x

−
−

 

 The numerator is . 2 4 ( 2)( 2)x x x− = + −

 Therefore 
2 ( 2) ( 2)4

2
x xx

x
+ −−

=
− 2x −

2x= +  

20. 
2 3 2

2
x x

x
+ +

+
 

 The numerator is . 2 3 2 ( 2)( 1x x x x+ + = + + )

 Therefore 
2 ( 2)3 2

2
xx x

x
++ +

=
+

( 1)
2
x

x
+

+
1x= +  
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21. 
2

2

( 3)9 ( 3)( 3)
( 3)( 2)5 6

xx x x
x xx x

+− + −
= =

+ ++ +

( 3)
( 3)

x
x

−

+ ( 2)

3
2

x

x
x

+

−
=

+

 

22. 
2

2

(2 1) ( 1)2 3 1
3 2

x xx x
x x

− −− +
=

− + ( 2) ( 1)x x− −

2 1
2

x
x

−
=

−

 

 

Section 2.4 

 
 
Find x as a function of y: 

 

23.  2 2y x x y= − → = +

24. 1 (3 1) 2 3 1 2 1 3
2

y x y x y= + → = + → − = x   

 Therefore 1 (2 1)
3

x y= −  

25. 1 (2 ) 3 2 3 2
3

y x y x y= − → = − → − = −x    

 Therefore 2 3x y= −  

26. (1 )
1

(1 )

xy y x x y yx x y x
x

y x y

= → − = → − = → = +
−

→ = +

yx    

 Therefore 
1

yx
y

=
+

 

27. 2 3 (3 2) 2 3 3 2 2 3
3 2

3 2 2 3

(3 2) 2 3

xy y x x xy y
x

xy x y

x y y

+
= → − = + → − = +

−
→ − = +

→ − = +

x  

 Therefore 2 3
3 2

yx
y

+
=

−
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28. 1 (2 1) 1 2 1
2 1

2 1

(2 1) 1

xy y x x xy y x
x

xy x y

x y y

−
= → + = − → + = −

+
→ − = − −

→ − = − −

 

 Therefore 1
1 2

yx
y

+
=

−
 

29. 
2

2 2 2 2
2

2

1 ( 1) 1 1
1

( 1) (1 )

xy y x x yx x
x

y

x y y

−
= → + = − → − = − −

+

→ − = − +

 

 Therefore 2 1 1
1 1

y yx x
y y

+ +
= → = ±

− −
 

 
 
For , (i) find x as a function of y, (ii) sketch graphs of ( )y f x= ( )y f x=  and 1( )x f y−= : 

 

30.   (i) 2 2 1 21 ( )y x x f y y−= + → = = ± − 1  

 

 (ii) 2 2 21 ( )y x y f x x= + → = = ± + 1  

  We have  when , with no real value between 1y = ± 0x = 1y = +  and 1y = − . The graph of 

    has two branches, one for which  and  as , and one for which 

  and  as . The sketch of the 

( )y f x=

1y ≤

1y ≥ y → +∞

( )y f x

x → ±∞

y → −∞ x → ±∞ =  should look like graph (a) below. 

 
  The graph (b) of 1( )x f y−=  is identical to (a), but rotated around the line x y=      

 

 

 

 

 

 

 

 

 

 

           (a)                  (b) ( )y f x= 1( )x f y−=    
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31.   (i) 2 2 2 1( 1) 1 ( ) 1y x y x x f y y−= − → ± = − → = = ± ±  

 
 (ii)  2 2( ) ( 1)y f x x= = −

  We have  when , and 1y = 0x = 0y =  when 1x = ± . The value of the function is positive for all 

 values of x , and  as . The sketch of y → +∞ x → ±∞ ( )y f x=  should look like graph (a) below. 

 
    The graph (b) of 1( )x f y−=  is identical to (a), but rotated around the line x y=      
 

 

 

 

 

 

 

 

 

         (a)         (b) ( )y f x= 1( )x f y−=    

 

 
 
32. The virial equation of state of a gas can be approximated at low pressure as  

  m
m

1 BpV RT
V

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

 where p is the pressure,  is the molar volume, T is the temperature, R is the gas constant, and B is  mV

 the second virial coefficient. Express B as an explicit function of the other variables. 

 

  

m
m

m m

m

m

1 1

1

pVB BpV RT
V RT

pVB
V RT

⎛ ⎞
= + → = +⎜ ⎟

⎝ ⎠

→ = −

V
 

 Therefore  m
m 1

pV
B V  

RT
⎡ ⎤= −⎢ ⎥⎣ ⎦
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33. Kohlrausch’s law for the molar conductivity mΛ  of a strong electrolyte at low concentration c is 

  0
m m cΛ = Λ −K  

 where  is the molar conductivity at infinite dilution and K  is a constant. Express c as an explicit 0
mΛ

 function of . mΛ

 

  

0 0
m m m

0
m m

c c

c

Λ = Λ − → = Λ − Λ

Λ − Λ
→ =

K K

K

m
 

 Therefore  
0
m m

2

c
⎡ ⎤Λ − Λ

= ⎢ ⎥
⎢ ⎥⎣ ⎦K

 

 
 
34. The Langmuir adsorption isotherm 

  
1

Kp
Kp

θ =
+

 

 gives the fractional coverage θ of a surface by adsorbed gas at pressure p, where K is a constant. 

 Express p in terms of θ. 

 

  
(1 )

1
(1 )

Kp Kp Kp Kp Kp
Kp

Kp

θ θ θ θ

θ θ

= → + = → + =
+

→ − =
 

 Therefore 
(1 )

p
K

θ
θ

=
−

 

 
 
35. In Example 2.12 on the van der Waals equation, verify the explicit expressions given for T and p, and 

 the cubic equation in V. 

 

For T :  
2 2

2 2( ) 0 ( )n a n ap V nb nRT p V nb nRT
V V

⎛ ⎞ ⎛ ⎞
+ − − = → + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  

Therefore 
2

2
1 (n aT p V

nR V

⎛ ⎞
→ = + −⎜ ⎟⎜ ⎟

⎝ ⎠
)nb        

For p :  
2 2

2 2( ) 0n a n a nRTp V nb nRT p
V nbV V

⎛ ⎞
+ − − = → + =⎜ ⎟⎜ ⎟ −⎝ ⎠

 

Therefore 
2

2
nRT n ap

V nb V
= −

−
 

© E Steiner 2008 



Solutions for Chapter 2  10

Section 2.5 
 
 
Expand (write out in full): 

 

36.   
2

0 1

0
2

( 1) (0 1) (1 1) (2 1)

1 2 3

n

n
n x x x x

x x
=

+ = + + + + +

= + +

∑ 2

1−37.  
3

1 0 1 1 1 2 1 3

0

2

0 1 2 3

1 2 3

i

i
i x x x x x

x x

− − − −

=
= + + +

= + +

∑

38. 
3

1 2

1

2 3

( 1) 1 2 2 3 3 4

2 6 12

k

k
k k x x x x

x x x

− − −

=
+ = × + × + ×

= + +

∑ 3−

23

 

39.   
2 23

0 1 2

0

4 9

! 0! 1! 2! 3!

1 2 6

n

n
n x x x x x

x x x

=
= + + +

= + + +

∑

 
 
40. Find the equation and sketch the graph of the straight line that passes through the points: 

( 2, 5) and (1, 4)− −  

 

Let the line be . Then: y mx c= +

  
1 1

2 2

at point ( , ) ( 2, 5), 5 2

at point ( , ) (1, 4), 4

x y m c

x y m

= − − − = − +

= = c+
  

Solution of the pair of simultaneous equations gives  

  and c . 3m = 1=

 

 Therefore  3 1y x= +  
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41. Find the equation and sketch the graph of the straight line that passes through the points: 

( 1, 6) and (3, 2)− −   

 

Let the line be . Then: y mx c= +

  
1 1

2 2

at point ( , ) ( 1, 6), 6

at point ( , ) (3, 2), 3

x y m c

x y m

= − = − +

= − = + c
  

Solution of the pair of simultaneous equations gives  

  and . 2m = − 4c =

 Therefore   2 4y x= − +

 

 
 
42.  Explain how  and  in Kohlrausch’s law (Exercise 33), K 0

mΛ

  0
m m cΛ = Λ −K  

  can be obtained graphically from the results of measurements of mΛ  over a range of concentration c. 

 

 Plot Λ  against m c  for a straight line. The slope of the line is −K  and the intercept with the  

axis is  

mΛ

0Λm

 
 
43.   The Debye equation 

  
2

A

0

1
2 3 3

r

r

N
M kT

ε ρ μα
ε ε

⎛ ⎞−
= +⎜ ⎟⎜ ⎟+ ⎝ ⎠

 

 relates the relative permittivity (dielectric constant) εr of a pure substance to the dipole moment μ and 

polarizability α of the constituent molecules, where ρ is the density at temperature T, and M, NA, k, and 

ε0 are constants. Explain how μ and α can be obtained graphically from the results of measurements of 

εr and ρ over a range of temperatures. 

 

 Plot 
11 ⎛

 against 
2

r

r

ε
ρ ε

⎞−
⎜ ⎟+⎝ ⎠

1
T

 for a straight line whose slope is 
2

A

09
N
M k

μ
ε

 and whose intercept is A

03
N
M

α
ε

.  

 

 Hence μ and α . 
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Find the roots and sketch the graphs of the quadratic functions: 

 
44.   2( ) 3 2 ( 1)( 2)

0  when 1 and 2

f x x x x x

x x

= − + = − −

= = =

 
 The roots of the quadratic are  and 1 1x = 2 2x = , for which ( ) 0f x =  and the graph of the function 

crosses the x-axis. Also,  and  as .  (0f ) 2= ( )f x → +∞ x → ±∞

  

 The sketch of the function should look like  

 

 

        

 

 
45. 2( ) 2 3 2 (2 1)( 2)

0  when 1 2  and 2

f x x x x x

x x

= − − + = − − +

= = = −

 

  
 The roots of the quadratic are 1 1 2x =  and 2 2x = − . Also, (0) 2f =  and  as .  ( )f x → −∞ x → ±∞

  

 The sketch of the function should look like  

 

 

 

 
 
 
46. 

( )

2( ) 3 3 1

3 9 12 10  when 3 21
6 6

f x x x

x

= − −

± +
= = = ±

 

 
 The roots of the quadratic are 1 (3 21 ) 6x = +  and 2 (3 21 ) 6x = − . Also,  and 

 as .  

(0) 1f = −

( )f x → +∞ x → ±∞

  

 The sketch of the function should look like  
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47.  2 2( ) 6 9 ( 3)

0  when 3

f x x x x

x

= − + − = − −

= =

 
 The quadratic has the double root 1 2 3x x= = . Also, (0) 9f = −  and  as .  ( )f x → −∞ x → ±∞

  
 The sketch of the function should look like  

 

 

 

 

 

 

48. 2 2( ) 4 4 1 (2 1)

0  when 1 2

f x x x x

x

= + + = +

= = −

 

 
 The quadratic has the double root 1 2 1 2x x= = − . Also, (0) 1f =  and  as .  ( )f x → +∞ x → ±∞

  
 The sketch of the function should look like  

 

 

 

 

 

 

 
49. 

( )

2( ) 2

1 1 8 10  when 1 7
2 2

f x x x

x i

= + +

− ± −
= = = − ±

 

 
 The roots of the quadratic are complex and the graph of the function does not cross the x-axis; 

 for all real values of x. Also, ( ) 0f x > (0) 2f =  and  as .  ( )f x → +∞ x → ±∞

  

 The sketch of the function should look like  
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50. 

( )

2( ) 3 3 1

3 9 12 10  when 3 3
6 6

f x x x

x i

= − + −

± −
= = = ±

 

 
 The roots of the quadratic are complex and the graph of the function does not cross the x-axis; 

 for all real values of x.. Also, ( ) 0f x < (0) 1f = −  and  as .  ( )f x → −∞ x → ±∞

  
 The sketch of the function should look like  

 

 

 

 

 
 

51. If 
2

2
2
2 1

x xy
x x

+ +
=

+ −
1  find x as a function of y. 

 

  
2

2 2
2

2 2

2

2

2 1 (2 1) 2 1
(2 1)

(2 1) (2 1) 0

2( 1) ( 1) ( 1) 0

12 0
1

x xy y x x x x
x x

y x x x x

y x y x y

yx x
y

+ +
= → + − = + +

+ −
→ + − − + + =

→ − + − − + =

+
→ + − =

−

 

  
 This is a quadratic equation in x, with solutions 

  1 11 1 8
4 1

yx
y

⎡ ⎤+
= − ± +⎢ ⎥

−⎣ ⎦
 

 
 
52. The acidity constant Ka of a weak acid at concentration c is 

  
2

1a
cK α
α

=
−

 

 where α is the degree of ionization. Express α in terms of Ka and c (remember that α, Ka, and c are 

 positive quantities). 

 

  

2
2

2

(1 )
1

0

a a

a a

cK K

c K K

α α α
α

α α

= → − =
−

→ + − =

c
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 The quadratic in α  has roots 

  21 4
2

Ka a aK K c
c

α ⎡ ⎤= − ± +⎢ ⎥⎣ ⎦
 

 No , and , so that aw 0aK > 0c > 2 4a aK K c K+ > . Therefore, for positive degree of dissociation, 

  

21 4
2

41 1
2

a a a

a

a

K K K c
c

K c
c K

α ⎡ ⎤= − + +⎢ ⎥⎣ ⎦

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦

 

 
 
5  is a factor of the cubic 3 24 6x x x+ + − , 3. Given that (i) find the roots, (ii) sketch the graph  1x −

 

 (i) Because 1x −  is a factor, the cubic can be factorized: 

   
3 2 2

3 2

4 6 ( 1)( )

( 1) ( )

x x x x x ax b

x a x b a x

+ + − = − + +

= + − + − −
 

b

 and 

 and  6)

  graph function 6  crosses the x-axi t

 Then  5a = 6b = , 

3 2 24 6 ( 1)( 5
( 1)( 2) 3)

x x x x x x
x x

+ + − = − + +
− + +

 
(x=

 The roots of the cubic are 1,x =

(ii) The  of the y x= + − s a

2, 3− − . 

3 24x x+ ,  1, 2,  and  3x = − −  and the y-

t . Also 6y = −  y → +∞  as x → +∞  and y → −∞  as x → −∞axis a .  

The sketch of the function should look like  
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54. Given that 1x −  is a factor of the cubic 3 26 9x x x 4− + − , (i) find the roots, (ii) sketch the graph. 

 
 (i) Because 1x −  is a factor, the cubic can be factorized: 

   3 2 2 3 26 9 4 ( 1)( ) ( 1) ( )x x x x x ax b x a x b a x− + − = − + + = + − + − − b

)

4

 

 Then a  and , 5= − 4b =

 and   3 2 26 9 4 ( 1)( 5 4
( 1)( 1)( 4)

x x x x x x
x x x

− + − = − − +
= − − −

 The roots of the cubic are . 1 (double), 4x =

 (ii) The graph of the function , touches the x-axis at 3 26 9y x x x= − + − 1x =  and crosses it at 

. It crosses the y-axis at . Also  as 4x = 4y = − y → +∞ x → +∞  and  as y → −∞ x → −∞ .  

  
 The sketch of the function should look like  

 

 

 

 

 

 

 
 
55. Given that 1x −  is a factor of the cubic 3 23 3 1x x x− + − , (i) find the roots, (ii) sketch the graph. 

  

 (i) Because 1x −  is a factor, the cubic can be factorized: 

   3 2 2 3 23 3 1 ( 1)( ) ( 1) ( )x x x x x ax b x a x b a x− + − = − + + = + − + − − b

)

1

 

 Then a  and , 2= − 1b =

 and   3 2 2

3

3 3 1 ( 1)( 2 1

( 1)

x x x x x x

x

− + − = − − +

= −

 The cubic has the triple root . 1x =

 (ii) The graph of the function 3 23 3y x x x= − + − , crosses the x-axis at 1x = . It crosses the y-axis at 

. Also  as 1y = − y → +∞ x → +∞ y → −∞ and  as x → −∞ .  

  

 The sketch of the function should look like  
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56.  Given that  is a factor of the quartic 2 1x − 4 3 25 5 5x x x x 6− + + − , (i) find the roots, (ii) sketch the 

graph. 

  

 (i) Because  is a factor, the quartic can be factorized: 2 1x −

   
4 3 2 2 2

4 3 2

5 5 5 6 ( 1)( )

( 1)

x x x x x x ax b

x ax b x ax b

− + + − = − + +

= + + − − −
 

 Then a  and , 5= − 6b =

 and   4 3 2 2 2

2

5 5 5 6 ( 1)( 5 6)

( 1)( 2)( 3)
( 1)( 1)( 2)( 3)

x x x x x x x

x x x
x x x x

− + + − = − − +

= − − −
= + − − −

 The quartic has the roots . 1, 1, 2, 3x = −

 (ii) The graph of the function , crosses the x-axis at , , 4 3 25 5 5y x x x x= − + + − 6 1x = − 1x = 2x = , 

. It crosses the y-axis at . Also  as .  3x = 6y = − y → +∞ x → ±∞

  The sketch of the function should look like  
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Section 2.6 
 
 
Use algebraic division to reduce the rational function to proper form: 

   
 
57. 

 
2 1

3
x

x
−

+
                                               →

 
72

3x
= −

+
                                       ←  

 
2

3 2 1

2 6   

7  remainder

x x

x

+ −

+

−

          

 
58. 

 
3 23 2

2
x x x

x
− − +

+
4                              →  

 

 

 
 

2 263 8 15
2

x x
x

= − + −
+

                     ←  

 
2

3 2

3 2

2

2

3 8 15

2 3 2 4

3 6

8 4

8 16

15 4
15 30

26

x x

x x x x

x x

x x

x x

x
x

− +

+ − − +

+

− − +

− −

+
+

−

 

 
59. 

 
3 22 5

1
x x x

x
+ − −

+
6                              →  

 

 

 

 

 
2 6x x= + −                                       ←  

 
2

3 2

3 2

2

2

6

1 2 5 6

5 6

6 6
6 6

0

x x

x x x x

x x

x x

x x

x
x

+ −

+ + − −

+

− −

+

− −
− −

 

 
60. 

 
4 3 2

2
2 3 4 5 6

2 2
x x x x

x x
− + − +

− −
                 →

 

 

 

 

2
2
17 262 10

2 2
xx x

x x
+

= + + +
− −

            ←  

 
2

2 4 3 2

4 3 2

3 2

3 2

2

2

2 10

2 2 2 3 4 5 6

2 4 4

8 5 6

2 2

10 3 6

10 20 20
17 26

x x

x x x x x x

x x x

x x x

x x x

x x

x x
x

+ +

− − − + − +

− −

+ − +

− −

− +

− −
+
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Section 2.7 
 
 

61.  Express 1
( 1)( 2)x x− +

 in terms of partial fractions. 

 

 Let    1
( 1)( 2) 1 2

A B
x x x x

= +
− + − +

 

 Therefore 1 ( 2) (
( 1)( 2) ( 1)( 2)

A x B x
x x x x

+ + −
=

− + − +
1)

)

 

For this to be true for all values of x it is required that the numerators on the two sides of the equal sign 

be equal: 

    1 (  2) ( 1A x B x= + + −

The values of A and B can be obtained by making suitable choices of the variable x. Thus 

          when 1 : 1 3  and 1 3

when 2 :  1 3  and 1 3

x A A

x B B

= = =

= − = − = −

 

Therefore 1 1 1 1
( 1)( 2) 3 1 2x x x x

⎡ ⎤= −⎢ ⎥− + − +⎣ ⎦
 

 
 

62.  Express 2
( 3)
x

x x
+
+

 in terms of partial fractions. 

 

 Let   2 (
( 3) 3 ( 3)

3)x A B A x B
x x x x x x

+ +
= + =

+ + +
x+  

It is required that  

   2 ( 3)x A x Bx+ = + +  

Then        when 0 : 2 3  and 2 3

when 3 :  1 3  and 1 3

x A A

x B

= = =

= − − = − =B

 

 Therefore 2 1 2 1
( 3) 3 3
x

x x x x
+ ⎡ ⎤= +⎢ ⎥+ +⎣ ⎦
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63. Express 2
2

3 2
x

x x
−

+ +
 in terms of partial fractions. 

 

 Let   2
2 ( 1)

2 1 ( 2)( 1)3 2
x A B A x B x

x x x xx x
− +

= + =
+ + + ++ +

( 2)+ +

)

A

B

 

It is required that 

     2 ( 1) ( 2x A x B x− = + + +

Then         when 2: 4  and 4

when 1:  3  and 3

x A

x B

= − − = − =

= − − = = −

 Therefore 2 4 3
( 3) 2 1
x

x x x x
+

= −
+ + +

 

 
 

64. Express 
22 5 7

( 1)( 2)
x x

x x x
− +

− +
 in terms of partial fractions. 

 

 Let   
22 5 7

( 1)( 2) 1 2

( 1)( 2) ( 2) ( 1)
( 1)( 2)

x x A B C
x x x x x x

A x x Bx x Cx x
x x x

− +
= + +

− + − +

− + + + + −
=

− +

 

It is required that  

     22 5 7 ( 1)( 2) ( 2) ( 1x x A x x Bx x Cx x− + = − + + + + − )

Then   when 0: 7 2  and 7 2

when 1:  4 3  and 4 3

when 2 :  25 6  and 25 6

x A A

x B B

x C B

= = − = −

= = =

= − = =

 

 Therefore 
22 5 7 1 21 8 25

( 1)( 2) 6 1 2
x x

x x x x x x
− + ⎡ ⎤= − + +⎢ ⎥− + − +⎣ ⎦

 

 
 

65.  Express 
2

2
2 1

( 2)( 1)
x x
x x

+ −
+ −

 in terms of partial fractions. 

 

 Let   
2

2 2

2

2

2 1
2 1( 2)( 1) ( 1)

( 1) ( 1)( 2) ( 2)
( 2)( 1)

x x A B C
x xx x x

A x B x x C x
x x

+ −
= + +

+ −+ − −

− + − + + +
=

+ −
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It is required that  

    2 22 1 ( 1) ( 1)( 2) ( 2x x A x B x x C x+ − = − + − + + + )

Then  when 1: 2 3  and 2 3

when 2 :  1 9  and 1 9

when 0 :  1 2 2 (1 2 ) 2 10 9

x C C

x A A

x A B C B A C

= = =

= − − = = −

= − = − + → = + + =

 

 Therefore 
2

2 2
2 1 1 1 10 6

9 2 1( 2)( 1) ( 1)
x x

x xx x x

⎡ ⎤+ −
= − + +⎢ ⎥+ −+ − −⎣ ⎦

 

 

Section 2.8 
 
 
Solve the simultaneous equations: 

 

66.     (1) 3
(2) 1

x y
x y

+ =
− =

To solve for x, add the equations:  

    (1)  (2) 2 4 2x x+ = → =

 Substitution for x in (1) then gives 1y = .  

 
 Therefore  2, 1x y= =  

 and the lines cross at point . ( , ) (2, 1)x y =

 

67.     (1) 3 2 1
(2) 2 3 2

x y
x y

− =
+ =

To solve for y, multiply equation (1) by 2, and equation (2) by 3,  

     
(1 ) 6 4 2
(2 ) 6 9 6

x y
x y

′ − =
′ + =

and subtract (1  from  to give )′ (2 )′ 13 4 4 13y y= → = . Substitution for y in (1) then gives 

3 8 13 7 13x x− = → =1 .  

 
Therefore  7 13, 4 13x y= =  

and the lines therefore cross at point ( , ) (7 13, 4 13)x y = . 
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68.       (1) 3 2 1
(2) 6 4 6

x y
x y

− =
− =

To solve, subtract twice (1) from (2): 

         (1) 3 2 1
(2 ) 0 4

x y− =
′ =

 The second equation is not possible. The equations are said to be inconsistent and there is no solution. 

Graphically, the equations describe parallel lines. 

 

69.      (1) 3 2 1
(2) 6 4 2

x y
x y

− =
− =

In this case, doubling equation (1) gives equation (2) and there is effectively only one independent 

equation; both equations represent the same line. The equations are said to be linearly dependent and it 

is only possible to obtain a partial solution 

   (1 2 ) 3x y= +  for all values of y.  

 

70.       (1) 2 3 3
(2) 2 2 8
(3) 3 3 1

x y z
x y z
x y z

− + =
− − =

+ − =

To solve, eliminate x from equations (2) and (3) by subtracting 2 × (1) from (2) and 3 × (1) from (3): 

    (1)  2 3 3
(2 ) 3 8 2
(3 ) 9 10 8

x y z
y z
y z

− + =
′ − =
′ − = −

Now eliminate y from  by subtracting 3 ((3 )′ 2 )′×  from (3 )′ : 

   (1) 2 3 3
(2 ) 3 8 2
(3 ) 14 14

x y z
y z

z

− + =
′ − =
′′ = −

   

The equations can now be solved in reverse order: (3 )′′  is 1z = − , then (2 )′  is 3 8  so that 

, and (1) is  so that 

2y + =

2y = − 4 3 3x + − = 2x = . 

 
Therefore  and the lines cross at 2, 2, 1x y z= = − = − ( , , ) (2, 2, 1)x y z = − − .  
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71.     
2 2

(1) 2 1

(2) 1

x y

x xy y

− =

− + =

Equation (1) can be solved for y in terms of x and the result substituted in equation (2). Thus, from (1),  

2 1y x= − , and (2) becomes   

    

2 2

2

(2 1) (2 1) 1 0

3 3 0
( 1) 0

x x x x

x x
x x

− − + − − =

→ − =
→ − =

This has roots  and , with corresponding value of y, 1 0x = 2 1x = 1 1y = −   and . In this case the 

two solutions are the points at which the straight line (1) crosses the ellipse (2);  and 

, as demonstrated in the figure below. 

2 1y =

1 1( ,x y ) (0, 1)= −

2 2( , ) (1,x y = 1)

 
72.     

2 2

(1) 2 2

(2) 1

x y

x xy y

− =

− + =

As in exercise 71, equation (1) can be solved for y in terms of x and the result substituted in equation 

(2). Thus, from (1), , and (2) becomes   2 2y x= −

    

2 2

2

2

(2 2) (2 2) 1 0

3 6 3 0

( 1) 0

x x x x

x x

x

− − + − − =

→ − + =

→ − =

This has the double root , with corresponding value 1x = 0y =  . In this case the line (1) is tangent to 

(touches) the ellipse (2) at point ( , ) (1, 0)x y = , as demonstrated in the figure below. 

 
73.     

2 2

(1) 2 3

(2) 1

x y

x xy y

− =

− + =

As in Exercises 71 and 72, equation (1) can be solved for y in terms of x and the result substituted in  

equation (2). Thus, from (1), , and (2) becomes   2 3y x= −

    
2 2

2

(2 3) (2 3) 1 0

3 9 8 0

x x x x

x x

− − + − − =

→ − + =

The roots of the quadratic are complex, 

   9 81 96 9 15
6 6

ix ± − ±
= =  

and the line dose not touch the ellipse, as demonstrated in the figure below. 
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Note 

 

 

Exercises 71 to 73 are special cases of the line 2y x a= −  and the ellipse 2 2 1x xy y− + = . The general 

solution is 
23 12 3

6
ax ± −

=
a . The line crosses the ellipse when | | 2a < , touches the ellipse when 

, and misses the ellipse when | | , as demonstrated in the following figure. 2a = ± 2a >

 

 


