Solutions to Exercises, Chapter 24

24.1

24.2

24.3 D-Mannose is different from D-glucose only at C2. Two pyranose anomers are possible, and they are collectively represented with a wavy bond, as shown in parentheses.

© Oxford University Press, 2014. All rights reserved.

- **24.5** Xylitol is a *meso* compound so (2S,4R) and (2R,4S) structures are identical and the C which relates to the chiral centre of glyceraldehyde (C2) can be either R or S depending on which end of xylitol we take as C1. Alternatively, we could say that whether xylitol is D or L is not a legitimate question because it may be obtained by reduction of either D- or L-xylose.
- 24.6 Only (c) gives an optically inactive (meso) aldaric acid.
- **24.7** Lactose has a hemiacetal structure which is easily converted to the aldehyde form, so it is a reducing sugar. In contrast, sucrose is formed by bonding between the anomeric positions of the two monosaccharide units, so it is not a hemiacetal which can be converted into an aldehyde form, and is a non-reducing sugar.

24.8

© Oxford University Press, 2014. All rights reserved.

24.4

24.9 The structure of the fragment of DNA complementary to -ACGT- is -TGCA-:

24.10 The priority order of groups attached to the α carbon of an amino acid is usually as shown on the left below, but the R group in cysteine is CH₂SH which has priority over CO₂⁻. This causes the configuration of the α carbon of cysteine to be *R*.

© Oxford University Press, 2014. All rights reserved.

24.11

24.12 As illustrated in the scheme below for the dissociation of lysine, the first dissociation (corresponding to pK_1) of a basic amino acid is from the doubly positive cation to the singly positive form, which then becomes the neutral form corresponding to pK_2 ; this then gives the anionic form corresponding to pK_3 , so, $pI = (pK_2 + pK_3)/2$. Thus, pI for lysine is 9.87.

24.13

(a) Alanine: $pI = (pK_1 + pK_2)/2 = 6.02$. (b) Glutamic acid: $pI = (pK_1 + pK_2)/2 = 3.22$. (c) Histidine: $pI = (pK_2 + pK_3)/2 = 7.61$.

24.14

24.15

© Oxford University Press, 2014. All rights reserved.

24.16

24.17

Monoterpenes (terpenoids): myrcene, geraniol, limonene, both carvones, and menthol.

Sesquiterpene: α -farnesene. Diterpenoid: vitamin A.

Tetraterpenes: lycopene and β -carotene.

24.18

(a) 8 (b) 7

