Solutions to Exercises, Chapter 15

15.1

15.2 (a) The enantiomers of products **1** and **2** in Scheme 15.4 are **3** and **4**, respectively, and the configurations of their chiral centres are given in the structures.

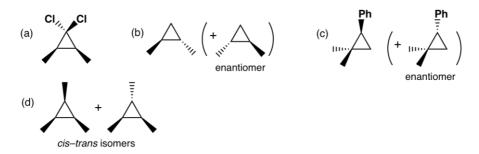
(b) The enantiomeric *cis* pair 1 and 3 are formed in equal yields, as are the enantiomeric *trans* pair 2 and 4. In principle, however, the (equal) yields of 1 and 3 will be different from the (equal) yields of their diastereoisomers 2 and 4.

15.3

15.4

15.5

15.6


15.7

15.8

15.9

15.10

15.11

15.12

15.13

The 1,2-adduct has a double bond with three alkyl substituents, while the 1,4-adduct is a disubstituted alkene. The 1,2-adduct is more stable than the 1,4-adduct in this reaction.

15.14

(a)
$$Me$$

$$H$$
(b) Ph

$$CO_2Me$$

$$enantiomer$$