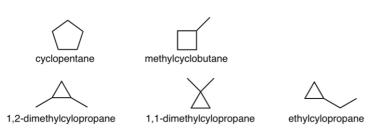
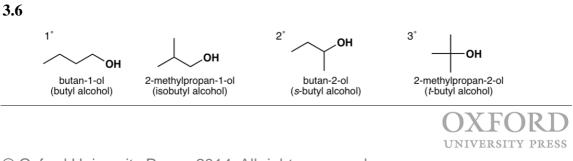

Solutions to Exercises, Chapter 3

3.1 (a) Two hydroxy groups (OH) and a carbonyl group (C=O)
(b) A hydroxy (OH), an amino (NH₂), and a carboxy group (COOH)
(c) Two double bonds (C=C) and a carbonyl group (C=O)
(d) A hydroxy (OH), an amino (RNH), an alkoxy (-O-), and an amide

(aminocarbonyl) group (CONH₂)

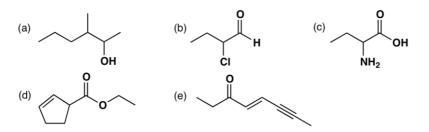
3.2 CH₃(CH₂)₃CH₃, (CH₃)₂CHCH₂CH₃, (CH₃)₄C


3.3


3.4 The general formula for cycloalkanes and acyclic alkenes is C_nH_{2n} .

3.5

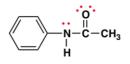
(1,2-Dimethylcyclopropane has cis and trans isomers.)


© Oxford University Press, 2014. All rights reserved.

3.7

	(CH ₃ CH ₂) ₂ NH	CH ₃ CH ₂ CH ₂ NHCH ₃	(CH ₃) ₂ CHNHCH ₃
	diethylamine	N-methylpropylamine	N-methylisopropylamine
	N-ethylethanamine	N-methylpropan-1-amine	N-methylpropan-2-amine
3.8	O II CH ₃ CH ₂ —C—CH ₂ CH ₃ pentan-3-one	O II CH ₃ CH ₂ CH ₂ —C—CH ₃ pentan-2-one	O II $(CH_3)_2CH-C-CH_3$ 3-methylbutan-2-one
3.9	O II CH ₃ CH ₂ CH ₂ COH butanoic acid	O II (CH ₃) ₂ CHCOH 2-methylpropanoic acid	

3.10 Isopropyl: methylethyl, isobutyl: 2-methylpropyl, *s*-butyl: 1-methylpropyl, *t*-butyl: dimethylethyl, neopenyl: 2,2-dimethylpropyl, benzyl: phenylmethyl


3.11

- 3.12 (a) 1,4-dichlorobenzene (*p*-dichlorobenzene) (b) 3-nitroaniline (*m*-nitroaniline)
 (c) 1,2,4,5-tetramethylbenzene (d) 2,4,6-tribromophenol
- **3.13** Butanal is a polar compound and molecules have an appreciable dipole moment so there are dipole-dipole interactions. These dipole-dipole interactions, however, are smaller than the hydrogen-bonding interactions of butan-1-ol, but

larger than the dispersion forces of pentane.

3.14 The O and N atoms of the amide group have lone pairs which are hydrogen-bond acceptors and the H on the N atom is a hydrogen-bond donor. These features contribute to the solubility in water. The benzene ring is quite a large nonpolar group and contributes adversely to the solubility in water.

- **3.15** Propanone is a polar molecule with a carbonyl group which is a good hydrogen-bond acceptor due to the lone pairs on the O. Intermolecular interactions between propanone and water are greater than those between propanone molecules themselves.
- **3.16** Formamide is strongly polar, its dielectric constant (111) being larger than that of water (80); it is also a hydrogen-bond donor and has lone pairs of electrons.

