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A.5 Equilibrium constants

In Chapter 8 we introduced the very important relationship between the equilib-
rium constant, K, and the standard Gibbs energy change,�rG◦, for a reaction:

�rG
◦ = −RT ln K .

In this relationship R is the gas constant and T is the absolute temperature. In
this section we will look in more detail at how this very important relationship
is proved. However, we will not be able to give a complete proof as this would
require rather too many results from thermodynamics which we do not have
time to develop here.

We will consider the simple equilibrium between two gases, A and B:

A ⇀↽ B.

You will recall that the position of equilibrium is the mixture of A and B which
has the lowest Gibbs energy. Figure A.10 (which is identical to Fig. 8.4 on
p. 115) illustrates the key idea that the Gibbs energy is a function of the com-
position of the mixture, i.e. the ratio of A to B, and that there is a particular
composition at which the Gibbs energy is a minimum. Our task is to determine
this composition.

From Fig. A.10 it is clear that at the position of equilibrium the slope of the
graph of Gibbs energy against percentage of B is zero i.e. for a small change
in the percentage of B the Gibbs energy of the mixture does not change. We
will use this observation as the basis of our method of finding the equilibrium
composition.

The Gibbs energy of a mixture of gases
The first thing we have to do is to work out the Gibbs energy of an arbitrary
mixture of two gases. To do this we will start by thinking about the Gibbs
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Fig. A.10 Plot showing an example of how the Gibbs energy for the equilibrium between A and B
varies with the composition, which in this case can be specified by the percentage of B. Arbitrarily, we
have made the molar Gibbs energy of B lower than that of A.
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energy of a single pure (ideal) gas. Not surprisingly, the value of the Gibbs
energy depends on the identity of the gas, the amount of the gas present (i.e.
the number of moles), the temperature and the pressure.

To simplify things, let us imagine that we are working at a constant tem-
perature (e.g. in a thermostat). Under such conditions it turns out (and we will
not prove this) that for n moles of gas the Gibbs energy at pressure p1, G(p1),
is related to the Gibbs energy at pressure p2, G(p2), according to

G(p2) = G(p1)+ n RT ln
p2

p1
. (A.7)

Rather than working with the Gibbs energy it will be convenient to work with
the molar Gibbs energy, Gm, which is the Gibbs energy of one mole. In terms
of these molar quantities, Eq. A.7 becomes

Gm(p2) = Gm(p1)+ RT ln
p2

p1
, (A.8)

which is simply Eq. A.7 with the Gibbs energies replaced by the corresponding
molar quantities and n = 1.

It is usual to rewrite Eq. A.8 by supposing that pressure p1 is the standard
pressure, p◦, of 1 bar:

Gm(p2) = Gm(p◦)+ RT ln
p2

p◦ (A.9)

We then write Gm(p◦), the molar Gibbs energy at standard pressure, as G◦
m;

Eq. A.9 then becomes

Gm(p) = G◦
m + RT ln

p

p◦ (A.10)

where instead of p2 we have written a general pressure, p. Equation A.10 tells
us how the molar Gibbs energy of a pure gas varies with pressure (at a fixed
temperature).

The next concept we need to introduce is that of the partial pressure. In
a mixture of A and B the partial pressure of A is the pressure that A would
exert if it occupied the volume on its own, i.e. with B taken away. Similarly,
the partial pressure of B is the pressure that B would exert if it occupied the
volume on its own. The idea is illustrated in Fig. A.11
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A and BA only B only

Fig. A.11 The partial pressure of a gas is the pressure it would exert if it occupied the volume on its
own; the sum of the partial pressures is equal to the total pressure.

Dalton’s Law of partial pressures tells us that the total pressure, ptot, ex-
erted by the mixture is the sum of the partial pressures of A and B (pA and pB,
respectively):

ptot = pA + pB.
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The partial pressure of A depends on its mole fraction, xA, which is defined as
the ratio of the number of moles of A, nA, to the total number of moles, ntot.
The mole fraction of B, xB is defined similarly in terms of the number of moles
of B, nB:

xA = nA

ntot
xB = nB

ntot
.

Clearly if only A and B are present, ntot = nA + nB.
For ideal gases (which is the only case we will consider), the partial pres-

sure of A is given by

pA = xA ptot

= nA

nA + nB
ptot

and similarly for B

pB = nB

nA + nB
ptot.

The reason for introducing partial pressures is that, in a mixture, the molar
Gibbs energy of A depends on its partial pressure in the same way that for a
pure gas Gm depends on the pressure. So, by analogy to Eq. A.10 we can write

Gm,A(pA) = G◦
m,A + RT ln

pA

p◦ (A.11)

where Gm,A(pA) is the molar Gibbs energy of A in the mixture and G◦
m,A is

the molar Gibbs energy of pure A at the standard pressure. The reason that we
can write Eq. A.11 in this way is that we are considering ideal gases which do
not interact with one another.

Suppose that we have a mixture of nA moles of A and nB moles of B, and
that the partial pressures of A and B are pA and pB, respectively. We can now
write down the Gibbs energy of the mixture as

G = nAGm,A(pA)+ nBGm,B(pB). (A.12)

All we are doing here is multiplying the molar Gibbs energy of each species by
the number of moles present; importantly, though, we are recognizing that the
molar Gibbs energies depend on the partial pressures. We have now achieved
our first goal of finding an expression for the Gibbs energy of a mixture of A
and B.

Locating the minimum in the Gibbs energy of the mixture
Now let us imagine that, starting from a mixture with nA moles of A and nB
moles of B, the reaction proceeds by a small amount δ so that the number of
moles of A decreases by δ to (nA − δ) and B increases by δ to (nB + δ). After
these changes the Gibbs energy of the mixture becomes

Gnew = (nA − δ)Gm,A(pA)+ (nB + δ)Gm,B(pB) (A.13)
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where we have assumed that the change is so small that molar Gibbs energies
are not affected. 1

The change in Gibbs energy, �G, resulting from this small amount of A
becoming B is found by subtracting Eq. A.12 from Eq. A.13

�G = Gnew − G

= (nA − δ)Gm,A(pA)+ (nB + δ)Gm,B(pB)

− [
nAGm,A(pA)+ nBGm,B(pB)

]
= δ

(
Gm,B(pB)− Gm,A(pA)

)
.

(A.14)

Now, when we are at the equilibrium position, changing the composition
by a small amount leads to no change in the Gibbs energy (see Fig. A.10 on
p. A–16), so �G given by Eq. A.14 will be zero at equilibrium:

at equilibrium δ
(
Gm,B(pB,eq)− Gm,A(pA,eq)

) = 0.

pA,eq is the equilibrium pressure of A and likewise for B. It follows that at
equilibrium

Gm,B(pB,eq)− Gm,A(pA,eq) = 0. (A.15)

Each of the molar Gibbs energies in Eq. A.15 can be substituted using the
relationship of Eq. A.11 to give[

G0
m,B + RT ln

pB,eq

p0

]
−

[
G0

m,A + RT ln
pA,eq

p0

]
= 0. (A.16)

Equation A.16 can be rewritten

G◦
m,B − G◦

m,A = RT ln
pA,eq

p◦ − RT ln
pB,eq

p◦

= RT ln
pA,eq

p◦
p◦

pB,eq

= RT ln
pA,eq

pB,eq

= −RT ln
pB,eq

pA,eq
.

(A.17)

The quantity on the left-hand side of Eq. A.17 is the standard molar Gibbs
energy of the product B, minus that of the reactant A; this is the standard Gibbs
energy change for the reaction,�rG◦:

�rG
◦ = G0

m,B − G0
m,A.

For gases, partial pressures are simply another way of expressing concen-
trations. Therefore, the ratio pB,eq/pA,eq which appears on the right-hand side

1This may seem rather contradictory as changing the number of moles of A and B will change
the mole fractions and hence the partial pressures and the molar Gibbs energies. However the point
to grasp here is that δ is very small so, although the amounts of A and B change, the change is
insignificant compared to the total number of moles of A and B present. Thus, the partial pressures
of A and B are unaltered, so that the molar Gibbs energies are also unaffected.
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of Eq. A.17 is the equilibrium constant, K, expressed, not in the usual units of
concentration, but in terms of partial pressures. Thus we can write Eq. A.17
as:

�rG
◦ = −RT ln K (A.18)

which is what we set out to prove. This derivation can easily be generalized for
any reaction.

It is important not to forget that �rG◦ is itself a function of temperature,
so Eq. A.18 does not, on its own, predict how the equilibrium constant varies
with temperature.


