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A.3 Quantum mechanics

The wavefunction is of central importance in quantum mechanics. For exam-
ple, you will recall from Section 4.3 on p. 39 that the square of the wavefunc-
tion gives us the probability density – a property we have used constantly to
talk about how the electrons are distributed in atoms and molecules.

This section describes how the mathematical form of wavefunctions are
determined. To avoid the mathematics becoming too complicated we will have
to restricts ourselves to some rather simple situations, but the principles we will
describe are generally applicable.

We will start by considering the simplest case which is a particle of mass
m moving in one dimension, x; the wavefunction will simply be a function of
x, and so we will denote it ψ(x).

It is an assumption of quantum mechanics that the wavefunction is a solu-
tion to the Schrödinger equation (SE):

−h2

8π2m

d2ψ(x)

dx2 + V (x)ψ(x) = Eψ(x) (A.4)

where h is Planck’s constant, V (x) is the potential energy at position x and E
is the total energy.

The solution to this equation depends on how the potential energy varies
with x; we will look at two simple examples. The first is when the potential
energy is zero everywhere – this situation is often referred to as a ‘free particle’
as there are no constraints on it. The SE then reduces to:

−h2

8π2m

d2ψ(x)

dx2 = Eψ(x). (A.5)

This is a differential equation of a well-known type for which it is know that
ψ(x) = A sin(kx) is a solution, where A and k are constants to be determined.

We can show that ψ(x) = A sin(kx) is a solution by first substituting it
into the left-hand side of Eq. A.5:

−h2

8π2m

d2ψ(x)

dx2 = −h2

8π2m

d2[A sin(kx)]

dx2

= −h2

8π2m

d[Ak cos(kx)]

dx

= −h2

8π2m
[−Ak2 sin(kx)]

= k2h2

8π2m
[A sin(kx)]

= k2h2

8π2m
ψ(x).

From this we see that the left-hand side of Eq. A.5 is of the form of a constant
times ψ(x). The right-hand side of Eq. A.5 is E times ψ(x), so we have con-
firmed that ψ(x) is a solution to the SE, and that for this ψ(x) the energy, E, is
given by

E = k2h2

8π2m
. (A.6)
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The energy is determined by the value of k, but there are no restrictions
on k so that the energy can have any value, i.e. the system does not show
quantization. The value of the constant A has no effect on the energy.
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Fig. A.3 Visualization of a potential
energy function which is zero between
x = 0 and x = L, and infinity elsewhere
(indicated by the shaded regions). The
particle cannot go into the region of
infinite potential, and so is constrained to
be in the region x = 0 to L. This
arrangement is often called a ‘particle in
a box’.

What we find in quantum mechanics is that quantization is a result of the
particle being constrained by the potential. A simple example of this is to
suppose that the potential energy is infinite when x is less than zero or greater
than L; this is illustrated in Fig. A.3.

The particle cannot go into a region of infinite potential and, as the square
of the wavefunction gives the probability density, it follows that the wavefunc-
tion must be zero in these regions. So, the wavefunction must go to zero when
x = 0 and when x = L as the potential is infinite at these points. This arrange-
ment is often called a ‘particle in a box’ simply because the particle is confined
to a particular region defined by steep walls.

There is no problem at x = 0 as A sin(kx) is zero at this point for all values
of k. However, at x = L the wavefunction has the value A sin(kL) and this
will only be zero if (kL) is an integer multiple of π ; this comes about because
sin(θ) = 0 for θ = 0, π, 2π, 3π, . . . (radians). Expressed mathematically this
condition is

kL = nπ n = 1, 2, 3 . . . .

It follows that
k = nπ

L
n = 1, 2, 3 . . . ,

and if we substitute this value for k into ψ(x) = A sin(kx) and into the expres-
sion for the energy, Eq. A.6, we find that, for the particle in a box,

ψn(x) = A sin
(nπx

L

)
and En = n2h2

8mL2 n = 1, 2, 3 . . . .

We have added the subscript n to both the wavefunction and the energy to
indicate that these depend on the value of n. The particle in a box shows quan-
tization; n must be an integer and so only particular values of the energy are
possible. The integer n is a quantum number.

Putting n = 0 will give a wavefunction which is zero everywhere; as the
square of the wavefunction gives the probability density, having ψ(x) = 0
everywhere is not acceptable as it would mean that the particle has zero prob-
ability of being located at any position. The solution with n = 0 is therefore
rejected and so the lowest energy wavefunction is the one with n = 1.

Figure A.4 shows plots of the four lowest energy wavefunctions for the
particle in a box. Note how the number of nodes (the values of x for which
ψ(x) = 0) increases with n, which in turn corresponds to increasing energy.

Normalization
We know that the probability density of the particle is given by the square of
the wavefunction; we also know that the particle must be somewhere in the box.
Therefore, if we add up the total probability density in the box we must get the
answer 1, i.e. there is 100% probability of finding the particle somewhere in
the box.
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Fig. A.4 Plots of the four lowest energy wavefunctions for the potential energy function shown in
Fig. A.3 (the particle in a box). The wavefunctions have been displaced vertically so that they can
be seen clearly; the dotted horizontal line gives the position of ψ = 0 in each case. Note how the
wavefunctions are zero for x less than 0 and greater than L, and how the number of nodes increases
with n.

Mathematically, adding up this probability density in the box corresponds
to integrating the square of the wavefunction in the range 0 to L:∫ L

0
[ψn(x)]

2dx =
∫ L

0

[
A sin

(nπx

L

)]2
dx

= A2
∫ L

0
sin2

(nπx

L

)
dx .

To find the integral we use the identity sin2 θ = 1/2[1 − cos 2θ ]:

A2
∫ L

0
sin2

(nπx

L

)
dx = 1/2 A2

∫ L

0
1 − cos

(
2nπx

L

)
dx

= 1/2 A2

{[
x
]L

0
−

[
− L

2nπ
sin

(
2nπx

L

)]L

0

}

= 1/2 A2L

where to go to the last line we have recalled that as n is an integer, sin(2nπ) is
zero.

This integral of [ψ(x)]2 gives the total probability, and so should have
the value 1; this is plainly not the case. However, since we have shown that
ψ(x) = A sin(kx) solves the SE for any value of the constant A, we can choose
the value of A so that the integral is equal to 1:

1 = 1/2 A2 L

thus A =
(

2

L

)1/2

.

With this choice of A the wavefunction is said to be normalized, meaning that
the total probability it predicts is indeed equal to one. A is called the normal-
ization constant or normalization factor.
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Fig. A.5 The potential energy function for
the harmonic oscillator is shown in (a)
and the lowest energy wavefunction for
this particular form of V (x) is shown in
(b). Note that, in contrast to the
wavefunctions for the particle in a box
(Fig. A.4 on p. A–8), the wavefunction
does not stop abruptly but tapers off
toward zero as x increases.

It is particularly simple to solve the SE for the particle in a box as the poten-
tial, V (x), is zero (inside the box). Other physical situations have more com-
plex forms of the potential, which make the corresponding SE more difficult to
solve.

It turns out that the SE can only be solved exactly for a few simple potential
energy functions. One of these is the harmonic potential which has

V (x) = 1/2kfx
2

where kf is the force constant; the potential is plotted in Fig. A.5 (a).
In classical mechanics such a potential would give rise to a force −kfx . The

force is proportional to the displacement from the origin (x = 0) and the minus
sign means that the force is directed towards the origin. A mass experiencing
such a force will execute what is called harmonic motion in which the mass
oscillates about x = 0 at a frequency ω = √

kf/m (in rad s−1).
The SE equation can be solved for this potential function, although it is not

such an easy task as for the particle in a box. The lowest energy wavefunction
turns out to be

ψ0 = A exp
(
−αx2

)
where A is the normalization constant and

α = π

h

√
mkf.

This wavefunction is plotted in Fig. A.5 (b). In contrast to the particle on a box,
the wavefunctions for the harmonic oscillator do not stop abruptly but decay
away gradually as x increases.

The energy associated with this wavefunction can be shown to be
1/2h(ω/2π). It turns out that this is just the first of a set of wavefunctions
with energies given by

Ev = (v + 1/2)
hω

2π
,

where the quantum number v takes the values 0, 1, 2, . . .; the lowest energy
wavefunction is the one with v = 0.

The harmonic oscillator can be used as a simple model for the stretching of
a chemical bond. All we do is to imagine that the coordinate x is the displace-
ment of the bond length, R, from its equilibrium value, Re:

x = R − Re.

Absorption of a photon can cause the vibrating bond to move from the lowest
energy state (v = 0) to the next highest energy state (v = 1). The energy dif-
ference between these two states, which must match the energy of the photon,
is given by

E1 − E0 = 3

2

hω

2π
− 1

2

hω

2π

= hω

2π
.
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From this we see that the energy of the absorbed photon is a direct measure of
the frequency, ω, at which the bond is vibrating. These photons turn out to be
in the infra-red (IR) part of the spectrum. Thus, by looking at the absorption in
the IR, we can make direct measurements of the frequencies at which a bond
is vibrating.


