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A.2 Exponentials and logarithms

The exponential function arises in the mathematical description of all sorts
of physical processes, from chemical kinetics to quantum mechanics. In this
section we will review the properties of this function and the related natural
logarithm, and give an example of how the exponential arises in chemical ki-
netics.

The form of the exponential which is of most interest to us is

e−Ax which is often written exp(−Ax)

where A is a constant. Figure A.1 shows a plot of this function for three differ-
ent values of A.
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Fig. A.1 Plots of the exponential function for three different values of the constant A; note that as A
increases, the rate of decay of the function increases.

You can see from this plot why the exponential function is often called
an ‘exponential decay’. When x = 0 the function is 1 (for all values of A),
and then as x increases the function decays away towards zero; the larger the
constant A, the faster the decay rate. For negative x, exp (−Ax) is positive and
goes on increasing as x becomes more and more negative; this behaviour is not
usually encountered in physical systems, so we have not plotted it.

The natural logarithm, denoted ln, is closely related to the exponential:

if C = eD then ln C = D.

It follows from this definition of the logarithm that

eln C = C.

Any number raised to the power of zero is 1, thus e0 = 1 and so it follows that
ln 1 = 0.

A negative exponent is equivalent to the reciprocal:

e−L ≡ 1

eL
.

When two exponentials are multiplied, their exponents add:

eL × eM ≡ eL+M .

This leads to the following result for the addition of logarithms:

ln L + ln M ≡ ln (L M),
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i.e. the addition of the logarithms of two numbers gives the logarithm of their
product. Subtraction of the logarithms gives the logarithm of the ratio:

ln L − ln M ≡ ln
L

M
.

From this we find the following relationship

ln
1

A
≡ ln 1 − ln A

≡ − ln A,

where we have used ln 1 = 0.

The half life
The exponential function exp (−Ax) has an interesting property which is that
starting from any value of x, the increase in x needed to make the function
fall to half its initial value is only a function of A. This is easy to prove in the
following way.

If the initial value of x is x0, then the value of the function at this point is
exp (−Ax0). Let the value of x at which the function has fallen to half its initial
value be (x0 + δ); δ can be found in the following way:

1/2 value at x0 = value at (x0 + δ)

1/2 × e−Ax0 = e−A(x0+δ)
1/2 × e−Ax0 = e−Ax0 e−Aδ

1/2 = e−Aδ

or ln 1/2 = −Aδ.

To go to the last line we have taken logarithms of both sides. Rearranging this
last equation enables us to find an expression for δ, the increase in x:

δ = ln 1/2

−A

= ln 2

A
.

We have now proved what was stated earlier, which is that the value of δ
is independent of the choice of x0 and only depends on the constant A; this is
illustrated in Fig. A.2. If the variable x is time, then δ is called the half life
because it is the time needed for the exponential to fall to half its initial value.

First-order reactions
In this section we will show how the exponential function arises in the math-
ematical description of the rates of chemical reactions. Suppose we have a
reaction in which the rate is proportional to the concentration of a reactant A:

rate = k1[A]
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Fig. A.2 A property of the exponential function is that the increase in x needed for the function to fall
to half its initial value is independent of the initial value. The plot shows that the interval, δ, needed for
the function to fall from 1.0 to 0.5 is the same as that needed for the function to fall from 0.4 to 0.2. As
shown in the text, this interval turns out to be (ln 2 / A); in this case A = 1 so δ = 0.69.

where [A] is the concentration of A at time t and k1 is the rate constant. As was
described on p. 136, such a rate law is said to be first order as the concentration
of the reactant is raised to the power of 1; k1 is therefore described as a first
order rate constant.

Using calculus the rate can be written as a differential:

d[A]

dt
= −k1[A]. (A.1)

We need the minus sign as A is a reactant whose concentration decreases as
the reaction proceeds, i.e. d[A]/dt is negative.

Equation A.1 is a differential equation whose variables, [A] and t, can be
separated; we will put the terms in [A] on the left-hand side, and those in t on
the right-hand side:

d[A]

dt
= −k1[A]

hence
1

[A]
d[A] = −k1dt .

Now the left-hand side can be integrated with respect to [A] and the right-hand
side with respect to t: ∫

1

[A]
d[A] =

∫
−k1dt

ln [A] = −k1t + const. (A.2)

The constant of integration can be found by supposing that at t = 0 the con-
centration of A is [A]0; substituting these values into Eq. A.2 we find

ln [A]0 = const.

Substituting this value for the constant into Eq. A.2 we obtain the following
expression which tells us how the concentration varies with time:

ln [A] = −k1t + ln [A]0. (A.3)
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This equation is of the form y = mx + c, and so if we plot ln [A] against t we
will obtain a straight line with slope −k1. Such a plot is therefore a method for
determining the value of the first-order rate constant, k1.

Equation Eq. A.3 can be rewritten in the following steps:

ln [A] = −k1t + ln [A]0

ln [A] − ln [A]0 = −k1t

ln
[A]

[A]0
= −k1t

[A]

[A]0
= exp(−k1t)

[A] = [A]0 exp(−k1t)

where on the last line but one we have taken the natural logarithm of both sides.
What the last line shows is that for a first-order reaction the concentration

of reactant A decays exponentially with time, with the rate of the decay being
set by the value of the rate constant, k1. So, Fig. A.1 on p. A–2 could be a plot
of concentration against time for different values of the rate constant.

The half life for the reaction, i.e. the time for the concentration to fall to
half its initial value, is given by ln 2/k1. So the larger the rate constant, the
shorter the half life, as we would expect.


