19 Chemical thermodynamics

The gas constant, *R*, has the value 8.3145 J K⁻¹ mol⁻¹; 1 bar is 10^5 N m⁻²; 1 atmosphere is 1.01325×10^5 N m⁻²; 1 Torr is 133.3 N m⁻².

- 19.1 4×10^{-3} moles of an ideal gas are held inside a cylinder by a piston such that the volume of the gas is 10 cm³; the whole assembly is held in a thermostat at 298 K. Calculate the pressure of the gas in N m⁻². [Note that the SI unit of volume is m³.]
 - (a) Assume that the external pressure is fixed at 1 bar. Explain why the piston moves out when it is released, and why it eventually comes to a stop. What will the pressure of the gas inside the cylinder be when the piston finally stops?
 - (b) Calculate the volume of the gas inside the cylinder when the piston has come to rest, and hence the work for this irreversible expansion.
 - (c) State the change in the internal energy, ΔU , of the gas when it undergoes this isothermal expansion. Hence, using the First Law, calculate the heat associated with the expansion, explaining its sign.
 - (d) Calculate the work associated with reversible isothermal expansion between the same initial and final states as the irreversible expansion described above; hence find the heat. Comment on these values in relation to those for the irreversible expansion.
 - (e) Determine the enthalpy change of the gas in (i) the reversible and (ii) the irreversible expansion.
- 19.2 A sample of methane gas of mass 4.50 g has volume 12.7 dm³ at 310 K. It expands isothermally against a constant external pressure of 200 Torr until its volume has increased by 3.3 dm³. Assuming methane to be a perfect gas, calculate the work and heat associated with the process, along with the change in the internal energy and enthalpy of the gas. [1 Torr = 133.3 N m⁻².]

Calculate these same quantities if the expansion is carried out reversibly.

19.3 For the A \rightleftharpoons B equilibrium, sketch a graph showing how the molar Gibbs energy of a mixture of A and B varies as the composition varies from pure reactant A to pure product B for the following cases: (a) $G_{m,A}^{\circ} = G_{m,B}^{\circ}$, (b) $G_{m,A}^{\circ} < G_{m,B}^{\circ}$. On your graph indicate the equilibrium composition.

Explain why it is that if the proportions of A and B are not at their equilibrium values, there is always a spontaneous process which will result in the composition moving to its equilibrium value, but that once this point is reached, no further change is possible.

19.4 Consider the equilibrium

$$2A(g) \rightleftharpoons B(g)$$
.

Using the approach illustrated in section 19.6.3 on page 748, show that for this reaction at equilibrium we have

$$\Delta_{\rm r}G^\circ = -RT \ln K$$
 where $K = \frac{p_{\rm B,eq}/p^\circ}{(p_{\rm A,eq}/p^\circ)^2}$,

and

$$\Delta_{\rm r}G^\circ = G^\circ_{\rm m,B} - 2G^\circ_{\rm m,A}.$$

19.5 This question and the two which follow concern the equilibrium

$$CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$$

which we are going to investigate as a viable commercial method for the production of methanol. The following data are provided (all at 298 K)

	CO(g)	$H_2(g)$	CH ₃ OH(g)
$\Delta_{\rm f} H^\circ$ / kJ mol ⁻¹	-110.53		-200.66
$S_{\rm m}^{\circ}$ / J K ⁻¹ mol ⁻¹	197.67	130.68	239.81
$C_{p,\mathrm{m}}^{\circ}$ / J K ⁻¹ mol ⁻¹	29.14	28.82	43.89

Using these data, determine $\Delta_r H^\circ$, $\Delta_r S^\circ$, $\Delta_r G^\circ$ and hence *K*, all at 298 K. On the basis of your answer, comment on the viability of the reaction as a method for the production of methanol.

- 19.6 In practice, it is found that the reaction in the previous question only proceeds at a viable rate at 600 K. Assuming that the values of $\Delta_r H^\circ$ and $\Delta_r S^\circ$ are the same at 600 K as they are at 298 K, find the value of the equilibrium constant at 600 K. Qualitatively, is your answer in accord with Le Chatelier's principle?
- 19.7 Using the approach described in section 19.8.1 on page 752 and section 19.8.2 on page 753, together with the data given in question 19.5, find the value of $\Delta_r C_p^{\circ}$ and hence the values of $\Delta_r H^{\circ}$ and $\Delta_r S^{\circ}$ at 600 K for the equilibrium

$$CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g).$$

Hence compute $\Delta_r G^\circ$ and *K* at 600 K. How do your values compare with those found in exercise 17.5?

19.8 Consider the equilibrium in which solid calcium carbonate decomposes to the oxide plus carbon dioxide

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g).$$

Using the approach illustrated in section 19.7.1 on page 750, show that

$$\Delta_{\rm r}G^\circ = -RT\ln K$$

where p_{CO_2} is the equilibrium pressure of CO₂ and

$$\Delta_{\mathrm{r}}G^{\circ} = G^{\circ}_{\mathrm{m}}(\mathrm{CaO}) + G^{\circ}_{\mathrm{m}}(\mathrm{CO}_2) - G^{\circ}_{\mathrm{m}}(\mathrm{CaCO}_3) \quad \mathrm{and} \quad K = \frac{p_{\mathrm{CO}_2}}{p^{\circ}}.$$

The standard enthalpies of formation of CaCO₃(s), CO₂(g) and CaO(s) are -1207.6 kJ mol⁻¹, -393.5 kJ mol⁻¹ and -634.9 kJ mol⁻¹ respectively, and the standard entropies are 91.7 J K⁻¹ mol⁻¹, 213.8 J K⁻¹ mol⁻¹ and 38.1 J K⁻¹ mol⁻¹ (all at 298 K). Assuming that these values are independent of temperature, compute $\Delta_r H^\circ$, $\Delta_r S^\circ$ and $\Delta_r G^\circ$ at 800 K; hence find the equilibrium pressure of carbon dioxide at this temperature.

19.9 Thermodynamic data, at 298 K, for the reagents and products of the gas phase reaction

$$2HNO_2(g) \rightleftharpoons H_2O(g) + NO(g) + NO_2(g)$$

are given below.

	$\Delta_{\rm f} H^\circ$ / kJ mol ⁻¹	$S_{\rm m}^{\circ}$ / J K ⁻¹ mol ⁻¹	$C_{p,\mathrm{m}}^{\circ}$ / J K ⁻¹ mol ⁻¹
HNO ₂ (g)	-79.5	254.0	45.6
$H_2O(g)$	-241.8	188.7	33.6
NO(g)	90.2	210.7	29.8
$NO_2(g)$	33.2	240.0	37.2

Calculate $\Delta_r H^\circ$, $\Delta_r S^\circ$ and $\Delta_r G^\circ$ at 298 K. Assuming that the values of $\Delta_r H^\circ$ and $\Delta_r S^\circ$ at 548 K are the same as those at 298 K, calculate $\Delta_r G^\circ$ at 548 K.

Calculate $\Delta_r C_p^{\circ}$ and, using this value, compute $\Delta_r H^{\circ}$, $\Delta_r S^{\circ}$ and $\Delta_r G^{\circ}$ at 548 K. Compare the two values of $\Delta_r G^{\circ}$ you have obtained, and comment on what is the major source of the temperature variation of $\Delta_r G^{\circ}$ for this reaction. Calculate *K* for the reaction at 298 K and at 548 K.

- 19.10 The standard molar entropy of N₂ gas at 298 K is 191.6 J K⁻¹ mol⁻¹, and its standard molar constant pressure heat capacity, $C_{p,m}^{\circ}$, at the same temperature is 29.70 J K⁻¹ mol⁻¹.
 - (a) Using Eq. 19.46 on page 754, find the standard molar entropy of N_2 at 398 K.
 - (b) A better approximation than assuming that $C_{p,m}^{\circ}$ is constant is to use a parametrized form which includes a temperature dependence. For example

$$C_{n,\mathrm{m}}^{\circ}(T) = A + BT.$$

Using this expression for $C_{p,m}^{\circ}$, show that integrating Eq. 19.45 on page 754 between T_1 and T_2 gives the following

$$S_{\rm m}^{\circ}(T_2) = S_{\rm m}^{\circ}(T_1) + A \ln\left(\frac{T_2}{T_1}\right) + B[T_2 - T_1]$$

- (c) For N₂ $A = 28.58 \text{ J K}^{-1} \text{ mol}^{-1}$ and $B = 3.77 \times 10^{-3} \text{ J K}^{-2} \text{ mol}^{-1}$. Using these values in the expression above, calculate the entropy at 398 K. Comment on the difference between your answer and that obtained in (a).
- 19.11 The equilibrium constant, *K*, for the reaction

$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$

has been measured at a series of temperatures around 700 K as follows

By plotting a graph of $\ln K$ against 1/T, obtain a value for $\Delta_r H^\circ$ for the above reaction; explain any approximations you have to make. Use your graph to find a value of $\Delta_r G^\circ$ at 700 K, and hence find a value for $\Delta_r S^\circ$ at the same temperature.

19.12 Using the approach illustrated in section 19.9 on page 755 show that the equilibrium constants at T_1 and T_2 are related according to

$$\ln (K(T_2)) - \ln (K(T_1)) = -\frac{\Delta_r H^{\circ}}{R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right].$$

What assumptions are made in deriving this equation?

For the reaction

 $CO(g) + H_2O(g) \rightleftharpoons H_2(g) + CO_2(g)$

K is 1.038×10^5 at 298 K and 1.094×10^4 at 350 K. Use the expression above to calculate a value for $\Delta_r H^\circ$. Determine $\Delta_r G^\circ$ at 298 K, and use this value to find $\Delta_r S^\circ$ at this temperature.

19.13 Ketene O=C=CH₂ is a reactive gas which can be prepared by the thermal decomposition of propanone (acetone) vapour

$$CH_3COCH_3(g) \rightleftharpoons O=C=CH_2(g) + CH_4(g)$$

Using the approach described in section 7.15 on page 250, complete the following table:

line	propanone	\rightleftharpoons	ketene	CH_4
1	n_0		0	0
2	$n_0(1-\alpha)$			
3				

Line 1 gives the initial amount in moles, line 2 gives the amounts in moles at equilibrium, and line 3 gives the mole fractions; α is the fraction of propanone which has decomposed. Show that the equilibrium constant can be written

$$K = \frac{\alpha^2}{(1-\alpha)(1+\alpha)} \frac{p_{\rm eq}}{p^\circ},$$

where p_{eq} is the pressure of the equilibrium mixture. Using this expression, find the value of *K* which corresponds to 90% decomposition of propanone at a total pressure of 1.2 bar.

At 298 K, $\Delta_r G^\circ$ for this reaction is 42 kJ mol⁻¹, and $\Delta_r H^\circ$ is 81 kJ mol⁻¹. Find the value of the equilibrium constant at 298 K and then, using the relationship below, find the temperature at which there is 90% decomposition of propanone at a total pressure of 1.2 bar.

$$\ln(K(T_2)) - \ln(K(T_1)) = -\frac{\Delta_{\rm r} H^{\circ}}{R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$$