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Chapter 14: Antidifferentiation and area

14.1. In each case we require the general form of y such that

dy

dx
= f(x)

where f(x) is given.
(a) 1

6x6 + C; 3
5x5 + C; 1

2x4 + C; 1
9x3 + C; 3x2 + C; 3x + C; C.

(b) 1
4x−2 + C; −2x−1 + C; 3 ln x + C.

(c) 2
5x

5
2 + C; 2

3x
3
2 + C; 2x

1
2 + C; 3

7x
7
3 + C; 3

2x
2
3 + C.

(d) −x−1 + C = −(1/x) + C; − 1
3x−3 = −1/(3x3 + C; ln(−x) + C

(e) 2
3x

3
2 + C; 2x

1
2 + C = 2

√
x + C; −2x−

1
2 + C.

(f) 3
2x2 + C; 1

6x3 + C; −1/(3x) + C; x
3
4 + C.

(g) ex + C; −e−x + C; 5
2e2x + C; −2e−

1
2 x + C; − 3

2e−2x.
(h) sin x + C; 1

3 sin 3x + C; − cos x + C; − 1
3 cosx + C.

(i) x− 3
2x2 + C; x + x2 − x3 + C; 3

5x5 − 4
3x3 + 5x + C.

(j) 1
3x3 + 1

2x2 + C; x− 4
3x3 + C; 1

3x3 + x2 + x + C; 1
2x2 − ln x + C; 1

4x4 + 1
5x5 + C.

(k) x + ln x + C for x > 0; 2x− 2
√

x + C; ln x− 2x−1 − 1
2x−2 + C.

(l) ex − e−x + C; e2x − e3x + C; 2e
1
2 x + x + C; − 1

2e−2x; x + 1
4e−4x + C.

(m) sin 2x + C; −6 cos 1
2x− 12 sin 1

3x + C; 2x− 1
2 cos 2x + C.

14.2. (a) 1
4 (x + 1)4 + C; 1

12 (3x + 1)4 + C: 1
12 (3x− 8)4 + C.

(b) − 1
5 (1− x)5 + C; − 2

9 (8− 3x)
3
2 + C; − 3

4 (1− x)
4
3 + C.

(c) − 1
2 (2x + 1)−1 + C; −2(1− x)

1
2 + C; − 1

3 (3x + 1)−2 + C; − 1
3 (1− x)

3
4 + C.

(d) 2
3 sin(3x− 2) + C; 3 cos(1− x) + C; 2

3 cos(2− 3x) + C.

14.3. (a) ln |1 + x|+ C; ln |x− 1|+ C; ln |3x− 2|+ C; 2
5 ln |5x− 4|+ C.

(b) − ln |1− x|+ C; − 1
5 ln |4− 5x|+ C.

(c) x− ln |x + 1|+ C.
(d) Using

x + 1
x− 1

= 1 +
2

x− 1
,

the required antiderivative is x + ln |1− x|+ C.

14.4. (a) 1
2x + 1

4 sin 2x + C; 1
2x− 1

4 sin 2x + C; − 1
4 cos 2x + C.

(b) 3
2x + 3

8 sin 4x + C; 1
2x− 1

12 sin 6x + C; − 1
8 cos 4x + C.
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(c) Using

cos4 x =
1
4
(1 + cos 2x)2 =

3
8

+
1
2

cos 2x +
1
8

cos 4x,

the antiderivative of cos4 x is
3
8x + 1

4 sin 2x + 1
32 sin 4x + C.

14.5. (a) By the product rule:

d
dx

(xex) =
d(x)
dx

ex + x
d(ex)
dx

= ex + xex.

By rearranging the terms:

xex =
d
dx

(xex)− ex =
d
dx

(xex − ex).

Hence the antiderivatives of xex are
xex − ex + C.

(b) Since
d
dx

(x2ex) = 2xex + x2ex,

it follows that

x2ex =
d
dx

(x2ex)− 2xex =
d
dx

(x2ex)− 2
d
dx

(xex − ex) =
d
dx

(x2ex − 2xex + 2ex),

Therefore, the antiderivatives of x2ex are given by

ex(x2 − 2x + 2) + C.

14.6. In each case the signed area between the curve defined by y = f(x) and the x axis between
x = a and x = b is

A = F (b)− F (a),

where F (x) is any antiderivative of f(x).
(a) For y = x between x = 0 and x = 2, choose F (x) = 1

2x2. Then

A = F (2)− F (0) =
1
2
22 − 0 = 2.

(b) For y = x between x = −1 and x = 1, choose F (x) = 1
2x2. Then

A = F (1)− F (−1) =
1
2
− 1

2
= 0.

The graph of y = x is a straight line through the origin between x = −1 and x = 1: the areas
above and below the x axis cancel
(c) For y = −x2 between x = 0 and x = 1, choose F (x) = − 1

3x3. Then

A = F (1)− F (0) = − 1
3 .

(d) For y = cos x between x = −π and x = π, choose F (x) = sin x. Then

A = F (π)− F (−π) = sin π − sin(−π) = 0.

(e) For y = cos x− 1 between x = 0 and x = 2π, choose F (x) = sin x− x. Then

A = F (2π)− F (0) = sin 2π − 2π − 0 = −2π.
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Figure 1: Problem 14.6g: y = sin3x for 0 ≤ x ≤ 2
3π.

(f) For y = x−1 between x = −2 and x = −1, choose F (x) = ln(−x). Then

A = ln 1− ln 2 = − ln 2.

(g) For y = sin 3x between x = 0 and x = 2
3π, choose F (x) = − 1

3 cos 3x. Then

A = F ( 2
3π)− F (0) = − 1

3 cos 2π + 1
3 = − 1

3 + 1
3 = 0.

(h) For y = 1/(1− x) = −1/(x− 1) between x = 2 and x = 3, choose F (x) = − ln(x− 1). Then

A = F (3)− F (2) = − ln 2 + ln 1 = − ln 2.

14.7. (a) The function y = −3 is always negative, and an antiderivative is F (x) = −3x. Hence
the geometrical area A is given by

A = |A| = |F (1)− F (0)| = | − 3− 0| = 3.

(b) The function y = x3 is positive for x > 0 and negative for x < 0. An antiderivative is
F (x) = 1

4x4. Then the geometric area is given by

A = |F (0)− F (−1)|+ |F (1)− F (0)| = |0− 1
4
|+ [

1
4
− 0] =

1
2
.

(c) In the interval −1 ≤ x ≤ 3, y = 4− x2 is positive for −1 < x < 2 and negative for 2 < x < 3.
Choose the antiderivative F (x) = 4x− 1

3x3. Then the geometric area is

A = |F (2)− F (−1)|+ |F (3)− F (2)| = [8− 8
3 + 4− 1

3 ]− |12− 9− 8 + 8
3 |

= 9 + | − 7
3 |

= 34
3 .

(d) In the interval 0 ≤ x ≤ 2π, y = cos x is positive for 0 < x < 1
2π and 3

2π < x < 2π, and negative
for 1

2π < x < 3
2π. Choose the antiderivative F (x) = sin x. Then the geometric area is

A = |F ( 1
2π)− F (0)|+ |F ( 3

2π)− F (1
2π)|+ |F (2π)− F ( 3

2π)|
= | sin 1

2π − 0|+ | sin 3
2π − sin 1

2π|+ | sin 2π − sin 3
2π|

= 1 + | − 1− 1|+ 1 = 4.

14.8. (a) The antiderivative of 0 is any constant A, and the antiderivative of A is At + B where
B is any constant. Therefore the most general function which satisfies

d2x

dt2
= 0 is x = At + B.
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(b) The antiderivative of t is 1
2 t2 + A, and the antiderivative of 1

2 t2 + A is 1
6 t3 + At + B, where A

and B are constants. Therefore the most general solution of

d2x

dt2
= t is x = 1

6 t3 + At + B.

(c) The antiderivative of sin t is − cos t+A, and the antiderivative of this function is − sin t+At+B,
where A and B are constants. Therefore the most general solution of

d2x

dt2
= sin t is x = − sin t + At + B.

(d) The most general solution of

d3x

dt3
= 0 is x = At2Bt + C.

(e) The most general solution of

d3x

dt3
= cos t is x = − sin t + 1

2 t2 + Bt + C.

(f) The most general solution of

d2x

dt2
= g is x = 1

2gt2 + At + B.

(g) The most general solution of

d4y

dx4
= w0 is y = 1

24w0x
4 + Ax3 + Bx2 + Cx + D.

Chapter 15: The definite and indefinite integral

15.1. (a) For y = x3, −1 ≤ x ≤ 2, the signed area is given by

A = lim
n→∞

x=2∑
x=−1

x3δx =
∫ 2

−1

x3dx

=
[
1
4
x4

]2

−1

=
[
4− 1

4
(−1)4

]
=

15
3

.
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Figure 2: Problem 15.1a

(b) For f(x) = x5, −1 ≤ x ≤ 1,

A = lim
n→∞

x=1∑
x=−1

x5δx =
∫ 1

−1

x5dx =
[
1
6
x6

]1

−1

=
1
6

[
x6

]1
−1

=
1
6
[1− (−1)6] = 0.

4



(c) For y = sin x, −π ≤ x ≤ 0,

A = lim
n→∞

x=0∑
x=π

sinxδx =
∫ 0

−π

sinxdx

= [− cosx]0−π = −[cos x]0−π = −[1− (−1)] = −2.

(d)For y = e−2x, 0 ≤ x ≤ 1,

A = lim
n→∞

x=1∑
x=0

e−2xδx =
∫ 1

0

e−2xdx = [−1
2
e−2x]10

= −1
2
[e−2x]10 = −1

2
[e−2 − 1] = 0.432 . . . .

15.2. We require the general antiderivative for each integrand.

(a)
∫

x
1
2 dx = 2

3x
3
2 + C.

(b)
∫

(x + 1)
1
2 dx = 2

3 (x + 1)
3
2 + C.

(c)
∫

e
1
2 xdx = 2e

1
2 x + C.

(d)
∫

sin xdx = − cos x + C.

(e)
∫

(cos x− 2 sin 2x)dx = sin x + cos 2x + C.

(f)
∫

t−
1
2 dt = 2t

1
2 + C.

(g)
∫

cos 2udu = 1
2 sin 2u + C.

(h)
∫

3e−
1
2 ydy = −6e−

1
2 y + C.

(i)
∫

(1 + 3t2 − 2t)dt = t + t3 − t2 + C.

(j)
∫

(1 + 4 cos 4w)dw = w + sin 4w + C.
(k)

∫
(−x)

1
2 dx = 2

3x(−x)
1
2 + C or − 2

3 (−x)
3
2 .

15.3. All these integrals use formula (15.4):

∫ b

a

f(x)dx = [F (x)]ba = F (b)− F (a).

(a)
∫ 1

−1

x3dx =
[
1
4
x4

]1

−1

=
1
4
− 1

4
= 0.

(b)
∫ 1

−1

x2dx =
[
1
3
x3

]1

−1

=
1
3

+
1
3

=
2
3
.

(c)
∫ 2

0

dx = [x]20 = 2.

(d)
∫ 4

0

x
1
2 dx =

[
2
3
x

3
2

]4

0

=
16
3

.

(e)
∫ 1

−1

(1− 3x + 2x2)dx =
[
x− 3

2
x2 +

2
3
x3

]1

−1

=
10
3

.
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(f)
∫ 2

1

(x−3 + x−2)dx =
[
−x−1 − 1

2
x−2

]2

1

=
7
8
.

(g)
∫ 2

1

x−2dx =
[−x−1

]2
1

=
1
2
.

(h)
∫ −1

−2

x−1dx = [ln |x|]−1
−2 = − ln 2.

(i)
∫ −1

−2

(−x)
1
2 dx =

[
2
3
x
√

(−x)
]−1

−2

= −2
3

+
4
√

2
3

.

(j)
∫ 1

0

e−3xdx =
[
−1

3
e−3x

]1

0

=
1
3
(1− e−3).

(k)
∫ 1

4 π

0

sin 4xdx =
[
−1

4
cos 4x

] 1
4 π

0

=
1
2
.

(l)
∫ 2π

0

sin
1
2
xdx =

[
−2 cos

1
2
x

]2π

0

= 4.

(m)
∫ 2π

0

cos
1
2
xdx =

[
2 sin

1
2
x

]2π

0

= 0.

15.4. In each case the antiderivative F (x) of f(x) is required, and then the definite integral is
given by

∫ b

a

f(x)dx = [F (x)]ba = F (b)− F (a).

(a)
∫ 1

0

x(x2 + x + 1)dx =
[
1
4
x4 +

1
3
x3 +

1
2
x2

]1

0

=
13
12

.

(b)
∫ 1

−1

(x− 1)(x + 1)dx =
∫ 1

−1

(x2 − 1)dx =
[
1
3
x3 − x

]1

−1

= −4
3
.

(c)
∫ 2

0

x(x2 − 1)dx =
[
1
4
x4 − 1

2
x2

]2

0

= 2.

(d)
∫ 2

1

x + x2

x3
dx =

∫ 2

1

(x−2 + x−1)dx =
[
− 1

x
+ ln x

]2

1

=
1
2

+ ln 2.
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(e)
∫ 2

1

t(t + 1)
t

1
2

dt =
∫ 2

1

(t
3
2 + t

1
2 )dt =

[
2
5
t

5
2 +

2
3
t

3
2

]2

1

=
44
√

2− 16
15

.

(f)
∫ 4

1

√
u− 1
u

du =
∫ 4

1

(u−
1
2 − u−1)du =

[
2u

1
2 − ln u

]4

1
= 2− 2 ln 2.

(g)
∫ 0

−1

dw

2w + 3
=

[
1
2

ln(2w + 3)
]0

−1

=
1
2

ln 3.

(h)
∫ −1

−2

x

x− 1
dx =

∫ −1

−2

[
1 +

1
x− 1

]
dx = [x + ln |x− 1|]−1

−2 = 1 + ln 2− ln 3.

(i)
∫ π

0

cos2 3tdt =
∫ π

0

1
2
(1 + cos 6t)dt =

[
1
2
t +

1
12

sin 6t

]π

0

=
1
2
π.

15.5. These are all improper integrals of the various types discussed in Section 15.6.

(a)
∫ ∞

1

e−3tdt =
[
−1

3
e−3t

]∞

1

=
1
3
e−3.

(b)
∫ ∞

0

e−
1
2 vdv =

[
−2e−

1
2 v

]∞
0

= 2.

(c)
∫ ∞

1

dx

x3
=

[
−1

2
x−2

]∞

1

=
1
2
.

(d)
∫ ∞

0

dx

(2x + 3)2
=

[
− 1

2(2x + 3)

]∞

0

=
1
6

(e)
∫ 1

0

ds

s
1
4

=
[
4
3
s

3
4

]1

0

=
4
3
.

(f)
∫ 2

1

dt

(t− 1)
1
2

=
[
2(t− 1)

1
2

]2

1
= 2.

(g) Using the formula (15.11) or the method illustrated in Example 15.12,
∫ ∞

0

e−
1
2 t cos 2tdt =

3
13

.

(h) Using the formula (15.11) or the method illustrated in Example 15.12,
∫ ∞

0

e−
1
2 t cos 2tdt =

2
17

.
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15.6. The mean of f(t) over an interval 0 ≤ t ≤ T is the quantity

1
T

∫ T

0

f(t)dt.

(a) For f(t) = t over 0 ≤ t ≤ 1, its mean is

∫ 1

0

tdt =
[
1
2
t2

]1

0

=
1
2
.

(b) For f(t) = t over −1 ≤ t ≤ 1, its mean is

1
2

∫ 1

−1

tdt =
1
2

[
1
2
t2

]1

−1

= 0.

(c) For f(t) = sin t over 0 ≤ t ≤ π, its mean is

1
π

∫ π

0

sin tdt =
1
π

[− cos t]π0 =
2
π

.

(d) For f(t) = sin t over 0 ≤ t ≤ 2π, its mean is

1
2π

∫ 2π

0

sin tdt = 0.

(e) The mean of f(t) = t−2 over 1 ≤ t ≤ T is

1
T − 1

∫ T

1

t−2dt =
1

T − 1
[−t−1

]T

1
=

1
T

.

(f) The mean of f(t) = e−t cos t over 0 ≤ t ≤ 2π is

1
2π

∫ 2π

0

e−t cos tdt =
1
2π

1
2

[
e−t(cos t + sin t)

]2π

0
= −e−2π − 1

4π
.

(g) The mean of f(t) = e−2t sin t over 0 ≤ t < ∞ is defined by the limiting process:

lim
T→∞

[
1
T

∫ T

0

e−2t sin tdt

]
= lim

T→∞

[
1
T

1
5

{
1− e−2T [cos T + 2 sin T ]

}]
= 0.

(h) The mean of f(t) = 1− e−t over 0 ≤ t < ∞ is

lim
T→∞

[
1
T

∫ T

0

(1− e−t)dt

]
= lim

T→∞

[
1
T

(T − 1 + e−T )
]

= 1.

(The limiting process is necessary since
∫∞
0

(1− e−t)dt is infinite.)
(i) The mean of f(t) = t−1 over 1 ≤ t < ∞ is

lim
T→∞

[
1

T − 1

∫ T

1

t−1dt

]
= lim

T→∞
ln T

T − 1
= 0.

(See the remarks under (h).)

15.7. (a) Since sin4 t = sin4(−t) for all t, sin4 t is an even function (see (1.12)), so that by (15.17)
∫ π

−π

sin4 tdt = 2
∫ π

0

sin4 tdt,
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since the interval is symmetrical about the origin.
(b) Since

(−t)3

(1 + (−t)4)
= − t3

(1 + t4)
,

this function is odd, so that by (15.15), since the interval is also symmetrical about the origin,

∫ 1

−1

t3

1 + t4
dt = 0.

(c) Since (t cos t)/(1 + t2) is an odd function and the interval of integration is −π ≤ x ≤ π,
∫ π

−π

t cos t

1 + t2
dt = 0.

(d) Since (−t)2 sin[(−t)3] = t2 sin[−(t3)] = −t2 sin(t3), this function is odd. Since the interval of
integration is − 1

2π ≤ x ≤ 1
2π, ∫ 1

2 π

1
2 π

t2 sin(t3)dt = 0.

15.8. (a) Below is a simple program in Mathematica using the algorithm (15.2) for the numerical
integration of e−x/x over 1 ≤ x ≤ 2:

f[x ] = Exp[-x]/x;
a = 1; b = 2; n = 100; h = (b - a)/n;
h*Sum[f[a + r*h], {r, 0, n - 1}] // N

The program uses 100 steps and gives the answer 0.17199. If the number of steps is increased to
101, then the estimate becomes 0.17197 to five decimal places, which gives a difference error of
0.00002. However, the correct value is 0.17048 to five decimal places so the numerical estimate is
only correct to two decimal places. For an accuracy to four decimal places we require about 30000
steps using this algorithm.
(b) As in (a), a program is

f[x ] = Sin[xˆ2];
a = 0; b = Pi; n = 100; h = (b - a)/n;
h*Sum[f[a + r*h], r, 0, n - 1] // N

For 100 steps the estimate is 0.77894 and to 101 steps 0.77889 to five decimal places. The true
value to five decimal places is 0.77265.
(c) Use the method above with f(x) = cos(e−x). To five decimal places the value of the definite
integral is 0.79383.

15.9. (a) If x = 1, then e−x2
= e−x = e−1. Also for x > 1, −x2 < −x so that e−x2

< e−x.
If b > 1, then, given E < 1,

∫ ∞

b

e−x2
dx <

∫ ∞

b

e−xdx = e−b < E,

if b > − ln E.
(b) As in Problem 15.8a, use the program

f[x ] = Exp[-xˆ2];
error = 0.001; a = 0; b = -Log[error]; n = 1000; h = (b - a)/n;
h*Sum[f[a + r*h], {r, 0, n - 1}] // N
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Here the E(error) = 0.001, and b = − ln E. The program gives the estimate
∫ ∞

0

e−x2
dx ≈ 0.88968 (true value is 1

2

√
π (see Example 32.11)).

To five decimal places the the integral takes the value 0.88623.

15.10. The general formula for differentiation of an integral with respect to varable limits is given
by (15.20):

d
dx

∫ v(x)

u(x)

f(t)dt = f(v(x))
dv(x)
dx

− f(u(x))
du(x))

dx
.

(a)
d
dx

∫ x

0

t2dt = x2.

(b)
d
dx

∫ x

0

sin5 tdt = sin5 x.

(c)
d
dx

∫ x

0

et

1 + t
dt =

ex

1 + x
.

(d)
d
dx

∫ ex

0

t ln tdt = ex ln(ex)
dex

dx
= xe2x.

(e)
d
dx

∫ √
(x+1)

√
x

sin(t2)dt =
sin(x + 1)
2
√

(x + 1)
− sin x

2
√

x
.

15.11. (a) We are given

f(x) =





0 if x < −1
x if − 1 ≤ x ≤ 1
0 if x > 1

.

Case x > 1:

I(x) =
∫ x

0

f(t)dt =
∫ 1

0

tdt +
∫ x

1

0dt =
[
1
2
t2

]1

0

=
1
2
.

Case −1 ≤ x ≤ 1:

I(x) =
∫ x

0

f(t)dt =
∫ x

0

tdt =
[
1
2
t2

]x

0

=
1
2
x2.

Case x < −1:

I(x) =
∫ x

0

f(t)dt = −
∫ 0

x

f(t)dt = −
∫ −1

x

0dt−
∫ 0

−1

tdt =
1
2
.

(b) We are given

f(x) =





x if 0 ≤ x < 1
2− x if 1 ≤ x ≤ 1

2
0 if x > 3

2

.

Case x > 3
2 :

I(x) =
∫ x

0

f(t)dt =
∫ 1

0

tdt +
∫ 3

2

1

(2− t)dt +
∫

3
2

0dt =
1
2

+
3
8

+ 0 =
7
8
.
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Case 1 ≤ x ≤ 3
2 :

I(x) =
∫ x

0

f(t)dt =
∫ 1

0

tdt +
∫ x

1

(2− t)dt =
1
2

+ 2x− 1
2
x2 − 3

2
= −1 + 2x− 1

2
x2.

Case 0 ≤ x < 1:

I(x) =
∫ x

0

tdt =
1
2
x2.

15.12. For t < t0:

Q(t) =
∫ t

0

I0du = I0t.

For t > t0:

Q(t) =
∫ t0

0

I0du +
∫ t

t0

I0e−R(u−t0)/Ldu

= I0t0 + I0

[
−L

R
e−R(u−t0)/L

]t

t0

= I0

[
t0 +

L

R

(
1− e−R(t−t0)/L

)]

15.13. The function f(x) is defined by

f(x) =
{

x2, 0 ≤ x ≤ 1
2− x 1 < x ≤ 2 .

0.5 1 1.5 2
x

0.2
0.4
0.6
0.8
1
y

Figure 3: Problem 15.13

The area A is given by

A =
∫ 2

0

f(x)dx =
∫ 1

0

x2dx +
∫ 2

1

(2− x)dx

=
[
1
3
x3

]1

0

−
[
1
2
(2− x)2

]2

1

=
1
3

+
1
2

=
5
6

15.14.
∫ 2

0

dx

|x− 1| 23 =
∫ 1

0

dx

(1− x)
2
3

+
∫ 2

1

dx

(x− 1)
2
3

= [−3(1− x)]10 + [3(x− 1)]21
= 3 + 3 = 6

11



Chapter 16: Applications involving the integral as a sum

16.1. Given the resistance R(x) = 100x + 1000x2, the work done, δW , in compressing it through
a short distance δx is, approximately,

δW ≈ resistance× distance = Rδx = (100x + 1000x2)δx.

The total work done

W = lim
n→∞

0.01∑
x=0

R(x)δx =
∫ 0.01

0

(100x + 1000x2)dx

=
[
50x2 +

1000
3

x3

]0.01

0

= 0.00533 . . . .

16.2. With v(t) = 20− 10t, the displacement d which takes place between t = 2 and t = 4 is

d(t) = lim
n→∞

4∑
t=2

v(t)δt =
∫ 4

2

v(t)dt =
∫ 4

2

(20− 10t)dt =
[
20t− 5t2

]4
2

= −20.

We require the general indefinite integral of v = 20− 10t:

x(t) =
∫

vdt =
∫

(20− 10t)dt = 20t− 5t2 + C.

Since x(2) = 3,
3 = 40− 20 + C, or C = −17.

Therefore x(t) = 20t− 5t2 − 17, so that x(4) = −17.

16.3. From (16.1) the volume V of a solid of revolution about the x axis formed by the profile
y = f(x) between x = a and x = b is given by

V =
∫ b

a

πy2dx =
∫ b

a

[f(x)]2dx.

(a) Profile y = e−x, 0 ≤ x ≤ 1:

V = π

∫ 1

0

e−2xdx = π

[
−1

2
e−2x

]1

0

=
π(e2 − 1)

2e2
.

(b) Profile y = 1/x, 1 ≤ x ≤ 2:

V = π

∫ 2

1

dx

x2
=

1
2
π.

(c) Profile y = x(1− x), 0 ≤ x ≤ 1:

V = π

∫ 1

0

x2(1− x)2dx = π

∫ 1

0

(x2 − 2x3 + x4)dx =
π

30
.

(d) Profile y = sin x, 0 ≤ x ≤ π:

V = π

∫ π

0

sin2 xdx = π

∫ π

0

1
2
(1− cos 2x)dx =

1
2
π2.

(e) Profile y = x3, −1 ≤ x ≤ 1:

V = π

∫ 1

−1

x6dx =
2π

7
.
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(f) Profile y = x(1− x), 0 ≤ x ≤ 2:

V = π

∫ 2

0

x2(1− x)2dx = π

∫ 2

0

(x2 − 2x3 + x4)dx =
16π

15
.

(g) Profile y = 1/x, 1 ≤ x < ∞:

V = π

∫ ∞

1

dx

x2
= π.

(h) Profile y = x
1
4 , 0 ≤ x ≤ 1.

V = π

∫ 1

0

x
1
2 dx =

2π

3
.

16.4. A sphere of radius R can be viewed as a surface of revolution about the x axis with a profile
y =

√
(R2 − x2). The volume of the sphere is

V = π

∫ R

−R

y2dx = π

∫ R

R

(R2 − x2)dx

= π

[
R2x− 1

3
x3

]R

−R

= 2π

[
R3 − 1

3
R3

]
=

4
3
πR3.

16.5. (a) The required profile for the ellipsoid is

y =
b

a

√
(a2 − x2).

Hence the volume of the ellipsoid is

V = π

∫ a

−a

(
b

a

)2

(a2 − x2)dx = π

(
b

a

)2 [
a2x− 1

3
x3

]a

−a

=
4
3
πab2.

(b) The volume of the ellipsoid is

V = π

∫ a

−a

y2dx,

where
y =

b

a

√
(a2 − x2).

Change the scale of the y coordinate by writing y = (b/a)y′ so that y′ =
√

(a2 − x2) is the profile
of a semi-circle of radius a. Hence

V = π

(
b

a

)2 ∫ a

−a

y′2dx =
(

b

a

)2

Vs,

where Vs = 4
3πa3 is the volume of a sphere of radius a. Therefore

V =
(

b

a

)2 4
3
πa3 =

4
3
πab2.

A similar argument can be devised if the x coordinate is scaled.

16.6. In this problem the line y = 1
2x or x = 2y is rotated about the y axis between y = 1 and

y = 2 to create a truncated cone. Its volume is given by

V = π

∫ 2

1

x2dy = 4π

∫ 2

1

y2dy = 4π

[
1
3
y3

]2

1

=
28
3

π.
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16.7. Consider an element of the beam of incremental length δx, distance x from the wall at A.
Its mass is mδx, and its moment about A is mgxδx, where g is the acceleration due to gravity.
The total moment of the beam is the sum of these elements between x = 0 and x = L, which in
the limit becomes the integral

moment =
∫ L

0

mgxdx =
1
2
mgL2.

16.8. An increment of width δx has mass given

δm = (width)× (cross-sectional area)× (density)
= 500× [4× 10−4(1 + 0.4x2)]δx.

The moment M required to support the beam about A is the sum of the increments xgδm, which
in the limit is the integral

M =
∫ 1

0

500× 4× 10−4(1 + 0.4x2)xgdx = g

∫ 1

0

[0.2x + 0.08x3]dx.

= 0.12g = 1.18,

assuming SI units with g = 9.81ms−2.
The result will not be affected by different cross-sections or a bent axis provided that each

element δx remains at distance x from the wall.

16.9. Let δx be the width of an increment of the tube. Then the mass of solute in this increment
is

δm = c(x)× 0.1× δx.

The total mass of solute is, with c(x) = 0.04e−
1
4 x,

m =
∫ 10

0

dm =
∫ 10

0

0.1c(x)dx =
∫ 10

0

0.004e−
1
4 xdx

= 0.004
[
−4e−

1
4 x

]10

0

= 0.015gm,

to two significant figures.

16.10. Consider a horizontal slice of thickness δh of the water clock. The volume of this slice is
approximately, with radius r(h) = 0.39h

1
4 ,

δV = (cross-sectionsl area)× (thickness) = π[r(h)]2δh = π(0.39)2h
1
2 δh.

In the limit, as δh → 0,
dV

dh
= π(0.39)2h

1
2 .

Since we are given that
dV

dt
= −0.003h

1
2 ,

it follows that
dh

dt
=

dV

dt

/dV

dh
= −0.003/(π(0.39)2) = −0.00628

which is a constant. This means that the water level height h falls at a constant rate. The clock
‘stops’ when h = 0. Hence it runs for a time T where

T = −
∫ 0

0.5

dh

0.00628
= 79.6 hours.
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The clock will run for about 80 hours given the accuracy of the data.

16.11. The heat generated is

H =
∫ 2π/ω

0

Ri2dt =
∫ 2π/ω

0

Ri20 cos2 ωtdt

=
1
2
Ri20

∫ 2π/ω

0

(1 + cos 2ωt)dt

= Ri20π/ω.

If the cycle runs from t = t0 to t = t0 + 2π/ω, then the heat generated is

H0 =
∫ t0+2π/ω

t0

Ri2dt =
∫ t0+2π/ω

t0

Ri20 cos2 ωtdt

=
1
2
Ri20

∫ t0+2π/ω

t0

(1 + cos 2ωt)dt

= Ri20π/ω = H,

since the integral of cos 2ωt over any interval of length 2π/ω is zero.

16.12. The line y = −x and the parabola y = x(x− 1) are shown in the figure: the parabola cuts
the x axis at x = 0 and at x = 1 (note that the scales differ). Also x(x− 1) ≥ −x in the interval
0 ≤ x ≤ 2. Therefore the geometric area is

0.5 1 1.5 2
x

-2

-1

1

2

y

Figure 4: Problem 16.12

A =
∫ 2

0

|x(x− 1) + x|dx =
∫ 2

0

x2dx =
8
3
.

16.13. For x > 0, x3 > −x, whilst for x < 0, −x > x3. Hence, for x > 0 an element of area is

δA1 ≈ (x3 + x)δx.

Hence

A1 =
∫ 1

0

(x3 + x)dx =
[
1
4
x4 +

1
2
x2

]1

0

=
3
4
.

For x < 0, the area is

A2 =
∫ 0

−1

(−x− x3)dx =
[
−1

2
x2 − 1

4
x4

]0

−1

=
3
4
.

Hence the required geometric area is

A = A1 + A2 =
3
2
.
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16.14. The incremental formula for sectorial area is δA ≈ 1
2r2δθ, which gives the area

A =
1
2

∫ β

α

r2dθ,

for the curve r = f(θ) between the angles θ = α and θ = β.
(a) Curve r = θ, 0 ≤ θ ≤ 2π:

-2 2 4 6

-4

-3

-2

-1

1

Figure 5: Problem 16.14a

Sectorial area:

A =
1
2

∫ 2π

0

θ2dθ =
1
2

[
1
3
θ3

]2π

0

=
4
3
π3.

(b) Curve r = 2 cos θ, − 1
2π ≤ θ ≤ 1

2π:

0.5 1 1.5 2

-1

-0.5

0.5

1

Figure 6: Problem 16.14b

Sectorial area:

A =
1
2

∫ 1
2 π

− 1
2 π

4 cos2 θdθ =
∫ 1

2 π

− 1
2 π

(1 + cos 2θ)dθ = π.

(c) Curve r = eθ/2π, 0 ≤ θ ≤ π:

-1.5 -1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

1.2

Figure 7: Problem 16.14c

Sectorial area:
A =

1
2

∫ π

0

eθ/πdθ =
1
2
π(e− 1).

(d) Curve r = sin 2θ, 0 ≤ θ ≤ 1
2π:

Sectorial area:

A =
1
2

∫ 1
2 π

0

sin2 2θdθ =
1
4

∫ 1
2 π

0

(1− cos 4θ)dθ =
π

8
.
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0.2 0.4 0.6

0.2

0.4

0.6

Figure 8: Problem 16.14d

16.15. Consider a strip of width δy and length L on the end of the trough at depth y below the
top of the trough. The element of force on the strip is

δF ≈ (pressure) × (increment of area) = (ρgy)× (Lδy) = ρgyLδy.

The total force on the end of the trough is the limit as δy → 0 of the sum of these elements, which
is the integral

F =
∫ H

0

ρgyLdy =
1
2
ρgLH2.

The moment of the strip about the bottom of the end of the trough is

δM = (δF )× (H − y) = ρgyL(H − y)δy.

Hence the total moment is

M =
∫ H

0

ρgL(yH − y2)dy =
1
6
ρgLH3.

16.16. Let the cone be generated by rotating the profile y = (R/H)x about the x axis between
x = 0 and x = H. Take a section of the cone of thickness δx at distance x from the origin. The
mass δm of this disc is

δm = ρπy2δx = ρπ

(
R

H

)2

x2δx,

where ρ is the density of the cone. The mass of the cone is the limit of the sum of these elements:

m = ρπ

(
R

H

) ∫ H

0

x2dx =
1
3
ρπR2H. (i)

Let the centre of mass be at distance x from the origin: by symmetry the centre of mass will be
on the x axis. Then

mx = ρπ

(
R

H

) ∫ H

0

xx2dx =
1
4
ρπR2H2 =

3
4
Hm,

by (i). Hence x = 3
4H.

16.17. The figure shows the strip of width δx: the origin is at the centre of the rectangle with the
axes parallel to the sides as shown. The axis of rotation is the y axis. The mass of the rectangle
is m = ρab, where ρ is its density (mass per unit area). The mass of the strip is ρbδx, and the
moment of inertia of the strip about the y axis is ρbx2δx.

Therefore the moment of inertia of the whole rectangle about the y axis is

I =
∫ 1

2 a

1
2 a

ρbx2dx = ρb

[
1
3
bx3

] 1
2 a

− 1
2 a

=
1
12

ρba3 =
1
12

ma2.

16.18. The figure shows the triangle with suitable elements of area in both cases

17



x

y

2a

2b

∆x

Figure 9: Problem 16.17

x

y

∆x

x

y

∆y

Figure 10: Problem 16.18

If ρ is the density (mass per unit area) then the mass of the triangle is m = 1
2ρBH.

(a) From the first figure, the moment of inertia δI of the strip of width δx about the y axis is

δI ≈ x22ρyδx = ρ
B

H
x3δx.

where y = Bx/(2H). Hence the moment of inertia is

I = ρ
B

H

∫ H

0

x3dx =
1
4
ρBH3 =

1
2
mH2.

(b) From the second figure, the moment of inertia δI of the strip of width δy about the x axis is

δI ≈ y2ρ(H − x)δy = ρy2

[
H − H

B
y

]
δy.

Therefore the moment of inertia is

I = 2ρ

(
H

B

) ∫ 1
2 B

0

y2(B − 2Hy)dy

=
2ρH

B

[
1
3
By3 − 1

2
y4

] 1
2 B

0

=
1
48

HB3 =
1
24

mB2.

16.19. The trapezium rule for numerical integration of f(x) over a ≤ x ≤ b is (see (16.14))

∫ b

a

f(x)dx ≈ b− a

N
{1
2
f(x0) + (f(x1) + f(x2) + · · ·+ f(xN−1)}+

1
2
f(xN ),

where x0 = a and xN = b.
(a) In this problem f(x) = e

1
2 x, a = 0 and b = 1. The exact value of the integral is

I =
∫ 1

0

e
1
2 xdx = 2

√
e− 2 = 1.2974 . . . .
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Using the trapezium rule, the approximations to the integral for increasing values of N are

N 2 3
approximation, AN 1.304 1.300
error, 100|I −AN |/I 0.52% 0.23%

With N = 2, the error is 100|I −AN | = 0.52%, which is within the 1% accuracy required.
(b) In this example f(x) = sin x, a = 0 and b = π. The exact value of the integral is

I =
∫ π

0

sin xdx = 2.

Using the trapezium rule, the approximations to the integral for increasing values of N are

N 2 3 4 10
approximation, AN 1.571 1.814 1.896 1.984
error, 100|I −AN |/i 21.5% 9.3% 5.2% 0.8%

N = 10 steps are required to reduce the error below 1%.
(c) In this case f(x) = cos x, a = − 1

2π and b = 1
2π. The exact value of the integral is

I =
∫ 1

2 π

− 1
2 π

cos xdx = 2.

Since the cosine function is the sine function translated 1
2π to the left, and the interval is − 1

2π ≤
x ≤ 1

2π, the data and errors in the table in (b) will be exactly the same for f(x) = cos x.

16.20. The trapezium rule is given in Problem 16.19.
(a) With f(x) = sin

1
2 x, a = 0 and b = 1

2π, approximations for increasing N are given in the Table:

N 5 10 20 50
approximation, AN 1.162 1.852 1.197 1.197

To two decimal places the answer is 1.20. Numerical integration using Mathematica gives the
answer 1.19814.
(b) With f(x) = e−x2

, a = 0 and b = 1, approximations for increasing N are:

N 3 6 10 20
approximation, AN 0.740 0.745 0.746 0.747

To two decimal places the answer is 0.75.
(c) With f(x) = ex/(1 + x3), a = 1 and b = 2, a sample of approximations for increasing N are:

N 5 10 20 50
approximation, AN 1.0482 1.0485 1.0482 1.0482

To 3 decimal places the answer is 1.048.
(d) With f(x) = sin x/x, a = 1 and b = 2, approximations for increasing N are:

N 3 5 10 50
approximation, AN 0.6593 0.6589 0.6592 0.6593

To 3 decimal places the answer is 0.659.

16.21. The formula for Simpson’s rule is given in the question. Since N must be even, put N = 2K
and let the step-length be h = (b− a)/N = (b− a)/(2K). If y = f(x) over the interval a ≤ x ≤ b
is the function to be integrated, then Simpson’s rule can be written as

I =
∫ b

a

f(x)dx ≈ h

3
[f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + · · ·

+4f(a + (2K − 1)h) + f(b)].
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It is easy to compose a short program in Mathematica or another programming language to simulate
Simpson’s rule.

For f(x) = ex2
, a = 0 and b = 1, N = 4 and K = 2, Simpson’s rule gives I ≈ 0.746855,

whilst for N = 6 and K = 3, I ≈ 0.746830. These answers can be compared with the results in
Problem 16.20b where the trapezium rule was used for the same integral.

16.22. From the figure an element of arc-length δs can be approximated by the chord, which by
Pythagoras’s theorem is

∆s

∆x

∆y

Figure 11: Problem 16.22

δs =
√

[(δx)2 + (δy)2]
1
2 =

√
1 +

(
δy

δx

)2

δx.

In the limit δx → 0, arc-length s between x = a to x = b is given by the integral

s =
∫ b

a

[
1 +

(
dy

dx

)2
] 1

2

dx.

Simpson’s rule given in Problem 16.21 has been used to compute the lengths of the curves. (Note
that the number of coordinates called upon equals 2K.)
(a) For y = sin x, 0 ≤ x ≤ 1, the length of the curve is

s =
∫ 1

0

√
(1 + cos2 x)dx.

A sample of numerical approximations is given in the table:

K 2 4 6 8
approximation, sK 1.31148 1.31145 1.31144 1.31144

This gives the length to 4 decimal places.
(b) For y = x2, 0 ≤ x ≤ 2, the length of the curve is

s =
∫ 2

0

√
(1 + 4x2)dx.

A sample of approximations is given in the table:

K 2 4 6 10
approximation, sK 4.65020 4.64683 4.64678 4.64678

This gives the length as 4.6468 to 4 decimal places.
(c) For y = ex, −1 ≤ x ≤ 1, the length of the curve is

s =
∫ 1

−1

√
(1 + e2x)dx.

A list of approximations sK for increasing K is given in the table:
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K 2 4 6 10
approximation, sK 3.19695 3.19625 3.19621 3.19620

The length is 3.1962 to 4 decimal places.
(d) For the semicircle y = (1− x2)

1
2 , −1 ≤ x ≤ 1, the length of the curve is

s =
∫ 1

−1

[
1 +

x2

1− x2

] 1
2

dx =
∫ 1

−1

dx√
(1− x2)

,

which is π.

16.23. Since x = r cos θ and y = r sin θ,

δx ≈ δ(r cos θ) = δr cos θ − r sin θδθ, δy = δ(r sin θ) = δr sin θ + r cos θδθ.

Hence

δs ≈ [(δx)2 + δy)2]
1
2

= [(δr cos θ − r sin θδθ)2 + (δr sin θ + r cos θδθ)2]
1
2

= [r2(δθ)2 + (δr)2]
1
2 =

[
r2 +

(
δr

δθ

)2
] 1

2

δθ.

In the limit as δθ → 0, the length of the curve defined by r = f(θ) is the integral

s =
∫ β

α

{[f(θ)]2 + [f ′(θ)]2} 1
2 dθ.

The limits for the cardioid r = a(1 + cos θ) are α = −π and β = π. Hence the length of the
curve is

s =
∫ π

−π

[a2(1 + cos θ)2 + a2 sin2 θ]
1
2 dθ = 2

∫ π

−π

a cos 1
2θdθ

= 4a[sin 1
2θ]π−π = 8a.

Chapter 17: Systematic techniques for integration

17.1. (See Section 17.1.) Put ax + b = u; then dx = du/a.

(a) Put 3x = u so dx = 1
3u:

∫
sin 3xdx =

∫
1
3 sin udu = − 1

3 cos u = − 1
3 cos 3x + C;

(b) Put 4x = u so dx = 1
4u:

∫
cos 4xdx =

1
4

sin 4x + C;

(c) Put −3x = u so dx = − 1
3u:

∫
e−3xdx = − 1

3e−3x + C;

(d) Put 1 + x = u:
∫

(1 + x)10dx = 1
11 (1 + x)11 + C;

(e) Put 1− x = u:
∫

(1− x)9dx = − 1
10 (1− x)10 + C;
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(f) Put 3− 2x = u:
∫

(3− 2x)5dx = − 1
12 (3− 2x)6 + C;

(g) Put 1 + 2x = u:
∫

(1 + 2x)ndx =
1

2(n + 1)
(1 + 2x)n+1 + C;

(h) Put x− 1 = u:
∫

x(x− 1)4dx =
∫

(x5 − 4x4 + 3x3 − 4x2 + x)dx

= 1
30x2(5x4 − 24x3 + 45x2 − 40x + 15) + C;

(i) Put 1− x = u so dx = −du:
∫

(1− x)
1
2 dx = −

∫
u

1
2 du =

2
3
u

3
2 + C = −2

3
(1− x)

3
2 + C;

(j) Put 2x− 3 = u so dx = 1
2du:

∫
(2x− 3)−

1
2 dx = (2x− 3)

1
2 + C;

(k) Put 3x + 2 = u:
∫

dx

(3x + 2)2
= − 1

3(3x + 2)
+ C;

(l) Put 1− x = u:
∫

dx

(1− x)4
= − 1

3(1− x)3
+ C;

(m) Put 1 + x = u:
∫

dx

1 + x
=

∫
du

u
= ln |u|+ C = ln |1 + x|+ C;

(n) Put 3x + 2 = u:
∫

(2x + 3)−
1
2 dx = 1

2 ln(2x + 3) + C;

(o) Put 1− x = u:
∫

x

(1− x)2
dx = ln |1− x|+ 1

1− x
+ C;

(p) Put 1− x = u:
∫

1 + x

1− x
dx =

∫
u− 2

u
du = −x− 2 ln |1− x|+ C;

(q) Put x− 1 = u. Then
∫

dx

(x− 1)
1
2

=
∫

[u
1
2 + u−

1
2 ]du =

2
3
u

3
2 + 2u

1
2 + C

=
2
3
(x− 1)

3
2 + 2(x− 1)

1
2 + C

(r) Put 1− 2x = u:
∫

cos(1− 2x)dx = − 1
2 sin(1− 2x) + C;

(s) Put 2x− 3 = u:
∫

sin(2x− 3)dx = − cos(2x− 3) + C.
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17.2. (a) Let u = 2t− 5. Then du/dt = 2 and
∫

(2t− 5)5dt =
∫

u5 1
2
du =

1
12

u6 + C =
1
12

(2t− 5)6 + C;

(b) Let u = 1
2 (3t− 1). Then du/dt = 3

2 and
∫

sin
1
2
(3t− 1)dt =

∫
sin u

2
3
du = −2

3
cos u + C = −2

3
cos

1
2
(3t− 1) + C;

(c)
∫

1
(2w + 1)2

dw = − 1
2(2w + 1)

+ C;

(d)
∫

e−3rdr = −1
3
e−3r + C;

(e) Let u = −t. Then du/dt = −1 and
∫

(−t)
1
2 dt = −

∫
u

1
2 du = −2

3
u

3
2 + C = −2

3
(−t)

3
2 + C;

(f) Let u = 1− s. Then du/ds = −1, and
∫

s

(1− s)3
ds =

∫
[−u−3 + u−2]du =

1
2u2

− 1
u

+ C =
1

2(1− s)2
− 1

1− s
+ C;

(g) Use the substitution u = ωt− φ. Then
∫

cos(ωt− φ)dt =
1
ω

sin(ωt− φ) + C;

17.3. (See Section 17.2.) (a) Let u = x2 so that du/dx = 2x, and xdx = 1
2du. Then

∫
xe−x2

dx =
∫

1
2
e−udu = −1

2
e−u + C =

1
2
e−x2

+ C;

(b) As in (a), let u = x2. Then,
∫

x sin(x2)dx = −1
2

cos(x2) + C;

(c) Let u = x2. Then, ∫
x cos(x2)dx =

1
2

sin(x2) + C;

(d) Let u = x2 + 3. Then u = x2 + 3 so that du/dx = 2x, and
∫

x cos(x2 + 3)dx =
∫

1
2

cosudu =
1
2

sin u + C =
1
2

sin(x2 + 3) + C;

(e) Let u = 1− 3x2 so that du/dx = −6x. Then
∫

x cos(1− 3x2)dx = −1
6

∫
cosudu = −1

6
sin u + C = −1

6
sin(1− 3x2) + C;

(f) Use the substitution u = x2 − 1 so that xdx = 1
2du. Then

∫
x(x2 − 1)4dx =

1
2

∫
u4du =

1
10

u5 + C =
1
10

(x2 − 1)5 + C;
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(g) Use the substitution u = 3x2 + 4. Then
∫

x(3x2 + 4)3dx =
1
6

∫
u3du =

1
24

u4 + C =
1
24

(3x2 + 4)4 + C;

(h) Use the substitution u = 1 + 2x2, so that du/dx = 4x. Hence
∫

x

1 + 2x2
dx =

1
4

∫
1
u

du =
1
4

ln u + C =
1
4

ln |1 + 2x2) + C;

(i) Let u = 1− x2. Then du/dx = −2x, and
∫

x3(1− x2)3dx = −1
2

∫
(1− u)u3du = −1

2

∫
(u3 − u4)du

= −1
8
u4 +

1
10

u5 + C

= −1
8
(1− x2)4 +

1
10

(1− x2)5 + C;

(j) Use the substitution u = 1 + x2. Then
∫

x

1 + x2
dx =

1
2

∫
du

u
=

1
2

ln |u|+ C =
1
2

ln(1 + x2) + C;

(k) Use the substitution u = 3x2 − 2. Then
∫

x

3x2 − 2
dx =

1
6

∫
du

u
du =

1
6

ln |3x2 − 2|+ C.

17.4. (a) Let u = sin x so that du/dx = cos x. Then cos xdx = du, and
∫

sin x cosxdx =
∫

udu =
1
2
u2 + C =

1
2

sin2 x + C;

If the substitution v = cos x is used instead, then the answer becomes

−1
2

cos2 x + C1.

Since sin2 x = 1− cos2 x, the two forms of the solution represent the same family of solutions.
(b) Choose the substitution u = sin x (not cosx). Then cos xdx = du and

∫
sin2 x cosxdx =

∫
u2du =

1
3
u3 + C =

1
3

sin3 x + C;

(c) Let u = sin 2x so that du/dx = 2 cos 2x and cos 2xdx = 1
2du

∫
sin2 2x cos 2xdx =

1
2

∫
u2du =

1
6
u3 + C =

1
6

sin3 2x + C;

(d) Let u = cos x so that du/dx = − sin x. Using this substitution
∫

cos2 x sin xdx = −
∫

u2du = −1
3
u3 + C = −1

3
cos3 x + C;

(e) Let u = cos 3x so that du/dx = −3 sin 3x. Therefore, using this substitution
∫

cos2 3x sin 3xdx = −1
3

∫
u2du = −1

9
u3 + C = −1

9
cos3 3x + C;
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(f) Let u = sin x. Using this substitution
∫

sin3 x cos xdx =
1
4

sin4 x + C;

(g) Let u = sin 2x so that du/dx = 2 cos 2x. Using this substitution
∫

cot 2xdx =
∫

cos 2x

sin 2x
dx =

1
2

∫
du

u
=

1
2

ln |u|+ C =
1
2

ln | sin 2x|+ C;

(h)
∫

tan
1
2
xdx = −2 ln | cos( 1

2x)|+ C;

(i) Use the substitution u = cos x. Hence du/dx = − sin x. Therefore
∫

sin3 x

cos x
dx = −

∫
1− u2

u
du = −

∫ [
1
u
− u

]
du = − ln |u|+ 1

2
u2 + C

= − ln | cos x|+ 1
2

cos2 x + C;

(j) Let u = cos x. Then du/dx = − sin x, and
∫

sin3 xdx = −
∫

(1− u2)du = −u +
1
3
u3 + C = − cos x +

1
3

cos3 x + C

(k) Let u = cos x. Then du/dx = − sin x and
∫

tan3 xdx = −
∫

1− u2

u3
du = −

∫ [
1
u3
− 1

u

]
du =

1
2u2

+ ln |u|+ C

=
1
2

sec2 x + ln | cosx|+ C;

(l) Let u = sin x. Then du/dx = cos x, and
∫

cos3 xdx =
∫

(1− u2)du = u− 1
3u3 + C = sin x− 1

3 sin3 x + C.

17.5. Remember that the limits change with the substitution.
(a) Use the substitution u = 1 + x.

∫ −1

1

(1 + x)7dx =
∫ 2

0

u7du =
1
8
[u8]20 = 32;

(b) Let u = 1− 1
2x. Then du/dx = − 1

2 so that

∫ 1

−1

(1− 1
2
x)7dx = −2

∫ 1
2

3
2

u7du = 2
∫ 3

2

1
2

u7du =
2
8
[u8]

3
2
1
2

=
205
32

;

(c) Let u = x2 − 1. Then du/dx = 2x and the integral becomes

∫ 1

0

x(1− x2)3dx = −1
2

∫ 0

−1

u3du =
1
8
;

(d) Let u = 2x + 3. Then du/dx = 2 and the integral is

∫ 1

0

xdx

2x + 3
dx =

1
4

∫ 5

3

[
1− 3

u

]
du =

1
2
− 3

4
ln[5/3];
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(e) Use the substitution u = 1 + x. Then
∫ −2

−3

dx

1 + x
= [ln |1 + x|]−2

−3 = − ln 2;

(f) Use the substitution u = 3x− 2. Then
∫ 4

3

dx

2− 3x
=

1
3
[ln 7− ln 10];

(g) Let u = x2 − 1. Then du/dx = 2x, so that the integral becomes
∫ 1

0

x3(1− x2)3dx = −1
2

∫ 0

−1

(u + 1)u3du =
1
40

;

(h) Use the substitution u = cos t. Then du/dt = − sin t, and

∫ 1
4 π

0

tan tdt = −
∫ 1/

√
2

1

du

u
=

∫ 1

1/
√

2

du

u
= [ln u]11/

√
2 =

1
2

ln 2;

(i) Let u = sin 3w. Then du/dw = 3 cos 3w, and
∫ π/6

π/12

cot 3wdw =
1
3

∫ 1

1/
√

2

du

u
=

[
1
3

ln u

]1

1/
√

2

=
1
6

ln 2;

(j) Let v = sin u. Then ∫ 1
2 π

0

sin u cosudu =
∫ 1

0

vdv =
1
2
;

(k) Let v = u + 1
2π. The integral becomes

∫ π

0

(sin v)
1
2 cos vdv = −

∫ 1
2 π

− 1
2 π

(cos u)
1
2 sin udu = 0

since the integrand is an odd function of u, and the interval is equally disposed about u = 0.
(Alternatively, substitute sin v = u.)
(l) Use the substitution u = sin θ. Then du/dθ = cos θ, and

∫ 1
2 π

− 1
2 π

cos3 θdθ =
∫ 1

−1

(1− u2)du =
4
3
;

(m) Let u = 2t. Then ∫ 1
2 π

0

sin 2tdt =
1
2

∫ π

0

sin udu = 1;

(n) Use the substitution u = ωt + φ. Then
∫ π/(2ω)

−π/(2ω)

cos(ωt + φ)dt =
2
ω

cosφ.

17.6. (a) Put sin2 t = 1
2 (1− cos t):

∫ π

0

sin2 tdt =
1
2

∫ π

0

(1− cos 2t)dt =
1
2
[t− 1

2
sin 2t]π0 =

1
2
π;

(b)
∫ π

0

cos2 tdt =
1
2

∫ π

0

(1 + cos 2t)dt =
1
2
π;
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(c)
∫ 1

2 π

0

sin2 2tdt =
1
2

∫ 1
2 π

0

(1− cos 4t)dt =
1
4
π;

(d)
∫ 1

2 π

0

cos2
1
2
tdt =

1
2

∫ 1
2 π

0

(1 + cos t)dt =
1
4
π +

1
2
;

(e) Since sin 3t cos 3t = 1
2 sin 6t,

∫ π

−π

sin2 3t cos 3tdt =
1
2

∫ π

−π

sin 6t sin 3tdt =
1
4

∫ π

−π

[cos 3t− cos 9t] = 0;

a product formula from Appendix B(d) has also been used;
(f) Use the identity

cos4 u =
1
4
(1 + cos 2u)2 =

1
4
(1 + 2 cos 2u + cos2 2u) =

1
8
(3 + 4 cos 2u + cos 4u).

Hence ∫ π

0

cos4 udu =
1
8

∫ π

0

(3 + 4 cos 2u + cos 4u)du =
3
8
π.

17.7. (a) For the substitution x = eu, dx/du = eu = x. Therefore
∫

ln x

x
dx =

∫
udu =

1
2
u2 + C =

1
2
(lnx)2 + C.

(b) (i) For u = (1− x2), du/dx = −2x. Then
∫

x(1− x2)
1
2 dx = −1

2

∫
u

1
2 du = −1

3
u

3
2 + C = −1

3
(1− x2)

3
2 + C.

(ii) For the alternative substitution x = sin u, dx/du = cos u. Therefore
∫

x(1− x2)
1
2 dx =

∫
cos2 u sin udu = −1

3
cos3 u + C = −1

3
(1− x2)

3
2 + C,

using the result from Problem 17.4(d).
(c) Using the substitution u = ex, du/dx = ex = u. Therefore

∫
1

ex + e−x
dx =

∫
du

1 + u2
= arctan(u) + C = arctan(ex) + C.

(d) (i) For x = sin u, dx/du = cos u. Then
∫

dx

(1− x2)
1
2

=
∫

cosudu

(1− sin2 u)
1
2

=
∫

du = u + C = arcsin x + C.

(ii) For the alternative substitution x = cos u, dx/du = − sin u. Therefore
∫

dx

(1− x2)
1
2

= −
∫

du = −u + C = − arccosx + C.

The results are the same since arcsin x = 1
2π − arccosx.

(e) Using the substitution u = tan x, du/dx = sec2 x = 1 + tan2 x = 1 + u2. Then
∫

tan2 xdx =
∫

u2du

1 + u2
=

∫ [
1− 1

1 + u2

]
du

= u− arctan u + C = tan x− x + C
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(f) Using the substitution x = 1/u, dx/du = −1/u2 = −x2. Then
∫

dx

x2(1 + x2)
= −

∫
u2du

1 + u2
= u− arctanu + C =

1
x
− arctan(1/x) + C.

(g) This integral is a standard form (see Appendix E). Let x = tan u so that dx/du = sec2 u =
1 + tan2 u = 1 + x2. Therefore

∫
dx

1 + x2
=

∫
du = u + C = arctan x + C.

(h) Using the substitution u = tanx, du = sec2 xdx = [1/ cos2 x]dx. Therefore
∫

dx

cos2 x
=

∫
du = u + C = tan x + C.

(i) Let t = u2 so that dt = 2udu. Then
∫

dt

t
1
2 (1 + t)

= 2
∫

du

1 + u2
= 2 arctan u + C = 2 arctan(t

1
2 ) + C.

(j) Using the substitution t = 1/u, it follows that dt = −t2du. Therefore
∫

1
t2

sin
(

1
t

)
dt = −

∫
sin udu = cos u + C = cos

(
1
t

)
+ C.

(k) Let x = sin u. Then dx = cos udu, and
∫

(1− x2)
1
2 dx =

∫
cos2 udu =

1
2

∫
(1 + cos 2u)du

=
1
2
u +

1
4

sin 2u + C =
1
2
u +

1
2

sin u cos u + C

=
1
2

arcsinx +
1
2
x(1− x2)

1
2 + C

(l) This is a standard integral in Appendix E. Let x = tanu, so that dx = sec2 udu. Then
∫

dx

(1 + x2)
1
2

=
∫

sec2 u

sec u
du =

∫
du

cosu

=
∫

cosu

cos2 u
du =

∫
dv

1− v2
(v = sin u)

=
1
2

∫ [
1

1 + v
+

1
1− v

]
dv =

1
2
[ln(1 + v)− ln(1− v)] + C

=
1
2

ln
[
1 + sin u

1− sin u

]
+ C =

1
2

ln

[
(1 + x2)

1
2 + x

(1 + x2)
1
2 − x

]
+ C

= ln[x + (1 + x2)
1
2 ] + C.

An alternative substitution is x = sinh u which leads to the alternative answer sinh−1 x + C with
less working.

17.8. (See partial fractions, Section 1.14.)
(a) Using partial fractions, let

1
x2 − 4

=
A

x− 2
+

B

x + 2
or 1 = A(x + 2) + B(x− 2).
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Put x = 2; then 1 = 4A. Put x = −2; then 1 = −4B. Hence A = 1
4 and B = − 1

4 . The integral
becomes

∫
dx

x2 − 4
=

1
4

∫ [
1

x− 2
− 1

x + 2

]
dx

=
1
4
[ln(x− 2)− ln(x + 2) + C] =

1
4

ln
[
x− 2
x + 2

]
+ C.

(b) Using partial fractions
1

x(x + 2)
=

1
2x

− 1
2(x + 2)

.

Hence ∫
dx

x(x + 2)
=

∫ [
1
2x

− 1
2(x + 2)

]
dx =

1
2
[ln x− ln |x + 2|] + C.

(c) Using partial fractions
1

x2(x− 1)
=

1
x− 1

− 1
x
− 1

x2
.

Hence
∫

dx

x2(x− 1)
=

∫ [
1

x− 1
− 1

x
− 1

x2

]
dx

= ln |x− 1| − ln |x|+ 1
x

+ C

(d) Using partial fractions
x

(2x + 1)(x + 1)
=

1
x + 1

− 1
2x + 1

.

Hence
∫

x

(2x + 1)(x + 1)
dx =

∫ [
1

x + 1
− 1

2x + 1

]
dx

= ln |x + 1| − 1
2

ln |2x + 1|+ C

(e) Using partial fractions
x + 1

4x2 − 9
=

5
12(2x− 3)

+
1

12(2x + 3)
.

Hence, its integral is
∫

x + 1
4x2 − 9

dx =
∫ [

5
12(2x− 3)

+
1

12(2x + 3)

]
dx

=
5
24

ln |2x− 3|+ 1
24

ln |2x + 3|+ C

(f) In terms of partial fractions

1
x(x2 + 1

=
A

x
+

Bx + C

x2 + 1
or 1 = A(x2 + 1) + (Bx + C)x.

Put x = 0 in this identity; then A = 1. Now put x = 1 and x = −1 leading to

1 = 2 + B + C, 1 = 2 + B − C.

Therefore B = −1 and C = 0. The integral of the function becomes
∫

dx

x(x2 + 1)
=

∫ [
1
x
− x

x2 + 1

]
dx = ln |x| − 1

2
ln[x2 + 1] + C
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(g) Factorizing; 2x2 + 3x + 1 = (2x + 1)(x + 1). Hence the integral can be written
∫

xdx

2x2 + 3x + 1
=

∫
xdx

(2x + 1)(x + 1)
= ln |x + 1| − 1

2
ln |2x + 1|+ C,

as in Problem 17.8d.
(h) Using partial fractions

∫
dx

x2(2x + 1)
=

1
x2
− 2

x
+

4
2x + 1

+ C.

(i) Let u = sin x. Then du/dx = cos x. Hence, changing the variable
∫

dx

cosx
=

∫
du

1− u2
=

1
2

∫ [
1

1 + u
+

1
1− u

]
du

=
1
2
[ln(1 + u)− ln(1− u)] + C

=
1
2

ln
[
1 + sin x

1− sin x

]
+ C

(j) Let u = cos x. Then
∫

dx

sin x
= −

∫
du

1− u2
= −1

2
[ln(1 + u)− ln(1− u)] + C = −1

2
ln

[
1− cos x

1 + cos x

]
+ C,

as in the previous problem.

17.9. (Use the method of Example 17.16.)
(a) Let u = x3 − 1, so that du/dx = 3x2. Then

x2(x3 − 1)5 =
1
3
u5du/dx = g(u)du/dx,

where g(u) = 1
3u5. Then

I =
∫

x2(x3 − 1)dx =
1
3

∫
u5du =

1
18

u6 + C =
1
18

(x3 − 1)6 + C.

(b) Let u = x2 − 2x + 3, so that du/dx = 2x2 − 2. Then

(x− 1)(x2 − 2x + 3)−1 =
(

1
2

du

dx

)
u−1 = g(u)

du

dx
,

where g(u) = 1
2u−1. Then

I =
∫

x− 1
x2 − 2x + 3

dx =
1
2

∫
du

u
=

1
2

ln |u|+ C =
1
2

ln(x2 − 2x + 3) + C.

(c) Let u = ln x, so that du/dx = 1/x. Then

1
x(lnx)2

=
du

dx

1
u2

,

and ∫
dx

x(lnx)2
=

∫
du

u2
= − 1

u
+ C = − 1

ln x
+ C.

(d) Let u = 3x
3
2 + 2, so that du/dx = 9

2x
1
2 , and g(u) = 2

9u
1
2 . Then

∫
x

1
2 (3x

3
2 + 2

1
2 )dx =

∫
2
9
u

1
2 du =

4
27

u
3
2 + C =

4
27

(3x
3
2 + 2)

3
2 + C.
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(e) Let u = ex + e−x, so that du/dx = ex − e−x, and g(u) = 1/u. Then
∫

ex − e−x

ex + e−x
dx =

∫
du

u
= ln u + C = ln(ex + e−x) + C.

(f) Let u = x
1
2 + 1, and g(u) = 2/u. Then

∫
dx

x
1
2 (x

1
2 + 1)

= 2
∫

du

u
= 2 ln u + C = 2 ln(x

1
2 + 1) + C.

(g) Let u = x3 + 1. Then
∫

x2dx

x3 + 1
=

1
3

∫
du

u
=

1
3

ln |u|+ C =
1
3

ln |x3 + 1|+ C.

17.10. The integration by parts formula is
∫

u
dv

dx
dx = uv −

∫
v
du

dx
dx + C.

(a) Let u = x and dv/dx = e−x. Then

du

dx
= 1, v =

∫
e−xdx = −e−x.

Hence ∫
xe−xdx = −xe−x −

∫
(−e−x)1dx + C = −xe−x − e−x + C.

(b) Let u = x and dv/dx = e3x. Then

du

dx
= 1, v =

∫
e3xdx =

1
3
e3x.

Hence ∫
xe3xdx =

1
3
xe3x − 1

3

∫
e3xdx + C =

1
3
xe3x − 1

9
e3x + C.

(c) Let u = x and dv/dx = e−3x. Then
∫

xe−3xdx = −1
3
xe−3x − 1

9
e−3x + C.

(d) Let u = x and dv/dx = cos x. Then

du

dx
= 1, v =

∫
cosxdx = sin x.

Hence ∫
x cosxdx = x sin x−

∫
sinxdx + C = x sin x + cos x + C.

(e) Let u = x and dv/dx = sin x. Then
∫

x sin xdx = −x cos x +
∫

cos xdx + C = −x cosx + sin x + C.

(f) Let u = x and dv/dx = cos 1
2x. Then

du

dx
= 1, v =

∫
cos

1
2
xdx = 2 sin

1
2
x.
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Hence ∫
cos

1
2
xdx = 2x sin

1
2
x− 2

∫
sin

1
2
xdx + C = 2x sin

1
2
x + 4 cos

1
2
x + C.

(g)
∫

x sin 2xdx = −1
2
x cos 2x +

∫
cos 2xdx + C = −1

2
x cos 2x +

1
4

sin 2x + C.

(h) Let u = x and dv/dx = (1− x)10. Then

du

dx
= 1, v =

∫
(1− x)10dx = − 1

11
(1− x)11 + C.

Hence ∫
x(1− x)10dx = − 1

11
x(1− x)11 +

1
11

∫
(1− x)11dx + C

= − 1
11

x(1− x)11 +
1

132
(1− x)12 + C.

(i) Let u = ln x and dv/dx = x. Then

du

dx
=

1
x

, v =
∫

xdx =
1
2
x2.

Hence ∫
x ln xdx =

1
2
x2 ln x− 1

2

∫
x2 1

x
dx =

1
2
x2 ln x− 1

2

∫
xdx =

1
2
x2 ln x− 1

4
x2 + C.

(j) Let u = ln x and dv/d = xn. Then

du

dx
=

1
x

, v =
∫

xndx =
1

n + 1
xn+1.

Hence

xn ln xdx =
1

n + 1
xn+1 ln x− 1

n + 1

∫
xn+1 1

x
dx + C

=
xn+1

n + 1
ln x− xn+1

(n + 1)2
+ C.

(k) Let u = ln x and dv/dx = 1/x. Then

du

dx
=

1
x

, v =
∫

dx

x
= ln x.

Hence ∫
ln x

x
dx = (ln x)2 −

∫
ln x

x
dx + 2C.

or ∫
ln x

x
dx =

1
2
(lnx)2 + C.

17.11. (a) Let u = (ln x)2 and dv/dx = 1. Then

du

dx
=

2 ln x

x
, v = x.

Hence ∫
(lnx)2dx = x(ln x)2 − 2

∫
ln x

x
xdx + C

= x(ln x)2 − 2x lnx + 2
∫

1dx + C

= x(ln x)2 − 2x lnx + 2x + C,
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where a further integration by parts been used for
∫

ln xdx.
(b) Let u = arcsinx and dv/dx = 1. Then

∫
arcsin xdx = x arcsinx−

∫
x

d
dx

[arcsinx]dx + C

= x arcsinx−
∫

xdx

(1− x2)
1
2
dx

= x arcsinx + (1− x2)
1
2 + C

(c) Let u = arccos x and dv/dx = 1. Then
∫

arccosxdx = x arccosx−
∫

x
d
dx

[arccos x]dx

= x arccosx +
∫

x

(1− x2)
1
2
dx

= x arccosx− (1− x2)
1
2 .

(d) Let u = arctan x and dv/dx = 1. Then

du

dx
=

1
1 + x2

, v = x.

Hence
∫

arctan xdx = x arctanx−
∫

xdx

(1 + x2)
+ C = x arctan x− 1

2
ln(1 + x2) + C.

17.12. (a) Let u = sin x and dv/dx = ex. Then

du

dx
= cos x, v = ex.

I =
∫

ex sin xdx = ex sin x−
∫

ex cosxdx + 2C.

In the integral on the right, now put w = cos x and dz/dx = ex. Then by integrating by parts for
a second time

I = ex sin x− ex cos x−
∫

ex sin xdx + 2C = ex(sinx− cos x)− I + 2C.

Therefore
I =

1
2
ex(sin x− cos x) + C.

(b) Let u = sin x and dv/dx = e−x. Then

du

dx
= cos x, v = −ex.

I =
∫

e−x sin xdx = −e−x sin x +
∫

e−x cosxdx + 2C.

In the integral on the right, now put w = cos x and dz/dx = e−x. Then by integrating by parts
for a second time

I = −e−x sin x− e−x cos x−
∫

e−x sin xdx + 2C = −e−x(sinx− cosx)− I + 2C.

Therefore
I = −1

2
e−x(sinx + cos x) + C.
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(c) These integrals can be integrated by parts using the alternative choices for u and v. Let u = e−x

and dv/dx = cos x. Then
du

dx
= −e−x, v = sin x.

Hence
I =

∫
e−x cos xdx = e−x sin x +

∫
e−x sin xdx + 2C.

In the integral on the right, put w = e−x and dz/dx = sin x. Then by integration by parts for a
second time

I = e−x sin x− e−x cos x−
∫

e−x cosxdx = e−x sin x− e−x cosx− I + 2C.

Therefore
I =

1
2
e−x(sinx− cos x) + C.

17.13. (a) The integration by parts formula for definite integrals is

∫ b

a

u
dv

dx
dx = [uv]ba −

∫ b

a

v
du

dx
dx.

(a) Let u = x and dv/dx = cos x. Then

du

dx
= 1, v = sin x.

Hence ∫ 1
2 π

0

x cos xdx = [x sin x]
1
2 π
0 −

∫ 1
2 π

0

sin xdx =
1
2
π + [cos x]

1
2 π
0 =

1
2
π − 1.

(b) Let u = x and dv/dx = cos 2x. Then
∫ π

0

x cos 2x =
1
2
[x sin 2x]π0 −

1
2

∫ π

0

sin 2xdx =
1
4
[cos 2x]π0 = 0.

(c) In the following there are two successive integrations by parts, leading to:
∫ π

0

x2 cos xdx = [x2 sin x]π0 −
∫ π

0

2x sin xdx

= 0 + [2x cos x]π0 −
∫ π

0

2 cos xdx

= −2π − [2 sin x]π0 = −2π.

(d) From Problem 17.12b,
∫ ∞

0

e−x sin xdx = −1
2
[e−x(cosx + sin x)]∞0 =

1
2
.

(e) From Problem 17.12c,
∫ ∞

0

e−x cos xdx =
1
2
[e−x(sinx− cos x)]∞0 =

1
2
.

(f) Let u = ln x and dv/dx = 1/x. Then

du

dx
=

1
x

, v = ln x
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. Therefore ∫ 2

1

ln x

x
dx = [(ln x)2]21 −

∫ 2

1

ln x

x
dx = (ln 2)2 −

∫ 2

1

ln x

x
dx.

Hence ∫ 2

1

ln x

x
dx =

1
2
(ln 2)2.

(g) Let u = arcsin x and dv/dx = 1. Then

du

dx
=

1
(1− x2)

1
2
, (see Appendix D) v = x.

Hence
∫ 1

0

arcsinxdx = [x arcsinx]10 −
∫ 1

0

x

(1− x2)
1
2
dx

=
1
2
π + [(1− x2)

1
2 ]10 =

1
2
π − 1.

(h) Let u = arccos x and dv/dx = 1. By a method similar to that given in (g),
∫ 1

−1

arccos xdx = π.

(i) Let u = arctan x and dv/dx = 1. Then

du

dx
=

1
1 + x2

, (see Appendix D) v = x.

Hence
∫ 1

0

arctanxdx = [x arctan x]10 −
∫ 1

0

x

1 + x2
dx =

1
4
π − 1

2
[ln(1 + x2)]10

=
1
4
π − 1

2
ln 2.

(j)
∫ 2

1

ln xdx = [x ln x]21 −
∫ 2

1

x
1
x

dx = 2 ln 2− [x]21 = 2 ln 2− 1.

17.14. Let u = xk and dv/dx = ex. Then

du

dx
= kxk−1, v = ex.

Therefore, for k ≥ 1

F (k) =
∫ 1

0

xkexdx = [xkex]10 −
∫ 1

0

kxk−1exdx = e− kF (k − 1).

Repeating the formula

F (4) = e− 4F (3) = e− 4[e− 3F (2)] = −3e + 12F (2)
= −3e + 12[e− 2F (1)]
= 9e− 24[e− F (0)] = −15e + 24F (0),

where

F (0) =
∫ 1

0

exdx = [ex]10 = e− 1.
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Therefore
F (4) = −15e + 24(e− 1) = 9e− 24.

17.15. Let u = cosk−1 x and dv/dx = cos x. Then

du

dx
= −(k − 1) cosk−2 x sin x, v = sin x.

Therefore, for k ≥ 2, we may integrate by parts:

F (k) =
∫ 1

2 π

0

cosk xdx = [cosk−1 x sin x]
1
2 π
0 − (k − 1)

∫ 1
2 π

0

cosk−2 x sin2 xdx

= 0− (k − 1)
∫ 1

2 π

0

cosk−2 x(1− cos2 x)dx

= −(k − 1)F (k − 2)− (k − 1)F (k).

Hence
F (k) =

k − 1
k

F (k − 2)

as required. The first two integrals in the sequence are

F (0) =
∫ 1

2 π

0

dx =
1
2
π, F (1) =

∫ 1
2 π

0

cosxdx = [sin x]
1
2 π
0 = 1.

Using the reduction formula

F (2) =
1
2
F (0) =

1
4
π, F (3) =

2
3
F (1) =

2
3
,

F (4) =
3
4
F (2) =

3
16

π, F (5) =
4
5
F (3) =

8
15

.

17.16. (a) Integrating by parts

F (k) =
∫ 2

1

(lnx)kdx = [x(lnx)k]21 −
∫ 2

1

xk
(lnx)k−1

x
dx

= 2(ln 2)k − kF (k − 1).

Therefore ∫ 2

1

(lnx)3dx = 2(ln 2)3 − 6(ln 2)2 + 12 ln 2− 6.

(b) Let u = xk and dv/dx = sin x. Then

du

dx
= kxk−1, v = − cosx.

Therefore,

F (k) =
∫ π

0

xk sin xdx = −[xk cosx]π0 + k

∫ π

0

xk−1 cos xdx

= 2πk + k[xk−1 sin x]π0 − k(k − 1)
∫ π

0

xk−2 sin xdx

= 2πk − k(k − 1)F (k − 2)

Special cases are

F (2) = 2π2 − F (0) = 2π2 −
∫ π

0

sin xdx = 2π2 − 4, F (3) = π(π2 − 6)
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F (4) = π4 − 12π2 + 48, F (5) = π(π4 − 20π2 + 120.

(c) Let u = sink−1 x and dv/dx = sin x. Then

du

dx
= (k − 1) sink−2 x cos x, v = − cosx.

Therefore, for k ≥ 2,

F (k) =
∫ 1

2 π

0

sink xdx

= −[sink−1 x cosx]
1
2 π
0 +

∫ 1
2 π

0

(k − 1) sink−2 x cos x cosxdx

= (k − 1)
∫ 1

2 π

0

sink−2 x(1− sin2 x)dx

= (k − 1)F (k − 2)− (k − 1)F (k).

Finally

F (k) =
(k − 1)

k
F (k − 2).

The first few integrals in the sequence are

F (2) =
1
4
π, F (3) =

2
3
, F (4) =

3
16

π, F (5) =
8
15

.

17.17. (a) Let c = a−1 and use the change of variable x = u−1. Then

F (a−1) =
∫ a−1

1

dx

x
=

∫ a

1

u
(−du)

u2
= −

∫ a

1

du

u
= −F (a).

(b) Use the change of variable x = au:

F (ab) =
∫ ab

1

dx

x
=

∫ b

1/a

du

u

=
∫ b

1

du

u
−

∫ 1/a

1

du

u
= F (b) + F (a).

using (a).
(c) Let x = u/b. Then

F (a/b) = F (a) + F (1/b) (by (b))
= F (a)− F (b) (by (a))

(d) Let x = un:

F (an) =
∫ an

1

dx

x
=

∫ a

1

nun−1du

un
= nF (a).

17.18. Let u = x and dv/dx = ex. Then du/dx = 1 and choose v = ex + A. Integrate by parts,
choosing v = ex + A: ∫

xexdx = x(ex + A)−
∫

(ex + A)dx + C,

where C is arbitrary. Also ∫
(ex + A)dx =

∫
exdx + Ax + B,
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where B is arbitrary. Therefore
∫

xexdx = xex − ex + D,

where D = B + C is arbitrary, and this matches Example (17.7).
The formula for integration by parts given in (17.7) is

∫
u

dv

dx
dx = uv −

∫
v
du

dx
dx + C.

Suppose that we now replace v by the indefinite integral v + A where A is any constant. Then
(17.7) is replaced by

∫
u

dv

dx
dx = u(v + A)−

∫
(v + A)

du

dx
dx + C

= uv + uA−
∫

v
du

dx
dx− uA−B + C

= uv −
∫

v
du

dx
dx + D.

Here, D = B + C, where B is the arbitrary constant of integration arising in
∫

A
du

dx
dx = Au + B.

So D is arbitrary, and the formula is equivalent to eqn (17.7).

17.19. Any indefinite integral can only be found to within an arbitrary constant. Hence an
indefinite integral evaluated by two different methods can lead to answers which apparently differ
by a constant.

17.20. (a) Circular disc, mass m, radius a about a diameter. Take an origin at the centre of the
disc with x axis along the diameter. Take an increment of width δy parallel to the diameter. The
density per unit area of the disc, assumed to be uniform, is m/πa2. Hence the moment of inertia
of the increment about the x axis is

m

πa2
[(2
√

(a2 − y2)δy]y2.

The total moment of inertia I is therefore the sum of these increments

I =
2m

πa2

∫ a

−a

y2√(a2 − y2)dy.

Use the substitution y = a sin t. Then

I =
2m

πa2
a4

∫ 1
2 π

− 1
2 π

sin2 t cos2 dt =
2ma2

4π

∫ 1
2 π

− 1
2 π

sin2 2tdt

=
ma2

4π

∫ 1
2 π

− 1
2 π

(1− cos 4t)dt

=
1
4
ma2.

(b) Uniform sphere, mass m, radius a, about a diameter. Let the centre of the sphere be the origin
with the x axis along the diameter. Consider a circular slice of thickness δx distance x from the
origin and cut perpendicular to the diameter. The density of the sphere is ρ = 3m/(4πa3). The
circular disc has radius

√
(a2 − x2) and mass approximately ρπ(a2 − x2)δx. Its moment of inertia
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about the diameter of the sphere is (see Example 16.10) is 1
2ρπ(a2 − x2)4δx. Hence the moment

of inertia of the whole sphere is

I =
1
2

∫ a

−a

ρπ(a2 − x2)2)dx =
1
2
ρπ

[
2a5 − 4

3
a5 +

2
3
a5

]

=
8
15

ρπa5 =
8
15

πa5.
3m

4πa3

=
2
5
ma2

(c) Spherical shell, mass m, radius a about a diamater. Let the origin be at the centre of the shell
with x axis along the diameter. Take a thin section of the shell perpendicular to the diameter
distance x from the origin. This problem involves area rather than volume: the density of the shell
is ρ = m/(4πa2). Imagine the shell as surface generated by rotating a circle about the x axis. The
thickness of the shell is δx along the diameter, but its mass is

(density)×(surface area) = (density)×(circumference)×(δs) = 2π
√

(a2 − x2)δs,

where δs is an increment of arc-length of the circle. Since all points on the section are equidistant
from the axis, the total moment of inertia is

I =
∫ a

−a

2πρ
√

(a2 − x2)(a2 − x2)
a√

(a2 − x2)
dx

= 2πρa

∫ a

−a

(a2 − x2)dx =
8
3
πρa4

=
2
3
ma2

(d) Rectangle, mass m, side-lengths 2a and 2b about a diagonal. Let the diagonal be the x axis,
and the line through the centre perpendicular to the diagonal be the y axis. Take a strip of width
δy parallel to a diagonal as shown in the figure. Let d be the distance of one of the opposite corners
from the diagonal.

x

y

2a

2b ∆y

Figure 12: Problem 17.20d

The moment of inertia of the rectangle will be twice that of one of the triangles touching the
diagonal. If y is the distance of the strip from the diagonal then, by similar triangles, the length s
of the strip is given by

d− y

d
=

s

2
√

(a2 + b2)
, or s =

2
d
(d− y)

√
(a2 + b2).

Hence

I = 4
m

2ab

∫ d

0

1
d
(d− y)

√
(a2 + b2)y2dy =

2m

abd

√
(a2 + b2)

1
12

d4

=
md3

6ab

√
(a2 + b2).
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From the figure d = 2ab/
√

(a2 + b2). Hence

I =
4
3

a2b2

a2 + b2
.

(e) Cone, mass m, base radius a, height h about its axis. Let vertex of the cone be the origin
and let the axis of the cone be the x axis. Consider a circular section of the cone of thickness
δx cut perpendicular to the axis at a distance x from the vertex. Its radius is x tanα where
tan α = a/h. The moment of inertia of the disc about the axis is 1

2ρx4 tan4 αδx, where the density
ρ = 3m/(πa2h). Hence the total moment of inertia is

I =
1
2

∫ h

0

ρ(tan4 α)x4dx =
1
2
ρ(tan4 α)

h5

5
=

3
10

ma2.

17.21. Let
F (t) =

∫
e−at cos btdt = Ae−at cos bt + be−at sin bt + C.

Then differentiating both sides, we have

e−at cos bt = (−aA + bB)e−at cos bt + (−Ab− aB) sin bt.

Hence equating like terms on both sides

1 = −aA + bB, 0 = −bA− aB.

Solving these equations

A =
−a

a2 + b2
, B =

b

a2 + b2
.

which agrees with eqn (15.11).

17.22. Let

I(α) =
∫

x2e−αxdx + C =
∫

d2

dα2
e−αxdx + C,

with C arbitrary. Interchange integration and differentiation:

I(α) =
d2

dα2

[∫
e−αxdx

]
+ C =

d2

dα2

[
− 1

α
e−αx

]
+ C

= e−αx

[
− 2

α3
− 2x

α2
− x2

a

]
+ C.

17.23. Let x = a/u. Then dx/du = −a/u2, and
∫

dx

x
√

(x2 − a2)
= −1

a

∫
du√

(1− u2)
= −1

a
arcsinu + C = −1

a
arcsin(a/x) + C

using a standard integral from Appendix E.
(b) Let x = a/u. Then, as in (a),

∫
dx

x
√

(a2 − x2)
= −1

a

∫
du√

(u2 − 1)

= −1
a

ln[u +
√

(u2 − 1)] + C

= −1
a

ln
[
a +

√
(a2 − x2)
x

]
+ C.
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(c) Let u = (a tanx)/b. Then du/dx = (a secx)/b. Using this substitution
∫

dx

a2 cos2 x + b2 sin2 x
=

1
ab

∫
du

u2 + 1

=
∫

1
ab

arctanu + C =
1
ab

arctan
[a

b
tan x

]
+ C.

(d) Using the substitution u = tan 1
2x,

∫
dx

sin x
=

∫
2 cos2 1

2xdu

2 sin 1
2x cos 1

2x
=

∫
du

u
= ln |u|+ C = ln | tan

1
2
x|+ C.

(e) Using the substitution u = tan 1
2x,

∫
dx

3 + 5 cos x
=

∫
2 cos2 1

2xdu

3 + 5(2 cos2 1
2x− 1)

=
∫

du

4− u2
=

1
4

∫ [
1

2− u
+

1
2 + u

]
du

=
1
4

ln
[
2 + u

2− u

]
+ C =

1
4

ln
[
2 + tan 1

2x

2− tan 1
2x

]
+ C

(f) Using the substitution u = tanh 1
2x,

∫
dx

5 cosh x + 4 sinh x
=

∫
2du

10− 5sech 2 1
2x + 8 tanh 1

2x

=
∫

du

5u2 + 8u + 5
=

2
3

arctan[
1
3
(4 + 5u)] + C

=
2
3

arctan[
1
3
(4 + 5 tanh

1
2
x)] + C

(g) Express the integral in the form

I =
∫

sec xdx =
∫

sec x(sec x + tan x)
sec x + tanx

dx.

Now use the substitution

u = sec x + tan x,
du

dx
= sec x tanx + sec2 x,

so that
I =

∫
du

u
= ln |u|+ C = ln | sec x + tan x|+ C.

(h) Using the substitution x = u2,

∫ 4

0

dx

1 +
√

x
=

∫ 2

0

2udu

1 + u
=

∫ 2

0

[
2− 2

1 + u

]
du

= [2u− 2 ln(1 + u)]20 = 4− 2 ln 3

(i) Using the substitution x = u3 − 1,
∫

x(1 + x)
1
3 dx =

∫
3u3(u3 − 1)du =

3
7
u7 − 3

4
u4 + C

=
1
28

(1 + x)
4
3 (12x− 9) + C
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(j) Let u = x− 1/x so that du/dx = 1 + 1/x2. Then

∫ 2

1

(x2 + 1)dx

x
√

[x4 + 7x2 + 1]
=

∫ 3
2

0

du√
[x2 + 7 + x−2]

=
∫ 3

2

0

du√
[u2 + 9]

= [ln[u +
√

(u2 + 9)]]
3
2
0

= ln[(1 +
√

5)/2]

(k) Let u = 1 + x
1
2 , so that du/dx = 1

2x−
1
2 . Then

∫ 4

0

√
(1 +

√
x)dx = 2

∫ 3

1

[u
1
2 − u

3
2 ]du = 2

[
2
3
u

3
2 − 2

5
u

5
2

]3

1

=
8
15
− 16

5
√

3.x

17.24. Use repeated integration by parts starting with

u1 = p(x),
du

dx
= p′(x),

dv

dx
= ex, v = ex.

Therefore ∫
exp(x)dx = exp(x)−

∫
exp′(x)dx + C.

Repeat the integration by parts with u2 = p′(x), v = ex so that
∫

exp(x)dx = exp(x)− exp′(x) +
∫

exp′′(x)dx + C.

Continue n times until p(n)(x) is reached. Since p(x) is a polynomial of degree n, p(n)(x) must be
a constant which means that ∫

exp(n)(x)dx = exp(n)(x),

apart from a constant. Finally
∫

exp(x)dx = ex[p(x)− p′(x) + p′′(x)− · · ·+ (−1)np(n)(x)] + C.

In the Problem
∫ 1

0

ex(x3 − 2x2 + x− 2)dx =

[ex{(x3 − 2x2 + x− 2)− (3x2 − 4x + 1) + (6x− 4)− 6}]10
= 13− 6e

For the next case, the procedure is as in the first part except the v = −e−x: the signs now
alternate in the opposite way. Hence

∫
e−xp(x)dx = ex[−p(x) + p′(x)− p′′(x) + · · ·+ (−1)n+1p(n)(x)] + C.

The definite integral takes the value
∫ 1

0

exp(x)dx = e[−p(1) + p′(1)− p′′(1) + · · ·+ (−1)np(n)(1)]−

[−p(0) + p′(0)− · · ·+ (−1)n+1p(n)(0)].
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x

y

∆x

Figure 13: Problem 17.25

From the previous formula
∫ ∞

0

exp(x)dx = p(0)− p′(0) + p′′(0)− · · ·+ (−1)np(n)(0).

17.25. The plate is shown in the figure.
By symmetry the centroid must lie on the x axis. Take a strip of width δx parallel to the y

axis. We first require the area A of the plate:

A =
∫ h

0

2ydx = 2
∫ h

0

2a
1
2 x

1
2 dx = 4a

1
2
2
3
[x

3
2 ]h0 =

8
3
a

1
2 h

3
2 .

The distance x of the centroid from the origin is given by

Ax = 2
∫ h

0

y2dx = 8a

∫ h

0

xdx = 4ah2.

Therefore

x =
4ah2

8
3a

1
2 h

3
2

=
3
2
(ah)

1
2 .

Chapter 18: Unforced linear differential equations with constant coefficients

18.1. The following equations are linear, unforced with constant coefficients: (b), (e), (f), (i), (j),
(k).

18.2. All the solutions are given by (18.4).
(a) General solution of x′ + 5x = 0 is x(t) = Ae−5t.
(b) General solution of x′ − 1

2x = 0 is x(t) = Ae
1
2 t.

(c) General solution of x′ − x = 0 is x(t) = Aet.
(d) General solution of x′ + 3x = 0 is x(t) = Ae−3t.
(e) General solution of 3x′ + 4x = 0 is x(t) = Ae−4t/3.
(f) General solution of x′ = 2x is x(t) = Ae2t.
(g) General solution of x′ = 3x is x(t) = Ae3t.
(h) The equation (x′/x) = −3 can be rewritten as x′ + 3x = 0, which has the general solution
x = e−3t.
(i) The equation (x′ + 1)/(x + 1) = 1 is the same as x′ − x = 0, which has the general solution
x(t) = Aet.

18.3. The general solution of these first-order equations is given by (18.4).
(a) The general solution of x′ + 2x = 0 is x(t) = Ce−2t. The initial condition is x(0) = 3. Hence
C = 3 and the required solution is x(t) = 3e−2t.
(b) The solution of 3x′ − x = 0 subject to x(1) = 1 is x(t) = e(t−1)/3.
(c) The solution of y′ − 2y = 0 with the condition y(−3) = 2 is y(x) = 2e2t+6.
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(d) The solution of x′ + x = 0 with the condition x(−1) = 10 is x(t) = 10e−t−1.
(e) The solution of 2y′ − 3y = 0 subject to y(0) = 1 is x(t) = e3t/2.
(f) Since the slope is 5y, it follows that

dy

dx
= 5y.

The general solution is y = Ce5x. Hence, since the curve passes through (1,−2), that is, y(1) = −2,
the curve is given by y = −2e5t−5.

18.4. The equation for the current x(t) in the circuit in Fig. 18.1 is

L
dx

dt
+ Rx = E(t).

Assume that the applied voltage becomes zero at t = 0. Then we have to solve

L
dx

dt
+ Rx = 0, x(0) = I0.

The general solution is x = Ae−Rt/L. The initial condition gives A = I0. The required solution is
x = I0e−Rt/L.

Let the current halve in time T . Then 1
2I0 = I0e−RT/L so that

T =
L

R
ln 2,

which is independent of I0.

18.5. Given that
dA

dt
∝ A, or

dA

dt
= −kA.

(a) The solution is A = A0e−kt.
(b) The half-life T = (ln 2)/k. We are given that 82.5% of uranium-232 remain after 20 years.
Hence with t measured in years, the constant k is given by

82.5
100

A0 = A0e−20k.

Solving this equation k = 9.6 × 10−3 (years)−1. Finally, the half-life of uranium-232 is T =
(ln 2)/k = 72 years.

18.6. Let N(t) be number of rabbits at time t with t measured in years. If the number of rabbits
increases by δN in time δt, then

δN = 20(
1
2
N)δt = 10Nδt.

Let δt → 0, so that the differential equation for N(t) is

dN

dt
= 10N with initial value N(0) = 100

The solution of this initial value problem is

N(t) = N(0)e10t = 100e10t.

At time t = 4, N(4) = 100e40 = 2.35× 1019.
If the rabbits only live for a year, then N(t) satisfies

dN

dt
= 9N.
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Hence N(t) = 100e36 = 4.31× 1017 which is still a very large number.

18.7. (a) For the differential equation

x′′ − 3x′ + 2x = 0,

its characteristic equation is

m2 − 3m + 2 = 0, which has solutions m1 = 1, m2 = 2.

Hence, the general solution is
x(t) = Aet + Be2t.

(b) For the differential equation
x′′ + x′ − 2x = 0,

its characteristic equation is

m2 + m− 2 = 0, which has solutions m1 = −2, m2 = 1.

Hence, the general solution is
x(t) = Ae−2t + Bet.

(c) For the differential equation
x′′ − x = 0,

its characteristic equation is

m2 − 1 = 0, which has solutions m1 = −1, m2 = 1.

Hence, the general solution is
x(t) = Ae−t + Bet.

(d) For the differential equation
x′′ − 4x = 0,

its characteristic equation is

m2 − 4 = 0, which has solutions m1 = −2, m2 = 2.

Hence, the general solution is
x(t) = Ae−2t + Be2t.

(e) For the differential equation

3x′′ − 1
4
x = 0,

its characteristic equation is

3m2 − 1
4

= 0, which has solutions m1 = −1/(2
√

3), m2 = 1/(2
√

3).

Hence, the general solution is

x(t) = Ae−t/(2
√

3) + Bet/(2
√

3).

(f) For the differential equation
x′′ − 9x = 0,

its characteristic equation is

m2 − 9 = 0, which has solutions m1 = −3, m2 = 3.
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Hence, the general solution is
x(t) = Ae−3t + Be3t.

(g) For the differential equation
x′′ + 2x′ − x = 0,

its characteristic equation is

m2 + 2m− 1 = 0, which has solutions m1 = −1−√2, m2 = −1 +
√

2.

Hence, the general solution is

x(t) = Ae(−1−√2)t + Be(−1+
√

2)t.

(h) For the differential equation
x′′ − 2x′ − 2x = 0,

its characteristic equation is

m2 − 2m− 2 = 0, which has solutions m1 = 1−√3, m2 = 1 +
√

3.

Hence, the general solution is

x(t) = Ae(1−√3)t + Be(1+
√

3)t.

(i) For the differential equation
2x′′ + 2x′ − x = 0,

its characteristic equation is

2m2 + 2m− 1 = 0, which has solutions m1 =
1
2
(−1−√3), m2 =

1
2
(−1 +

√
3).

Hence, the general solution is

x(t) = Ae
1
2 (−1−√3)t + Be

1
2 (−1+

√
3)t.

(j) For the differential equation
3x′′ − x′ − 2x = 0,

its characteristic equation is

3m2 −m− 2 = 0, which has solutions m1 = − 2
3 , m2 = 1.

Hence, the general solution is
x(t) = Ae−

2
3 t + Bet.

(k) For the differential equation
x′′ + 4x′ + 4x = 0,

its characteristic equation is

m2 + 4m + 4 = 0, which has solutions m1 = m2 = −2.

This is the special case of equal or coincident roots. Hence, the general solution is

x(t) = Ae−2t + Bte−2t = (A + Bt)e−2t.

(l) For the differential equation
x′′ + 6x′ + 9x = 0,

its characteristic equation is

m2 + 6m + 9 = 0, which has solutions m1 = m2 = −3.
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This is the special case of equal or coincident roots. Hence, the general solution is

x(t) = Ae−3t + Bte−3t = (A + Bt)e−3t.

(m) For the differential equation
4x′′ + 4x′ + x = 0,

its characteristic equation is

4m2 + 4m + 1 = 0, which has solutions m1 = m2 = − 1
2 .

This is the special case of equal or coincident roots. Hence, the general solution is

x(t) = Ae−
1
2 t + Bte−

1
2 t = (A + Bt)e−

1
2 t.

(n) The differential equation x′′ = 0 has the characteristic equation m2 = 0 with solutions m1 =
m2 = 0. Hence the general solution is x(t) = A + Bt. Alternatively the solution can be obtained
by direct integration of x′′ = 0.

18.8. The characteristic equation of

x′′ + bx′ + cx = 0

is
m2 + bm + c = 0.

Suppose that b2 = 4c which means that the equation has equal roots m1 = m2 = m0, say. One
solution is x = em0t. Let x = tem0t. Then

x′ = (1 + m0t)em0t, x′′ = m0(2 + m0t)em0t.

Therefore

x′′ + bx′ + cx = [2m0 + m2
0t + b(1 + m0t) + c]em0t

= {[2m0 + b] + t[m2
0 + m0b + c]}em0t = 0,

since m0 satisfies the characteristic equation, and m0 = − 1
2b. Hence x = tem0t is a second

independent solution.

18.9. (a) The characteristic equation of

x′′ − 4x = 0

is m2 − 4 = 0, which has solutions m1 = −2, m2 = 2.Hence the general solution is

x = Ae−2t + Be2t.

For the initial conditions x(0) = 1, x′(0) = 0, the solution is

x = 1
2e−2t + 1

2e2t.

(b) The characteristic equation of
x′′ + x′ − 2x = 0

is m2 + m− 2 = 0, which has solutions m1 = −2, m2 = 1. Hence the general solution is

x = Ae−2t + Bet.

For the initial conditions x(0) = 0, x′(0) = 2, the solution is

x = − 2
3e−2t + 2

3et.
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(c) The characteristic equation of
y′′ − 4y′ + 4y = 0

is m2 − 4m + 4 = 0, which has coincident solutions m1 = m2 = 2. Hence the general solution is

y = Ae2x + Bxe2x.

For the initial conditions y(0) = 0, y′(0) = −1, the solution is

y = −xe2x.

(d) The characteristic equation of
y′′ + 2y′ + y = 0

is
m2 + 2m + 1 = 0, which has coincident solutions m1 = m2 = −1.

Hence the general solution is
y = Ae−x + Bxe−x.

For the initial conditions y(1) = 0, y′(1) = 1, the solution is

y = −e1−x(x− 1).

(e) The solution of the initial value problem

x′′ − 9x = 0, x(1) = 1, x′(1) = 1,

is
x =

1
3
e3−3t +

2
3
e−3+3t.

(f) The characteristic equation of
x′′ − 4x′ = 0

is m2 − 4m = 0, which has solutions m1 = 0, m2 = 4. Hence the general solution is

x = A + Be4t.

For the initial conditions x(1) = 1, x′(1) = 1, the solution is x = 1.

18.10. (See Section 18.4.) (a) The differential equation x′′+x = 0 has the characteristic equation
m2 + 1 = 0, which has the complex solutions m1 = i, m2 = −i. A complex basis is (eit, e−it), so
(cos t, sin t) is a real basis. Therefore the general real solution is

x = A cos t + B sin t.

(b) The differential equation x′′ + 9x = 0 has the characteristic equation m2 + 9 = 0, which has
the complex solutions m1 = 3i, m2 = −3i. The general real solution (compare (a)) is

x = A cos 3t + B sin 3t.

(c) The differential equation x′′ + 1
4x = 0 has the characteristic equation m2 + 1

4 = 0, which has
the complex solutions m1 = 1

2 i, m2 = − 1
2 i. The general real solution (compare (a)) is

x = A cos 1
2 t + B sin 1

2 t.

(d) The differential equation x′′ + ω2
0x = 0 has the characteristic equation m2 + ω2

0 = 0, which has
the complex solutions m1 = iω0, m2 = −iω0. The general real solution (compare (a)) is

x = A cosω0t + B sinω0t.
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(e) The differential equation x′′ + 2x′ + 2x = 0 has the characteristic equation m2 + 2m + 2 = 0,
which has the complex solutions m1 = −1 + i, m2 = −1 − i. The complex solution basis is
(e(−1+i)t, e(−1−i)t), from which a real solution basis is (e−t cos t, e−t sin t). The general real solution
is

x = e−t(A cos t + B sin t).

(f) The differential equation y′′ − 2y′ + 2y = 0 has the characteristic equation m2 − 2m + 2 = 0,
which has the complex solutions m1 = 1 + i, m2 = 1− i. The general real solution is

y = et(A cos t + B sin t),

derived from the complex form
x = Ce(i+1)t + De(−i+1)t.

(g) The differential equation y′′+ y′+ y = 0 has the characteristic equation m2 +m+1 = 0, which
has the complex solutions m1 = − 1

2 + i
√

3
2 , m2 = − 1

2 − i
√

3
2 . The general real solution (compare

(e)) is
y = e−

1
2 t(A cos

√
3

2 t + sin
√

3
2 t).

(h) The differential equation 2x′′ + 2x′ + x = 0 has the characteristic equation 2m2 + 2m + 1 = 0,
which has the complex solutions m1 = − 1

2 + 1
2 i, m2 = − 1

2 − 1
2 i. The general real solution (compare

(e)) is
x = e−

1
2 t(A cos 1

2 t + sin 1
2 t).

(i) The general real solution (compare (e)) of 3x′′ + 4x′ + 2 = 0 is

x = e−
2
3 t[A cos(

√
2

3 t) + B sin(
√

2
3 t)].

(j) The general real solution of 3x′′ − 4x′ + 2 = 0 is (compare (e))

x = e
2
3 t[A cos(

√
2

3 t) + B sin(
√

2
3 t)].

18.11. (a) The characteristic equation of x′′ + x = 0 is m2 + 1 = 0, which has the complex
solutions m1 = i, m2 = −i. The general real solution is x = A cos t + B sin t. For the initial
conditions x(0) = 0 and x′(0) = 1, A = 0 and 1 = B. Therefore the solution is x = sin t.
(b) The characteristic equation of x′′ + 4x = 0 is m2 + 4 = 0, which has the complex solutions
m1 = 2i, m2 = −2i. The general real solution is x = A cos 2t + B sin 2t. For the initial conditions
x(0) = 1 and x′(0) = 0, the solution is x = cos 2t.
(c) The characteristic equation of x′′ + ω2

0x = 0 is m2 + ω2
0 = 0, which has the complex solutions

m1 = iω0, m2 = −iω0. The general real solution is x = A cosω0t + B sin ω0t. For the initial
conditions x(0) = a and x′(0) = b, A = 0 and 1 = B. Therefore the solution is

x = a cos ω0t + bω−1
0 sin ω0t.

(d) • k2 > 1. The characteristic equation of x′′+ 2kx′+ x = 0 is m2 + 2km + 1 = 0, which has the
real solutions

m1 = −k +
√

(k2 − 1), m2 = −k −√(k2 − 1).

The general solution is
x = Aem1t + Bem2t.

For the initial conditions x(0) = 0 and x′(0) = b, the solution is

x =
b

2
√

(k2 − 1)

[
e[−k+

√
(k2−1)]t − e[−k−√(k2−1)]t

]
.

• k2 < 1. The solutions of the characteristic equation are complex

m1 = −k + i
√

(1− k2), m2 = −k − i
√

(1− k2).
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For the given initial conditions

x =
b√

(1− k2)
e−kt sin[

√
(1− k2)t].

• k2 = 1. The solution is x = bte−kt.

18.12. The linearized pendulum equation is

d2θ

dt2
+

g

l
θ = 0.

The general solution of this equation is

θ = A cos[(g/l)
1
2 t] + B sin[(g/l)

1
2 t].

The initial conditions for the pendulum are θ = α and dθ/dt = 0 at time t = 0. Hence

θ = α cos[(g/l)
1
2 t].

Thed pendulum oscillates with amplitude α.

18.13. The general solution is given in the previous answer. However, in this case the initial
conditions are θ = 0 and dθ/dt = v/l at time t = 0. Hence

θ =
v√
gl

sin[(g/l)
1
2 t].

18.14. With friction included the linearized pendulum equation becomes

d2θ

dt2
+ K

dθ

dt
+

g

l
θ = 0.

The characteristic equation is
m2 + Km +

g

l
θ = 0,

which has the solutions

m1 =
1
2

[−K +
√

(K2 − 4(g/l))
]
, m2 =

1
2

[−K −√(K2 − 4(g/l))
]
.

The friction is small so that we may assume that K2 < 4(g/l), which means that the roots are
complex. Let ω = 1

2

√
[4(g/l)−K2]. Then the general solution is

θ = e−
1
2 Kt[A cosωt + B sin ωt].

Initially, θ = 0 and dθ/dt = v/l. Hence

θ =
v√
(gl)

sin[(g/l)
1
2 t].

The given data are g = 9.7, l = 20, K = 0.066 and v = 1. Hence ω = 0.70 (all calculations are to
2 significant figures). Hence

θ = 0.072e−0.033t sin(0.70t).

18.15. The differential equation
d3y

dx3
− y = 0

has the characteristic equation m3 − 1 = 0. Hence m3 = 1, which has the roots

m1 = 1, m2 = e
2
3 πi = − 1

2 + i
√

3
2 , m3 = e

4π
3 πi = − 1

2 − i
√

3
2 .
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Hence the general real solution is therefore

y = Aex + Be−
1
2 x cos[

√
3

2 πx] + Ce−
1
2 x sin[

√
3

2 πx].

18.16. The characteristic equation of
d3y

dx3
+ y = 0

is m3 + 1 = 0. Its roots are

m1 = −1, m2 = e
1
3 πi = 1

2 + i
√

3
2 , m3 = e−

1
3 πi = 1

2 − i
√

3
2 .

The general real solution is therefore

y = Ae−x + Be
1
2 x cos[ i

√
3

2 πx] + Ce
1
2 x sin[

√
3

2 πx].

18.17. The characteristic equation of
d4y

dx4
− y = 0

is m4 − 1 = 0. The four roots of this equation are

m1 = 1, m2 = −1, m3 = i, m4 = −i.

Hence the general solution is therefore

y = Aex + Be−x + C cosx + D sin x.

18.18. Let δu be an vertical increment of height in the column. Then the mass of the column
above a height y is

ρ

∫ H

y

A(u)du,

where A(u) is the cross-sectional area at height u. Let the cross-sectional area of the column be
such that the pressure on any section is a constant P independent of u. Then on the section at
height y

pressure × area = weight of statue + weight of column above.

or

PA(y) = Mg + ρg

∫ H

y

A(u)du.

Differentiate both sides with respect to y. Then

dA

dy
= −ρgA(y),

using (15.20). This an equation of type (18.4.) with general solution

A(y) = Be−ρgy/P ,

where B is a constant. The constant B is determined by the condition that the top of the column
should just support the statue, that is, PAH = Mg. Hence B = MgeρgH/P . Finally, the cross-
sectional area is

A(y) =
Mg

P
eρg(H−y)/P .

Note that the formula does not specify what the cross-sectional shape should be: the cross-section
could square, circular or some other shape, or could vary up the column.
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Chapter 19: Forced linear differential equations

19.1. (a) Try x = pe2t. Then

x′ + x− 3e2t = 2pe2t + pe2t − 3e2t = e2t(3p− 3) = 0

for all t if p = 1. Therefore x = e2t is a particular solution of the equation

x′ + x = 3e2t.

(b) As a trial solution for the equation

x′ − 3x = t3 + 1

we must include a constant and every power of t up to and including t3. Let

x = p + qt + rt2 + st3.

Substituting into the differential equation

x′ − 3x− t3 − 1 = [q + 2rt + 3st2]− [3p + 3qt + 3rt2 + 3st3]− t3 − 1
= [q − 3p− 1] + [(2r − 3q)t + (3s− 3r)t2 + (−3s− 1)t3

= 0

for all t if
q − 3p− 1 = 0, 2r − 3q = 0, 3s− 3r = 0, −3s− 1 = 0.

The solution of these linear equations is

p = − 11
27 , q = − 2

9 , r = − 1
3 , s = − 1

3 .

Hence a particular solution is
x = − 11

27 − 2
9 t− 1

3 t2 − 1
3 t3.

(c) Try the solution x = A + Bt + Cet. Then

2x′ + 3x− t− 3et = (2B + 3A) + (3B − 1)t + (5C − 3)et = 0

for all t if A = − 2
9 , B = 1

3 and C = 3
5 . Hence a particular solution is

x = − 2
9 + 1

3 t + 3
5et.

(d) Try the solution x = Ae2t. Then

x′′ + x− 3e2t = 4Ae2t + Ae2t − 3e2t = (5A− 3)e2t = 0

for all t if A = 3
5 . Hence a particular solution is x = 3

5e2t.
(e) A particular solution of x′′ − 1

4x = 2et + 3e−t is x = 8
3et + 4e−t.

(f) Try the constant solution x = A. Then

x′′ − 2x′ + x− 3 = A− 3 = 0

if A = 3. Hence a particular solution is x = 3.
(g) Since the forcing term is 3t2 − t, try the solution x = At2 + Bt + C. It can be shown, as in (a)
to (f), that

x′′ + 4x′ − x = 3t2 − t

has the particular solution x = −3t2 − 23t− 98.
(h) For the equation

x′′ − x = 2 cos t
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try x = A cos t. Then

x′′ − x− 2 cos t = −A cos t−A cos t− 2 cos t = (−2A− 2) cos t = 0

for all t if A = −1. Hence a particular solution is x = − cos t.
(i) For the equation

2x′′ + 3x = 2 sin 3t,

confirm, as in (h), that a particular solution is x = − 2
15 sin 3t.

(j) Try a solution which includes both a sine and cosine. Let x = A cos t + B sin t. Then

2x′′ + x′ − sin t + cos t = −2A cos t− 2B sin t−A sin t + B cos t− sin t + cos t

= (−2A + B + 1) cos t + (−2B −A− 1) sin t = 0

for all t if
−2A + B + 1 = 0, A + 2B + 1 = 0.

Hence A = 1
5 and B = − 3

5 , and a particular solution is x = 1
5 cos t− 3

5 sin t.
(k) Try x = A cos 2t + B sin 2t. Then

x′′ + 2x′ + x− cos 2t

= [−4A cos 2t− 4B sin 2t] + 2[−2A sin 2t + 2B cos 2t] + [A cos 2t + B sin 2t]
− cos 2t

= [−3A + 4B − 1] cos 2t + [−4A− 3B] sin 2t = 0

for all t, if −3A + 4B − 1 = 0 and −4A− 3B = 0. Solving these equations for A and B, it follows
that

x = − 3
25 cos t + 4

25 sin t.

(l) Try x = A + Be2x. Then

d2y

dx2
− y − 1 + 3e2x = 4Ae2x −A−Be2x − 1 + 3e2x = [−A− 1] + [4A−B + 3]e2x.

Therefore A = −1 and B = −1, so x = −1− e2x is a particular solution.
(m) Try y = A cos 2x + B sin 2x, equating to zero terms in cos 2x and sin 2x, so confirming that

x = 3
4 [cos 2x− sin 2x]

is a particular solution.

19.2. (a) Replace the right-hand side by 3e2it, of which 3 cos 2t is the real part. Solve the complex
equation X using the trial X = Ae2it:

X ′′ −X − 3e2it = −4Ae2it −Ae2it − 3e2it = (−5A− 3)e2it = 0

for all t if A = −3/5. Therefore a particular solution of this equation is X = − 3
5e2it. A particular

solution of
x′′ − x = 3 cos 2t

is therefore x = Re (X) = Re [ 35e2it] = − 3
5 cos 2t.

(b) Consider the equation
X ′′ + X = 2e3it.

Let X = Ae3it. Then

X ′′ + X − 2e3it = −9Ae3it + Ae3it − 2e3it = (−8A− 2)e3it = 0

if A = − 1
4 . A particular solution of

x′′ + x = 2 sin 3t
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is therefore x = Im (X) = Im [− 1
4e3it] = − 1

4 sin 3t.
(c) Consider the equation

X ′′ + 2X ′ + X = 3eit.

Try X = Aeit. Then

X ′′ + 2X ′ + X − 3eit = (−A + 2Ai + A− 3)eit = (2Ai− 3)eit = 0

if A = −i 32 . Hence a particular of
x′′ + 2x′ + x = 3 sin t

is x = Im (X) = Im [−i 32eit] = − 3
2 cos t.

(d) Consider the equation
X ′′ −X ′ −X = 3eit.

Let X = Aeit. Then

X ′′ −X ′ −X − 3eit = (−A−Ai−A− 3)eit = (−2A−Ai− 3)eit = 0

if A = −3/(2 + i) = − 6
5 + 3

5 i. Therefore a particular solution of

x′′ − x′ − x = 3 cos t

is x = Re (X) = Re [(− 6
5 + 3

5 i)eit] = − 6
5 cos t− 3

5 sin t.
(e) In this problem we require the real part of the solution of

2X ′′ + X ′ + 2X = 2e2it.

Try X = Ae2it so that

2X ′′ + X ′ + 2X − 2e2it = (−8A + 2iA + 2A− 2)e2it = [(−6A + 2i)A− 2)e2it = 0

for all t if A = 1/(−3 + i) = 3
10 + 1

10 i. Hence a particular solution of

2x′′ + x′ + 2x = 2 cos t

is x = Re (X) = − 3
10 cos 2t + 1

10 sin 2t.
(f) A particular solution of

3X ′′ + 2X ′ + X = 2e2it

is X = (− 22
137 − 8

137 i)e2it. Hence a particular solution of

3x′′ + 2x′ + x = 2 sin 2t

is x = Im (X) = − 8
137 cos 2t− 22

137 sin 2t.
(g) Consider the equation

X ′′ − 4X = e(−1+i)t.

Try X = Ae(−1+i)t. Then

X ′′ − 4X − e(−1+i)t = [(−1 + i)2A− 4A− 1]e(−1+i)t = 0

for all t if A = (−2− i)/10. Hence a particular solution of

x′′ − 4x = e−t cos t

is x = Re (X) = Re [(− 1
5 − 1

10 i)e(−1+i)t = − 1
5e−t cos t− 1

10 sin t.
(h) Consider the equation

X ′′ − 4X = 3e(1+2i)t.
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Let X = Ae(1+2i)t. Then

X ′′ − 4X − 3e(1+2i)t = [(1 + 2i)2A− 4A− 3]e(1+2i)t = 0

for all t if A = − 21
65 − 12

65 i. Hence a particular solution of

x′′ − 4x = 3et sin 2t

is x = Im (X) = et[− 12
65 cos 2t− 21

65 sin 2t].
(i) Consider the equation

X ′′ + X ′ + 4X = 5e−iφei(3t+φ).

Try X = Aei(3t+φ): then the solution in the required form is the real part of X. Substituting X
into the equation:

X ′′ + X ′ + 4X − 5e−iφei(3t+φ) = [−9A + 3iA + 4A− 5e−iφ]ei(3t+φ)

= [(−5 + 3i)A− 5e−iφ]ei(3t+φ) = 0

for all t, if (−5 + 3i)A = 5e−iφ or,

A =
1

−5 + 3i
=
−(5 + 3i)

34
e−iφ = − 1

34
(5 + 3i)(cos φ− i sin φ)

= − 5
34
{(5 cos φ + 3 sin φ) + i(3 cos φ− 5 sin φ)}

= − 5
34

cos φ{(5 + 3 tan φ) + i(3− 5 tan φ)}

= − 5
34

cos φ

{
(5 +

9
5
) + i(3− 3)

}
= − 5

34
cosφ

(
34
5

)
= − cos φ

= − 5√
34

.

Therefore
x = Re (X) = − 5√

34
cos(3t + φ),

where tan φ = 3
5 .

19.3. (a) The characteristic equation of

x′′ + x = 3 cos t

is m2 + 1 = 0, with roots m = ±i. Hence a particular solution cannot be a multiple of cos t. Try,
instead, x = At sin t (see (19.6)): then

x′′ + x− 3 cos t = 2A cos t−At sin t + At sin t− 3 cos t = (2A− 3) cos t = 0

for all t, if A = 3
2 . Hence a particular solution is x = 3

2 t sin t.
(b) Since A sin 2t satisfies the corresponding homogeneous equation, it cannot be also a particular
solution of

x′′ + 4x = 3 sin 2t.

As in (19.6), try x = At cos 2t: then

x′′ + 4x− 3 sin 2t = −4A sin 2t− 4At cos 2t + 4At cos 2t− 3 sin 2t

= (−4A− 3) sin 2t = 0

for all t if A = − 3
4 . Hence a particular solution is x = − 3

4 t cos 2t.
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(c) A particular solution for the constant 1 is obviously 1
4 . Since A cos 2t satisfies the corresponding

homogeneous equation, we must try x = 1
4 + At sin 2t: therefore

x′′ + 4x− 1− 3 cos 2t = 4A cos 2t− 4At sin 2t + 1 + 4At sin 2t− 1− 3 cos 2t

= (4A− 3) sin 2t = 0

for all t if A = 3
4 . Hence a particular equation is x = 1

4 + 3
4 t sin 2t.

(d) A particular solution of
d2y

dx2
+ 9y = 2 sin 3x

is x = − 1
3x cos 3x.

(e) Consider the equation
d2y

dx2
− 2

dy

dx
+ 2y = ex cosx.

The corresponding homogeneous equation has the characteristic equation

m2 − 2m + 2 = 0, which has the solutions m1 = 1 + i, m2 = 1− i,

which means that Aex cosx cannot be a particular solution of the given differential eqaution.
Instead try y = Axex sin x: then

d2y

dx2
− 2y

dy

dx
+ 2y − ex cosx = (−1 + 2A)ex cos x = 0

if A = 1
2 . Hence a particular solution is y = 1

2xex sin x.

19.4. (a) Let x = ptet. Then

x′′ − x− et = 2pet + ptet − ptet − et = (2p− 1)et = 0

if p = 1
2 . Hence the equation has a particular solution x = 1

2 tet.
(b) Let x = pt2et. Then

x′′ − 2x′ + x− et = p(2 + 4t + t2)et − 2(2t + t2)pet + pt2et − et = (2p− 1)et = 0

if p = 1
2 . Therefore a particular solution is x = 1

2 t2et.
(c) Try x = pt3. Then

d2x

dt2
− t = 6pt− t = (6p− 1)t = 0

if p = 1
6 . Hence a particular solution is x = 1

6 t3.
(d) Try y = px2 + qx + r. Then

d2y

dx
+

dy

dx
− x = 2p + 2px + q − x = (2p + q) + (2p− 1)x = 0

for all x if 2p + q = 0 and 2p − 1 = 0. Therefore p = 1
2 and q = −1. The constant term r can

take any value since it is a solution of the homogeneous equation; let r = 0, say. Then a particular
solution is x = 1

2x2 − x.
(e) (See also Problem 19(e)) Let x = et(p cos t + q sin t). Then

x′′ − 2x′ + 2x− et cos t = et[(−1 + 2q) cos t− 2p sin t] = 0

for all t if −1 + 2q = 0 and p = 0. Therefore q = 1
2 and a particular solution is x = 1

2 tet sin t.
(f) The equation

dy

dx
− y = ex
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has the particular solution y = xex.

19.5. In each case the solution of the differential equation is the sum of its complementary function
(the general solution of the homogeneous equation) and a particular solution.
(a) x′′ + 9x = 3e2t. The characteristic equation for x′′ + 9x = 0 is

m2 + 9 = 0, which has the solutions m1 = 3, m2 = −3.

The complementary function is therefore xc = Ae3t+Be−3t. For a particular solution try xp = pe2t.
Then

x′′p + 9xp − 3e2t = (4p + 9p− 3)e2t = (13p− 3)e2t = 0

for all t if p = 3
13 . Hence the general solution is

x = xc + xp = Ae3t + Be−3t +
3
13

e2t.

(b) x′′ − 4x = 2e−t. The characteristic equation for x′′ − 4x = 0 is m2 − 4 = 0. Hence the
complementary function is

xc = Ae2t + B = e−2t.

a particular solution try xp = pe−t: then

x′′p − 4xp − 2e−t = (−3p− 2)e−t = 0

if p = − 2
3 . The general solution is therefore

x = Ae2t + Be−2t 2
3
e−t.

(c) 4x′′ − x = 1 + 3 cos 2t. The complementary function is

xc = Ae
1
2 t + Be−

1
2 t.

For a particular solution try xp = p + q cos 2t: then

4x′′p − xp − 1− 3 cos 2t = −16q cos 2t− p− q cos 2t− 1− 3 cos 2t

= (−p− 1) + (−17q − 3) cos 2t = 0

if p = −1 and q = − 3
17 . The general solution is

x = Ae
1
2 t + Be−

1
2 t − 1− 3

17
cos 2t.

(d) y′′ + 2y′ + 2x = 3. The characteristic equation is

m2 + 2m + 2 = 0, which has the complex roots m1 = −1 + i, m2 = −1− i.

Hence the complementary function can be expressed as

yc = Ae−x cos x + Be−x sinx.

A particular solution is simply xp = 3
2 . Therefore the general solution is

x = Ae−x cos x + Be−x sin x + 3
2 .

(e) x′′− 2x′+2x = 3 sin 2t. The characteristic equation is m2− 2m+2 = 0 which has the complex
roots m1 = 1 + i, m2 = 1 − i. Hence the complementary function is xc = Aet cos t + Bet sin t.
For a particular solution try xp = p cos 2t + q sin 2t. Then p = 3

5 and − 3
10 . Therefore

x = xc + xp = Aet cos t + Bet sin t +
3
5

cos 2t− 3
10

sin 2t.
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(f) 4x′′ − 2x′ − 2x = 3t2. The characteristic equation is 4m2 − 2m − 2 = 0 which has the roots
m1 = 1, m2 = − 1

2 . The complementary function is therefore xc = Ae−
1
2 t +Bet. For the particular

solution try xp = pt2 + qt + r:

4x′′ − 2x′ − 2x− 3t2 = 4(2p)− 2(2pt + q)− 2(pt2 + qt + r)− 3t2

= (−2p− 3)t2 + (−4p− 2q)t + (8p− 2q − 2r) = 0

for all t if p = − 3
2 , q = −2p = 3 and r = 4p − q = −9. Hence xp = − 3

2 t2 + 3t − 9. The general
solution is

x = xc + xp = Ae−
1
2 t + Bet − 3

2 t2 + 3t− 9.

(g) x′′ + x′ = 2− 3e−t cos t. The characteristic equation is

m2 + m = 0 with solutions m1 = 0, m2 = −1.

Therefore the complementary function is xc = A + Be−t. The absence of x in the equation means
that the equation is a special case. For the particular solution try xp = pt + qe−t cos t + re−t sin t:
then

x′′ + x′ − 2 + 3e−t cos t = (p− 2) + (−q − r + 3)e−1 cos t + (−r + q)e−t sin t

for all t if p = 2 and q = r = 3
2 . Hence xp = 2t + 3

2e−t cos t + 3
2e−t sin t. The general solution is

x = xc + xp = A + Be−t + 2t + 3
2e−t cos t + 3

2e−t sin t.

(h) 2x′′ + x′ − x = 1
2 t + 3e−t. The characteristic equation is

2m2 + m− 1 = 0 which has the roots m1 = −1, m2 = 1
2 .

Hence xc = Ae
1
2 t + Be−t. Since the forcing term includes 3e−t, this is a special case. Therefore

try xp = p + qt + re−t: then

2x′′ + x′ − x− 1
2 t− 3e−t = (−3r − 3)e−t + (q − p) + (−q − 1

2 )t = 0

if p = − 1
2 , q = − 1

2 and r = −1. The general solution is

x = Ae
1
2 t + Be−t − 1

2 t− te−t.

(i) y′′ + y = 1 + 2e3x + x2. The general solution is

y = A cosx + B sin x− 1 + 1
5e3x + x2.

(j) y′′ + 2y′ + y = 3 cos 2x + sin 2x. The characteristic equation has the repeated root m = −1.
Therefore the complementary function is yc = Ae−x + Bxe−x. For the particular solution try
yp = p cos 2x + q sin 2x: then

y′′ + 2y′ + y − 3 cos 2x− sin 2x = (−3A + 4B − 3) cos 2x + (−3B − 4A− 1) sin 2x = 0

if −3A + 4B − 3 = 0 and −3B − 4A − 1 = 0. Therefore A = − 13
25 and B = 9

25 and the general
solution is

Ae−x + Bxe−x − 13
25

cos 2x +
9
25

sin 2x.

(k) y′′ + 4y′ + 5y = e−x sin x. The characteristic equation is

m2 + 4m + 5− 0, which has the complex roots m1 = −2 + i, m2 = −2− i.

The complementary function is yc = Ae−2x cos x + Be−2x sin x. For the particular solution try
yp = e−x[p cos x + q sinx]: then p = − 2

5 and q = 1
5 . Therefore the general solution is

y = Ae−2x cos x + Be−2x sin x− 2
5
e−x cos x +

1
5
e−x sin x.
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19.6. From (19.15) and (19.16) the integrating factor of the differential equation

dx

dt
+ g(t)x = f(t)

(note that this must be written in the standard form) is I(t) = e
∫

g(t)dt, and the general solution
of the equation is

x(t) =
1

I(t)

∫
I(t)f(t)dt +

C

I(t)
.

(a) x′ − 3x = 0. Then I(t) = e
∫

3dt = e3t. The general solution is x = Ce−3t since f(t) = 0.

(b) x′+2t = 3. In this case g(t) = 2 and f(t) = 3. Then I(t) = e
∫

2dt = e2t. Therefore the general
solution is

x = e−2t

[∫
3e2tdt + C

]
=

3
2

+ Ce−2t.

(c) x′ − 2t = t. In this example g(t) = −2t and f(t) = t. Then

I(t) = e
∫
−2tdt = e−t2 .

The general solution is

x = et2 [
∫

(te−t2)dt + C] = et2 [− 1
2e−t2 + C] = − 1

2 + Cet2 .

(d) x′ − t−1x = t + te−t. In this case g(t) = −t−1 and f(t) = t + te−t. Hence, the integrating
factor is

I(t) = e−
∫

t−1dt = 1/t.

The general solution is

x = t[
∫

1
t
(t + te−t)dt + C] = t[−

∫
(1 + te−t)dt + C] = t2 − te−t + Ct.

(e) x′ − t−1x = t− 1. Here g(t) = −t−1 and f(t) = t− 1. As in (d), I(t) = 1/t. Hence

x = t[
∫

t−1(t− 1)dt + C] = t2 − t ln t + Ct.

(f) tx′ − 2x + 3 = 0. After a rearrangement to standard form, g(t) = −2/t and f(t) = −3/t. The

integrating factor is I(t) = e−
∫

(2/t)dt = −1/t2. Hence

x = −t2
[
−

∫
3
t3

dt + C

]
=

3
2

+ At2.

(g) y′ + (x + 1)−1y = sin x. Then I(x) = e
∫

[dx/(x+1)] = x + 1. Hence

y =
1

x + 1
[
∫

(x + 1) sin xdx + C] =
1

x + 1
[−(x + 1) cos x +

∫
cosxdx + C]

= − cos x +
sin x

x + 1
+

C

x + 1

(h) 3y′ + x−1y = x. In this case g(x) = 1/(3x) and f(x) = x/3. The integrating factor I(x) =

e
1
3

∫
x−1dx = x

1
3 . The general solution is

y = x−
1
3

[∫
x

1
3
1
3
xdx + C

]
= x

1
3

[
1
3

∫
x

4
3 dx + C

]

=
1
7
x2 + Ax−

1
3
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(i) (x − 1)y′ − y = (x − 1)2. In this case g(x) = −1/(x − 1) and f(x) = (x − 1). For x > 1, the
integrating function is

I(x) = e
∫

[dx/(x−1)] = e− ln(x−1) = 1/(x− 1).

(we do not need to consider the case x < 1 separately, since one integrating factor will do for all
x). The general solution is

y = (x− 1)[
∫

dx + C] = x(x− 1) + C(x− 1).

(j) x′ − t−1x = ln t. The integrating factor is I(t) = e−
∫

t−1dt = 1/t. The general solution is

x = 1
2 t[ln t]2 + At.

(k) tx′ − x = 1 + t. The general solution is

x = −1 + t ln t + At.

(l) The equation
dy

dx
=

x + y

x + 1
can be rearranged into the standard form

y′ − (x + 1)−1y = x(x + 1)−1.

The integrating factor is I(x) = e−
∫

(x+1)−1dx = 1/(x + 1) for all x 6= −1. Hence

y = (x + 1)
[∫

x

(x + 1)2
dx + C

]

= (x + 1)
[∫ (

1
1 + x

− 1
(1 + x)2

)
dx + C

]

= 1 + (1 + x) ln |1 + x|+ C(1 + x)

(m) x′ + x cos t = cos t. The integrating factor is I(t) = e
∫

cos tdt = esin t. Hence, the general
solution is

x = e− sin t[
∫

cos tesin tdt + C] = e− sin t[esin t + C] = 1 + Ce− sin t.

(n) The equation

x
dy

dx
=

1− y

1− x

can be rearranged into y′ + [x(1− x)]−1y = [x(1− x)]1 . The integrating factor is

I(x) = exp[
∫

dx

x(1− x)
= exp

{∫ [
1
x

+
1

1− x

]
dx

}

= exp[ln x− ln(1− x)]

=
x

1− x

for all x 6= 0 or 1. The general solution is

y =
(

1− x

x

)[∫
1

(1− x)2
dx + C

]
= − 1

x
+ C

(
1− x

x

)
.

(o) (1− t2)x′ + tx = t. The integrating factor is

I(t) = exp
[∫

tdt

1− t2

]
= exp

[
−1

2
ln(1− t2)

]
= (1− t2)−

1
2 ,
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assuming |t| < 1. Therefore the general solution is

x = (1− t2)
1
2

[∫
(1− t2)−

1
2 tdt + C

]
= 1 + C(1− t2)

1
2 .

19.7. The integrating factor of
dy

dx
+

1
x

y = f(x)

is I(x) = exp[
∫

x−1dx] = x. Hence, by (19.16), the general solution is

y =
1

I(x)

[∫
I(x)f(x)dx + C

]
=

1
x

∫
xf(x)dx +

C

x
.

If f(x) = ln x, then

y =
1
x

∫
x ln xdx +

C

x

=
1
x

[
1
2
x2 ln x− 1

2

∫
x2 1

x
dx

]
+

C

x
(integrating by parts)

=
1
x

[
1
2
x2 ln x− 1

4
x2

]
+

C

x

=
1
2
x ln x− 1

4
x +

C

x
.

For the condition y(1) = 0, C = 1
4 . Therefore y = 1

2x ln x− 1
4x + 1

4x .

19.8. (a) The integrating factor of
dy

dx
+ y = f(x)

is I(x) = e
∫

dx = ex. Hence, by (19.16), the general solution is

y =
1

I(x)

[∫
I(x)f(x)dx + C

]
= e−x

∫
exf(x)dx + Ce−x.

(b) Express the indefinite integral in the solution in (a) as a definite integral in the form

y = e−x

∫ x

0

euf(u)du + Ce−x.

The condition y(0) = y0 implies C = y0. Hence required solution is

y = e−x

∫ x

0

euf(u)du + y0e−x.

19.9. The equation for the temperature T in Newton cooling satisfies

dT

dt
= −k(T − T0).

The general solution of the equation is

T = T0 + Ce−kt.

We are given that T0 = 40 and T (0) = 100. Hence 100 = 40 + C, or C = 60. With t measured in
minutes, we also know that T (3) = 85. Hence 85 = 40− 60e−3k so that

k = −1
3

ln[(85− 40)/60] = −1
3

ln[9/12] = 0.0959.
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Let t1 be the time when the temperature reaches 60◦ Then

60 = 40 + 60e−kt1 , from which, t1 = −k−1 ln( 1
3 ) = 11.5 minutes,

approximately.

Chapter 20: Harmonic functions and the harmonic oscillator

20.1. A harmonic function is said to be in standard amplitude-phase form, if it is written as
C cos(ωt + φ) where C > 0 and −π < φ ≤ π.
(a) 3 cos(3t + 3

2π). In this problem C = 3 > 0 but the phase 3
2π has to be adjusted. We can add

or subtract any multiple of 2π without affecting the value of the harmonic function. Here we must
subtract 2π from the phase to give the standard form 3 cos(3t− 1

2π).
(b) 3 cos(ωt− 3π). Add 4π to the phase: standard form is 3 cos(ωt + π).
(c) 2 sin 3t. Use the identity sin A = cos(A− 1

2π): standard form is 2 cos(3t− 1
2π).

(d) 3 sin(2t + 1
2π). Standard form is 3 cos 2t.

(e) −3 cos(2t− 1
2π) = 3 cos(2t− 1

2π + π) = 3 cos(2t + 1
2π) which is the standard form.

(f) −4 cos(2t + 1
4π) = 4 cos(2t + 1

4π − π) = 4 cos(2t− 3
4π) which is the standard form.

(g) − sin t = sin(t + π) = cos(t + π − 1
2pi) = cos(t + 1

2π).
(h) 3 cos 2t + 4 sin 2t =

√
[32 + 42] cos(2t + φ) = 5 cos(2t + φ), where φ is defined by

cos φ = 3
5 , sin φ = − 4

5 .

For a standard form we choose φ = −0.927 . . . in radians.
(i) cos 2t+cos(2t−π) = cos 2t+cos 2t cos π+sin 2t sin π = cos 2t−cos 2t = 0, which is the standard
form.
(j) cos(2t − 3

2π) − cos(2t + 3
2π) = −2 sin( 1

24t) sin(− 3
2π) = −2 sin(2t) using the product formula,

Appendix B. Then

−2 sin(2t) = 2 sin(2t + π) = 2 cos(2t + π − 1
2π) = 2 cos(2t + 1

2π),

which is the standard form.

20.2. If x(t) = C1 cos(ωt+φ1), y(t) = C2 cos(ωt+φ2), and φ1 > φ2, x is said to lead y by φ1−φ2;
if φ1 < φ2 then x lags y.
(a) x = 4 cos 3t, y = 3 cos(3t− 1

2π). Here φ1 = 0 and φ2 = − 1
2π: hence φ1 > φ2 so that x leads y

by 1
2π.

(b) x = 2 cos(2t + 1
4π), y = 3 cos(2t + 9

2π). y is not in standard form: replace it by the standard
form y = 3 cos(2t + 1

2π). Then φ1 = 1
4π and φ2 = 1

2π: hence φ1 < φ2 so that x lags y.
(c) x = −3 cos 2t = 3 cos(2t + π), y = 4 cos 2t. Here φ1 = π and φ2 = 0: hence φ1 > φ2 which
means that x leads y.
(d) x = cos 3t, y = sin 3t = cos(3t− 1

2π). Here φ1 = 0 and φ2 = − 1
2π: hence φ1 > φ2 which means

that x leads y.
(e) x = 2 cos 3t, cos(3t− 9

4π) = cos(3t− 1
4π). In this case φ1 = 0 and φ2 = − 1

4π so that φ1 > φ2

which means that x leads y.

20.3. If the equation is expressed in the form

d2x

dt2
+ 2k

dx

dt
+ ω2

0x = 0,

then (a) natural frequency is ω0/(2π);

(b) the ‘frequency’ of the damped oscillation is (ω2
0 − k2)

1
2 /(2π); (c) the ‘amplitude’ of the

damped oscillation is Ae−kt; this drops by a tenth in time T where e−kT = 1
10 . Hence T = (ln 10)/k,

and the number of cycles is approximately Tω0/(2π).
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(a) (i) ω0/(2π) =
√

2.5× 105/(2π) = 79.58 cycles/s;
(ii) damped frequency=

√
2.5× 105 − 102/(2π) = 79.56 cycles/s;

(iii) number of cycles =ω0(ln 10)/(20π) = 18.32 cycles: 19 cycles needed.
(b) (i) ω0/(2π) =

√
4/(2π) = 0.318 cycles/s;

(ii) damped frequency=
√

4− 0.252/(2π) = 0.316 cycles/s;
(iii) No. of cycles=ω0(ln 10)/(2πk) = (2 ln 10)/(2π × 0.25) = 2.931 cycles: 3 cycles needed
(c) (i) ω0/(2π) =

√
3/(2π) = 0.276 cycles/s;

(ii) damped frequency=
√

3− 0.0752/(2π) = 0.275 cycles/s;
(iii) No. of cycles=ω0(ln 10)/(2πk) = 8.463 cycles: 9 cycles needed
(d) (i) ω0/(2π) = 0.711 cycles/s;
(ii) damped frequency=0.707 cycles/s;
(iii) number of cycles = 4, approximately.

20.4. (a) Let x = 3
1
2 cos ωt + sin(ωt + 1

4π). Then

x = 3
1
2 cosωt + cos(ωt− 1

4
π) = (3

1
2 + 2−

1
2 ) cos ωt + 2−

1
2 sin ωt

=
√

(
√

6 + 4) cos ωt + 2−
1
2 sin ωt

= (
√

6 + 1)2−
1
2 cos(ωt + φ)

where cos φ = (
√

6 + 1)/(
√

(8 + 2
√

6)), sin φ = −1/(
√

(8 + 2
√

6). Hence, φ = −0.282 radians.

(b) Let x = 3−
1
2 cos ωt− sin(ωt + 1

4π). Then, as in (a),

x = 3
1
2 cosωt− cos(ωt− 1

4
π) = (3

1
2 − 2−

1
2 ) cos ωt− 2−

1
2 sin ωt

= (
√

6− 1)2−
1
2 cos ωt− 2−

1
2 sin ωt

=
√

(4−
√

6) cos(ωt + φ)

where cos φ = (
√

6− 1)/(
√

(8− 2
√

6)), sin φ = 1/(
√

(8− 2
√

6)). Hence, φ = 0.604 radians.

(c) Let x = −3
1
2 cosωt + sin(ωt + 1

4π). Then

x = −3
1
2 cosωt + 2−

1
2 sin ωt + 2−

1
2 cos ωt = −(

√
6− 1)2−

1
2 cosωt + 2−

1
2 sin ωt

=
√

(4−
√

6) cos(ωt + φ),

where cos φ = −(
√

6− 1)/
√

(8− 2
√

6), sin φ = −1/
√

(8− 2
√

6). Hence, φ = −2.538 radians.

(d) Let x = −3
1
2 cos ωt− sin(ωt + 1

4π). Then, as in (a)

x = −(
√

6 + 1)2−
1
2 cosωt− 2−

1
2 sin ωt =

√
(4 +

√
6) cos(ωt + φ)

where cos φ = −(
√

6 + 1)/(
√

(8 + 2
√

6)), sin φ = 1/
√

(8 + 2
√

6). Hence, φ = 2.860 radians.

20.5. (a) For x(t) = Ce−kt cos(ωt + φ), the first derivative is

dx

dt
= −Ce−kt[k cos(ωt + φ) + ω sin(ωt + φ)].

The maxima and minima occur where dx/dt = 0, that is, where t satisfies

tan(ωt + φ) = − k

ω
.

Denoting these times by TN , they are given by

ωTN + φ = − arctan
[

k

ω

]
+ Nπ,
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where N is any integer.
(b) If

tan(ωt + φ) = − k

ω
,

then
cos(ωTN + φ) =

ω√
(ω2 + k2)

, sin(ωTN + φ) = − k√
(ω2 + k2)

,

if N is even, and

cos(ωTN + φ) = − ω√
(ω2 + k2)

, sin(ωTN + φ) =
k√

(ω2 + k2)
,

if N is odd. Hnece

x(TN ) = Ce−kTN cos(ωTN + φ) =
(−1)NωCe−kTN

(ω2 + k2)
1
2

.

20.6. From Example 20.4, Qc = Be−4t cos(ωt + φ), where B = 0.9851, ω = 99.92 and φ = 2.777.
The time constant of Qc is 1

4 .
(b) With g(x) containing non-exponential terms only, the decay of x, which tends to zero with t,
is controlled by h(t) = e−t/T . Let t = τ + T ln 2. Then

h(τ + T ln 2) = exp[−(τ + T ln 2)/T ] = exp[−τ − ln 2] = 1
2h(τ).

Hence the exponential factor halves in every interval of duration T ln 2.

20.7. Heavy damping: x′′ + 2kx′ + ω2x = 0. The characteristic equation is

m2 + 2km + ω2x = 0,

which has the roots

m1 = −k +
√

(k2 − ω2), m2 = −k −√(k2 − ω2).

For an overdamped oscillation (heavy damping), the friction term is large and satisfies the inequal-
ity k2 > ω2, in which case both roots are real and negative. The general solution is

A exp[{−k +
√

(k2 − ω2)}t] + B exp[{−k −√(k2 − ω2)}t].
The solution contains no oscillatory terms, and is the sum of two exponentially decaying terms.

20.8. x′′ + 10x′ + 24x = 0. The characteristic equation is

m2 + 10m + 24 = 0, which has the solutions m1 = −6, m2 = −4.

This is an overdamped case (Problem 20.7) with general solution

x = Ae−6t + Be−4t.

The initial conditions are x(0) = −3, x′(0) = 20 lead to the equations

A + B = −3, −6A− 4B = 20,

which have the solution A = −4, B = 1. Hence the required solution is

x = −4e−6t + e−4t.

The solution crosses the t axis where

−4e−6t + e−4t = 0, or e−2t = 1
4 .
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By taking the logarithm of this equation we obtain the uinque solution t = ln 2.

20.9. Critical damping: x′′ + 2kx′ + ω2x = 0 (k2 = ω2). The characteristic equation is

m2 + 2km + k2x = 0,

which has the repeated root m = −k. In this special case the general solution is

x = (A + Bt)e−kt.

20.10. x′′ + 2kx′ + ω2
0x = K cos ωt, k = 0.5, ω0 = 6, K = 10.

(a) The period of the free oscillation is

2π√
[ω2

0 − k2]
=

2π√
[36− 0.25]

= 1.051.

(b) From (20.14), the amplitude of the forced oscillation is

A =
K√

[(ω2
0 − ω2)2 + 4k2ω2]

=
10√

[1296− 71ω2 + ω4]
,

and the phase Φ is the polar angle of the point

(ω2
0 − ω2,−2kω) = (36− ω2,−ω).

We can write

Φ = − arctan
[

ω

36− ω2

]
.

(c) From (20.16) the resonant frequency is

ω =
√

[ω2
0 − 2k2] =

√
[36− 0.5] = 5.958.

(d) The curves of amplitude and phase against ω in the range 4 ≤ ω ≤ 8 are shown in Figure 14.
The peak in the first curve occurs at the resonant frequency.

5 6 7 8
Ω

0.4
0.6
0.8
1

1.2
1.4
1.6

A amplitude

5 6

-2.5

-2

-1.5

-1

-0.5

Φ phase

Figure 14: Problem 20.10

20.11. The equation of motion is

x′′ +
2ax(g + 2ax′2)

1 + 4a2x2
= 0.

The particle is in equilibrium at x = 0. For small x, x′2 and x2 can be ignored in the equation to
leave the linearized equation

x′′ + 2agx = 0.

The period of this simple harmonic motion is 2π/
√

[2ag].
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20.12. The equation of motion is

x′′ +
2ax(2ax′2 − g)

1 + 4a2x2
= 0.

The particle is in equilibrium at x = 0. For small x, x′2 and x2 can be neglected in the equation
to leave the linearized equation

x′′ − 2agx = 0.

The general solution is
x = Ae−

√
2agt + Be

√
2agt.

Unless B = 0 (which implies a severe restriction on the initial conditions) the particle will move
away from its initial position.

20.13. Displacement x(t) satisfies

x′′ + 4
[
x− 2

3− x

]
= 0.

(a) The system is in equilibrium is x′′ = 0 which occurs where

x(3− x)− 2 = 0 or (x− 2)(x− 1) = 0.

There are two positions of equilibrium: x = 1 and = 2.
(b) Let x = 1 + u. Then the differential equation in terms of u becomes

u′′ + 4
[
(1 + u)− 2

2− u

]
= u′′ − 4u

[
u− 1
2− u

]
= 0.

Let x = 2 + v. Then the equation becomes

v′′ +
[
(2 + v)− 2

1− v

]
= v′′ − 4v

[
v + 1
1− v

]
= 0.

(c) For small |u|, u satisfies the linearized equation u′′ + 2u = 0, and for small |v|, v satisfies
v′′ − 4v = 0.
(d) Near x = 1, u satisfies u′′ + 2u = 0, which has the general oscillatory solution

u = A cos
√

2t + B sin
√

2t.

Near x = 2, v satisfies v′′ − 4v = 0 which has the exponential unstable solution

v = Ae2t + Be−2t.

20.14. The particle has the equation of motion

d2u

dθ2
+ u− γ

H2
uα−2 = 0,

where u = r−1. Let u = u0, where u0 is a constant. Then

0 + u0 − γ

H2
uα−2

0 = 0.

Hence, provided α 6= 3,

u0 =
( γ

H2

)1/(3−α)

, (i)

which generates a circular orbit of radius r0 = 1/u0.
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Let u = u0 + x. Then x satisfies

x′′ + u0 + x− γ

H2
(u0 + x)α−2 = 0.

Using the binomial expansion given:

x′′ + u0 + x− γ

H2
uα−2

0 [1 + (α− 2)] ≈ 0.

Hence using (i) above to eliminate u0, the linearized equation for x is

x′′ + (3− α)x = 0.

The solutions are oscillatory (and therefore bounded) if α < 3, which means that a disturbed orbit
remains close to the circle. If α ≥ 3 then the disturbed orbit will diverge from the circle. In the
gravitational case, α = 2, the inverse square law.

20.15. The forced amplitude for the forced linear oscillator

d2x

dt2
+ 2k

dx

dt
+ ω2

0x = K cosωt.

is (see (20.16))

A =
K

[(ω2
0 − ω2)2 + 4k2ω2]

1
2
.

Assuming that k and ω0 are given, resonance will occur when A as a function of ω takes its
maximum value, or where

g(ω) = (ω2
0 − ω2)2 + 4k2

is a minimum. Thus
dg(ω)
dω

= −4ω(ω2
0 − ω2) + 8k2ω = 0

where ω2 = ω2
0 − 2k2, which gives the resonant frequency. Substitute this frequency back into A

to give the resonant amplitude

K

[4k4 + 4k2(ω2
0 − 2k2)]

1
2

=
K

2k(ω2
0 − k2)

1
2
.

20.16. (a) Given the wavelength λ = 1.2m and the period T = 1/250 s, the speed of sound is

v = λf =
λ

T
= 1.2× 250 = 30ms−1.

(b) Given the tuning frequency f = 100MHz = 100 × 106Hz = 108s−1 and electromagnetic wave
speed v = 3× 108s−1. Hence the wavelength

λ =
v

f
=

3× 108

108
= 3m.

20.17. Given

u(t, x) = A cos
[(

2πt

T

)
+ φ

]
cos

[(
2πz

λ

)
+ α

]
,

use the identity cos A cos B = 1
2 cos(A−B) + 1

2 cos(A + B) so that

u(t, x) =
1
2
A cos

[
2π

(
t

T
− z

λ

)
+ (φ− α)

]
+

1
2
A cos

[
2π

(
t

T
+

z

λ

)
+ (φ + α)

]
.
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The terms (
t

T
± z

λ

)

indicate waves travelling in opposite directions.

20.18. u = A cos(ωt− kz + φ).
(i) By (20.25a), u = cos

[
2π

(
t
T − z

λ

)
+ φ

]
.

(ii) By (20.28), u = cos
[
ω

(
t− z

v

)
+ φ

]
.

20.19. u = cos(ωt− kz + φ). Apply the identity

cos(A−B) = cos A cos B + sin A sin B

with, for example, A = ωt, B = kz − φ. Then

u = cos ωt cos(kz − φ) + sin ωt sin(kz − φ)

= cos ωt cos(kz − φ) + sin ωt cos(kz − φ− 1
2
π),

which matches the form of (20.24), since ω = 2π/T and k = 2π/λ.

20.20. Given u(t, z) = A cos(4500t− 3z), (ω4500, k = 3),
phase velocity, v = ω/k = 1500 from (20.28);
frequency, f = ω/(2π) = 4500/(2π) ≈ 716.2 from (20.25b);
wavelength, λ = 2π/k = 2π/3 ≈ 2.09.

20.21. From (20.31a), the plane wave in direction ŝ is

u(t, r) = A cos(ωt− kŝ · r + φ).

ŝ is a unit vector in the direction of s = (1, 1, 1), that is, ŝ = ( 1√
3 , 1√

3 , 1√
3 ). Hence

ŝ · r =
(

1√
3 , 1√

3 , 1√
3

)
· (x, y, z) = 1√

3 (x + y + z),

where (x, y, z) are the original coordinates. Therefore

u(t, r) = A cos[ωt− 1√
3 (x + y + z) + φ].

20.22. (a) cos ω1t + cosω2t is periodic if, and only if, there exists a number T (the period) such
that for all values of t

cos ω1t + cos ω2t = cos ω1(t + T ) + cos ω2(t + T ),

which is equivalent to the requirement that ω1T and ω2T are multiples of 2π. In that case ω1T =
p2π and ω2T = q2π for some integer values of p and q, or

ω1

ω2
=

p

q
,

where p and q are integers. When ω1/ω2 is rational, the smallest period T = 2πp/ω1 or 2πq/ω2 is
got by reducing p/q to its lowest terms.
(b) Let

u = u1 + u2 = cos 10t + cos 13.1t.

Here, ω1 = 10 and ω2 = 13.1;
ω1

ω2
=

10
13.1

=
p

q
,
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where p = 100 and q = 131. The exact period T of u is given by

T =
2πp

ω1
= 2π

100
10

= 2π ≈ 62.8
(

or
2πq

ω2
= 2π

131
13.1

)
.

The periods of u1 and u2 are 2π/10 ≈ 0.62 and 2π/13.1 ≈ 0.48 respectively. The period of the
beats is obtained from (20.36): it is

TB =
1
2
× 2π

1
2∆ω

=
2π

ω2 − ω1
=

2π

3.1
≈ 2.02.

So u1 + u2 has a period of about 31 beats long.

20.23. (a) By expanding the cosines by Appendix B(b), and collecting the coefficients of cos ωt
and sin ωt we obtain

u = A1 cos(ωt + φ1) + A2 cos(ωt + φ2) = α1 cos ωt− α2 sin ωt, (i)

where
α1 = A1 cos φ1 + A2 cos φ2, α2 = A1 sin φ1 + A2 sin φ2.

Following a similar procedure to that giving (1.18), put R =
√

(α2
1 + α2

2), and choose a constant φ
such that

cosφ =
α1

R
, sin φ =

α2

R
.

Then (i) becomes u = R cos(ωt + φ), where the constants R and φ are determined as above.
(b) By the same procedure, with ωt− kz in place of ωt, we obtain

u = R cos(ωt− kz + φ).

20.24. (Reflection, phase and amplitude unchanged) Put

u = A cos(ωt− kz + φ) + A cos(ωt + kz + φ)
= 2A cos(ωt + φ) cos kz, (by using Appendix B(d)).

(This represents a stationary wave.)
(b) Phase change only:

u = A cos(ωt− kz + φ1) + A cos(ωt + kz + φ2)

= 2A cos(ωt +
1
2
{φ1 + φ2}) cos(−kz +

1
2
{φ1 − φ2})

(This represents a standing wave.)
Amplitude change only:

u = A1[cos(ωt + φ) cos kz + sin(ωt + φ) sin kz]
+A2[cos(ωt + φ) cos kz − sin(ωt + φ) sin kz]

= [(A1 + A2) cos kz + (A1 −A2) sin kz] cos(ωt + φ)

(This is a standing wave: the coefficient of cos(ωt + φ) takes the form A cos(kz + α) where A and
α are constants by the result eqn (1.18).)

20.25. Let

u = A cos(ω1t− k1z) + A cos(ω2t− k2z)

= 2A cos[
1
2
(ω2 − ω1)t− 1

2
(k2 − k1)z] cos[

1
2
(ω2 + ω1)t− 1

2
(k2 + k1)z] (i)
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(compare eqn (20.42). Here, the phase velocity v is a function of λ. Also ω = kv (eqn (20.28)) and
k = 2π/λ (eqn (20.25a)). The beat profile is

±2A cos[ 12∆ω t− 1
2∆k z],

where ∆ω = ω2 − ω1 and ∆k = k2 − k1. The group velocity v0 is defined as the limit of the beat
velocity as the parameters ∆ω, ∆k, etc approach zero.

The beat velocity is
∆ω

∆k
=

ω2 − ω1

k2 − k1
, (eqn (20.48)).

In terms of λ and v we have

vg = lim
∆k→0

∆ω

∆k
=

d(kv)
dk

=
d(v/λ)
d(1/λ

=
d(v/λ)

dλ

/
d(1/λ)

dλ
=

(
− v

λ2
+

1
λ

dv

dλ

)/ (
− 1

λ2

)

= v − λ
dv

dλ
.

20.26. Put f in place of f1, ∆f in place of (f2− f1), and similarly with the other variables. Since
f1λ1 = v1 and f2λ2 = v2, we have

(f + ∆f)(λ + ∆λ) = v + ∆v.

Divide the left-hand side by fλ and the right side by v = fλ. This gives the first identity
(

1 +
∆
f

)(
1 +

∆λ

λ

)
= 1 +

∆v

v
.

From the identity

kv =
2π

λ
(λf) =

2π

λ

λω

2π
= ω

we obtain the second identity.

20.27. Taking the sound speed in air as approximately 300 ms−1, we have v = 300ms−1 and
u = 105/3600 = 2.777ms−1. The frequency heard on the approach is

350
(1− 2.777/300)

= 352.2H

and the frequency on recession is

350
(1 + 2.777/300)

= 346.8H.

The frequency drop is 5.4H.

Chapter 21: Steady forced oscillations: phasors, impedance, transfer functions

21.1. (a) X = 2e
1
2 πi or 2i.

(b) X = 2e−
1
2 πi in polar form, or X = −2i.

(c) x = 3 sin ωt = 3 cos(ωt− 1
2π). Therefore X = 3e−

1
2 πi or −3i.

(d) x = 4 cos(3t− 1
4π + 1

2π) = 4 cos(3t + 1
4π). Therefore X = 4e

1
4 πi or 2

√
2(1 + i).

21.2. (a) X = 1− i =
√

2e−
1
4 πi. Therefore, x =

√
2 cos(ωt− 1

4π).

(b) X = 2e
1
2 πi, x = 2 cos(ωt + 1

2π).
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(c) X = 3e−
1
2 πi, x = 3 cos(ωt− 1

2π).

(d) X = 2e−
3
4 πi, x = 2 cos(ωt− 3

4π).

(e) X = 4e−
5
6 πi, x = 4 cos(ωt− 5

6π).

(f) X = 2e−
2
3 πi, x = 2 cos(ωt− 2

3π).
(g) X =

√
5ei arctan 2, x =

√
5 cos(ωt + arctan 2).

(h) X =
√

5ei(arctan 2+ 1
2 π), x =

√
5 cos(ωt + arctan 2 + 1

2π).
(i) |X| = 1, arg X = arg(2 + 3i)− arg(2− 3i) = 2 arg(2 + 3i) = 2 arctan 3

2 (= 1.97).

(j) X = − 1
3 i + 2i = 5

3 i = 5
3e

1
2 πi, x = cos(ωt + 1

2π).

21.3. Use the addition principle (21.3).
(a) x = − cos 2t + cos(2t− 1

4π). Then

X = 1 + e−
1
4 πi = 1 + cos 1

4π − i sin 1
4π = 1 + 1√

2 − i 1√
2 .

Hence |X| = √
(2 +

√
2), arg X = arctan

(
1

1+
√

2

)
.

(b) x = cos 3t− sin 3t = cos 3t− cos(3t− 1
2π). Therefore

X = 1− e−
1
2 πi = 1 + i; |X| = √

2, arg X = 1
4π.

(c) x = sin 3t + 2 cos 3t = cos(3t− 1
2π) + 2 cos 3t. Therefore

X = e−
1
2 πi + 2 = 2− i,

and
|X| = √

5, arg X = arctan(− 1
2 ) = arctan 1

2 .

21.4. Use the addition principle (21.3).
(a) x = − cos 2t + cos(2t + 1

4π) + cos(2t− 1
2π). Therefore

X = −1 + e
1
4 πi + e−

1
2 πi = −1 + 1√

2 + i 1√
2 + i = ( 1√

2 − 1) + ( 1√
2 + 1)i.

(b) x = cos 1760t− 3 cos(1760t− 1
2π) + cos(1760t + 1

2π). Therefore

X = 1− 3e−
1
2 πi + e

1
2 πi = 1 + 4i.

21.5. Let X be represented by the vector OP ; the coordinates of P are

c cos(ωt + φ), c sin(ωt + φ).

P therefore lies on a circle, centre O and radius c. If θ is the angular coordinate then θ = ωt+φ, so
that the angular velocity dθ/dt = ω. The projection of OP on the x axis is simply the x coordinate
of P .

21.6. (a) Z = R + 1/(iωC) (from (21.7)).
(b) Z = R + iωL.
(c) Z = iωL + 1/(iωC) = i(ω2L− 1)/(ωC).
(d) 1/Z = (1/R) + [1/(1/iωC)], from (21.7). Therefore, Z = R/(1 + iωRC).
(e) From (21.7),

1
Z

=
1
R

+
1

iωL
.

Therefore, Z = iωLR/(R + iωL).

71



(f)
1
Z

=
1

iωL
+

1
1/(iωC)

.

Therefore, Z = iωL/(1− ω2LC).

(g)
1
Z

=
1

R + iωL
+

1
1/iωC

.

Therefore
Z =

R + iωL

(1− ω2LC) + iωRC
.

(h)
1
Z

=
1

R + 1/(iωC)
+

1
iωL

.

Therefore

Z =
ωL(1 + iωRC)

ωRC + i(ω2LC − 1)
.

(i) Z = R + (impedance of L and C in parallel). From (f) we obtain

Z = R +
iωL

1− ω2LC
.

(j)
1
Z

=
1

R + iωL
+

1
R

.

Therefore

Z =
R(R + iωL)
2R + iωL

.

(k) Z is given by
1
Z

=
1

iωL
+

1
1/(iωC)

+
1
R

.

(l) (NB: the problem has been simplified in the 2003 reprint by deleting Z5.) The circuit is
equivalent to two parallel circuits connected in series. The impedance ZL of the left-hand circuit
is given by

1
ZL

=
1
Z1

+
1
Z3

,

and the impedance ZR of the right-hand circuit is given by

1
ZR

=
1
Z2

+
1
Z4

.

The impedance of the whole circuit is given by

Z = ZL + ZR =
Z1Z3

Z1 + Z3
+

Z2Z4

Z2 + Z4
.

21.7. The solutions for (21.6a,b,c,d) are given. The voltage v(t) has phasor V = 2. The corre-
sponding current phasors I are given by I = V/Z, where Z is the complex impedance obtained in
(21.6a,b,c,d).

(a) I =
2

R− i/(ωC)
=

2ωC(ωCR + i)
ω2C2R2 + 1

.
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Therefore |I| = 2ωC/(ω2C2R2 + 1)
1
2 , and the phase of I is arctan[1/(ωRC)].

(b) I =
2

R + iωL
=

2(R− iωL)
R2 + ω2L2

.

Therefore |I| = 2/(R2 + ω2L2)
1
2 , and phase is arctan(ωL/R).

(c) I =
2

iωL + 1/(iωC)
=

2iωC

ω2LC − 1
.

Therefore, |I| = 2ωC/(ω4C2L2 + 1)
1
2 ; phase is 1

2π.

(d) I =
2

R/(1 + iωRC)
=

2
R

(1 + iωRC).

Therefore |I| = 2(1 + ω2R2CR)
1
2 /R; phase of I is arctan(ωRC).

21.8. (a) The complex impedance Z = 3 + 3i− i = 3 + 2i, and the current phasor is therefore

I1 =
V0

Z
=

V0

3 + 2i
.

(The transfer impedance is V0/I1 = Z in this case.) The voltage phasor

V1 = 3iI1 = 3
V0i

3 + 2i
,

so the voltage gain
V1

V0
=

3i
3 + 2i

=
1
13

(2 + 3i).

(b) Let I represent the current input at the terminals. The impedance ZR of the right-hand,
parallel, circuit is given by

1
ZR

=
1
−2i

+
1

1− i
=

1− 3i
−2− 2i

, (i)

and the impedance Z of the whole circuit is given by

Z = 1 +
−2− 2i
1− 3i

= −1 + 5i
1− 3i

=
2
13

(3− 2i). (ii)

The current I0 delivered by V0 to the whole circuit is

I0 =
V0

Z
= V0

1− 3i
1 + 5i

.

The voltage drop over the unit resistance in series is therefore equal to

I0 = −V0
1− 3i
1 + 5i

,

and the voltage over the right-hand circuit is

V1 = V0 + V0
1− 3i
1 + 5i

= V0
2 + 2i
1 + 5i

.

Therefore the voltage gain
V1

V0
=

2 + 2i
1 + 5i

=
2
13

(3− 2i).
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The transfer impedance V0/I1 is given by

V0

I1
=

V0

V1

V1

I1
=

1 + 5i
2 + 2i

(1− i)

(since 1/I1 is the impedance 1− i of the I1, V1 branch). Therefore

V0

I1
=

1
2
(5− i).

(c) Problem (c) has been deleted from the 2003 reprint.

21.9. The components of the phasors are given to one decimal place.
(a) cos 10t+2 cos(10t+0..3). The phasors are (1, 0) and (2 cos 0.3, 2 sin 0.3) = (1.9, 0.6). Resultant
phasor has components (2.9, 0.6).
(b) cos 10t+2 sin(10t+10.2) = cos 10t−2 cos(10t+10.2− 1

2π). The phasors are (1, 0) and (1.4,−1.4),
and the resultant has components (3.9,−0.6)
(c) cos 10t + 3 cos(10t − 0.2). the phasors are (1, 0) and (3 cos(−0.2), 3 sin(−0.2)). The resultant
has components (3.9,−0.6).
(d) sin 20t − 3 cos(20t + 0.75) = − cos(20t − 1

2π) − 3 cos(20t + 0.75). The phasors are (0, 1) and
(−3 cos 0.75,−3 sin 0.75) = (−2.2,−2.0). The resultant is (−2.2,−1.0).
(e) 2 cos(50t + 0.4) + sin(50t + 0.3) − 3 cos(50t − 0.5). The phasors are (1.8, 0.8), (−0.3, 1.0) and
(−2.6, 1.4). The resultant is (−1.1, 3.2).

21.10. (a) Without loss of generality take φ = 0 and the amplitude A = 1. Then

u(x, y, z, t) = cos[ωt− 3−
1
2 k(x + y + z)].

In the x, y plane the field is

u(x, y, z, t) = cos[ωt− 3−
1
2 k(x + y)].

(b) The combined wave takes the form

u(x, y, z, t) = cos[ωt− 3−
1
2 k(x + y + z)] + cos(ωt− kz). (i)

On z = 0
u = cos[ωt− 3−

1
2 k(x + y)] + cos ωt.

In terms of the corresponding phasors this becomes

U = e−ik(x+y)/
√

3 + 1 = (1 + cos[k(x + y)/
√

3]) + i sin[k(x + y)/
√

3].

The intensity of the wave on z = 0 is proportional to |U|2, where

|U|2 = 2 + 2 cos[k(x + y/
√

3].

The maxima of |U|2 (the fringes) occur where k(x + y)/
√

3 = nπ and n is any integer; that is,
along the 45◦ straight lines x + y =

√
3nπ/k. They are spaced at equal distances

√
(3/2)π/k.

Chapter 22: Graphical, numerical, and other aspects of first-order equations

22.1. The lineal-element diagrams were obtained using Mathematica: the x and y ranges chosen
are indicated by the graphs.
(a) y′ = −y:
(b) y′ = x− y.
(c) y′ = x/y.
(d) y′ = xy.
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Figure 15: Problem 22.1(a)
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Figure 16: Problem 22.1(b)

(e) y′ = −y/x
(f) y′ = y/x.
(g) y′ = (x− 1)y.
(h) y′ = 1/(x2 + y2).
(i) y′ = 1/(x2 + y2 − 1).
(j) y′ = (1− y2)

1
2 .

(k) y′ = (y/x)
1
2 .

22.2. (a) y′ = − 1
2y, y[0] = 1, 0 ≤ x ≤ 2. Euler’s method for initial-value problems is given in

(22.2). A Mathematica program for Euler’s method is given below for this equation: the step-length
is h = 0.2, and the number of steps n = 10.

Euler program
Clear[f, x, y, h]
f[x , y ] = -y/2;
h = 0.2;
y[0] = 1;
x[n ] = n*h;
y[n ] := y[n] = y[n - 1] + h*f[x[n - 1], y[n - 1]];
euler = Table[x[i], y[i], {i, 0, 10}]
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Figure 17: Problem 22.1(c)
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Figure 18: Problem 22.1(d)
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Figure 19: Problem 22.1(e)

To three decimal places the numerical solution gives

n 0 1 2 3 4 5 6 7 8 9 10
x(n) 0 0.2 0.4 0.6 0.8 01.0 1.2 1.4 1.6 1.8 2.0
y(n) 1 0.9 0.81 0.729 0.656 0.590 0.531 0.478 0.430 0.387 0.349

The exact solution is y = e−
1
2 x which gives y = 0.367 . . . at x = 2. Smaller values for h improve the

accuracy. The figure shows the exact solution (the continuous curve) and the euler approximation
(the dots).

(b) y′ = −x/y, y(−1) = −1, −1 ≤ x ≤ 1. The Euler program is:

Clear[f, x, y, h]
f[x , y ] = -x/y;
h = 0.1;
y[-1] = -1;
x[n ] = -1 + n*h;
y[n ] := y[n] = y[n - 1] + h*f[x[n - 1], y[n - 1]];
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Figure 20: Problem 22.1(f)
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Figure 21: Problem 22.1(g)
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Figure 22: Problem 22.1(h)

euler = Table[x[i], y[-1 + i], i, 0, 20]

The figure shows the numerical approximation with the step-length h = 0.1 and the number of
steps n = 20 compared with the exact solution y = −(2− x2)

1
2 .

There is considerable divergence between the approximation and the exact solution. We need
step-lengths of the order of h = 0.01 to achieve a close approximation. The Euler method can be
applied to −2 < x ≤ −1 by choosing negative values of h.
(c) y′ = (1 − y2)

1
2 , y(0) = 0, 0 ≤ x ≤ 1

2π. The program in (a) can be adapted to this equation.
A comparison between the exact solution y = sin x and the Euler approximation is shown for a
step-length h = π/20.
22.3. A Mathematica program for Euler’s method is given in Problem 22.2. Some typical solutions
are shoen in each of thes cases.
(a) y′ = y(x+1)/[x(y+1)] for −1 < x < 1. The general solution is yey = Axex (see Example 22.6).
The solutions shown are for A = −2,−1,−0.5, 0, 0.5, 1, 2.
(b) y′ = 2y

1
2 (see Example 22.7). Figure 30 shows a solution computed using Euler’s method with

initial condition y(1) = 1, h = −0.01: the computed solution ends near to (0, 0). Other initial
conditions are translated copies of this solution as shown in Figure 22.10(b).
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Figure 23: Problem 22.1(i): y′ = 1/(x2 + y2 − 1).
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Figure 24: Problem 22.1(j)
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Figure 25: Problem 22.1(k)

(c) y′ = (y/x)
1
2 . A lineal-element diagram in x, y > 0 is shown in the figure for Problem 22.2(c).

Two solution curves computed using Euler’s method are shown in Figure 31 for initial values
y(0.1) = 0.2 and y(0.2) = 0.1.

22.4. Separation of variables: these are equations of the form dy/dx = g(x)h(y). The general
solution is given by ∫

dy

h(y)
=

∫
g(x)d + C.

Remember that there often several ways of representing the solutions.
(a) y′ = x/y. In this case g(x) = x and h(y) = 1/y. Hence the solution is given by

∫
ydy =

∫
xdx + C, or

1
2
y2 =

1
2
x2 + C or y2 − x2 = A,

a family of hyperbolas.
(b) y′ = 2x/y. The solution is given by

∫
ydy =

∫
2xdx + C, or

1
2
y2 = x2 + C.
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Figure 26: Problem 22.2(a)
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Figure 27: Problem 22.2(b)
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Figure 28: Problem 22.2(c)

(c) y′ = x/(y + 2). The solution is given by

(y + 2)2 = x2 + C.

(d) y′ = (x + 3)/(y + 2). The solution is

(y + 2)2 = (x + 3)2 + C.

(There are alternative answers such as 1
2y2 + 2y = 1

2x2 + 3x + C.)
(e) y′ = x2/y2. The solution is given by

∫
y2dy =

∫
x2dx + C, or

1
3
y3 =

1
3
x3 + C.

(f) y′ = −x2/y2. the general solution is

y3 = −x3 + C.
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Figure 29: Problem 22.3(a)
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Figure 30: Problem 22.3(b)
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Figure 31: Problem 22.3(c)

(g) y′ = y2/x2. The general solution is given by
∫

dy

y2
=

∫
dx

x2
+ C or − 1

y
= − 1

x
+ C.

This can be also expressed in the form

y =
x

1 + Cx
.

(h) y′ = −y2/x2. The general solution is

y =
x

Cx− 1
.

(i) 2xy′ = y2. Then

2
∫

dy

y2
=

∫
dx

x
, or

−2
y

= ln |x|+ C.

This can also be expressed in the form

y =
−2

C + ln |x| .

(j) yy′ + x = 1. Then the general solution is given by

y2 = 2x− x2 + C.

(k) dx/dt = 3t2x3. The general solution is given by

x2 = − 1
2t3 + C

.

(l) (sin x)(dx/dt) = t. Then separating the variables and integrating
∫

sin xdx =
∫

tdt + C
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so that − cosx = 1
2 t2 + C.

(m) ex+y(dy/dx) = 1. The general solution is

ey = −ex + C.

(n) (1 + x2)(dy/dx) + (1 + y2) = 0, y(0) = −1. This is an initial-value problem. Separating the
variables ∫

dy

1 + y2
= − dx

1 + x2
,

so that
arctan y = − arctanx + C.

Using the initial condition, (− arctan 1) = C, or C = − 1
4π. Hence

y = tan(−1
4
π − arctanx) =

1 + x

x− 1

(see Appendix B(b)).

22.5. dy/dx = −x/y. Consider ∫ x

2

udu = −
∫ y

1

vdv.

Differentiate this equation with respect to x:

x = −y
dy

dx
,

by (15.20), which is the same as the differential equation. Also the integrals are both zero when
y = 1 and x == 2, which agrees with the given condition.

The solution of
dy

dx
= g(x)h(y), y(a) = b

is ∫ x

a

g(u)du =
∫ y

b

h(v)dv.

22.6. The following comments and figures provide some help in plotting solutions, with warnings
about spurious solutions.
(a) x(dy/dx) = 2y

1
2 . Note that y must be positive. Separation of variables gives

y = (ln |x|+ C)2.

The figure shows three curves in x > 0 for the stated values of C: note the special solution y = 0.
Since y

1
2 > 0, then dy/dx > 0 for x > 0, and dy/dx < 0 for x < 0 on solutions. Only portions of

the curves will be solutions.

1 2 3 4 5
x

1
2
3
4
5
6

y
C=1

C=0

C=-

Figure 32: Problem 22.6(a)

(b) dy/dx = xy
1
2 . Note that y must be positive. By separation of variables the general solution is

y = 1
16 (x2 + C)2,
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Figure 33: Problem 22.6(b)

and these are plotted for three values of C. However, for true solution curves, dy/dx > 0 for x > 0,
and dy/dx < 0 for x < 0, so certain parts of the illustrated curves are spurious. Note also that
that y = 0 is a special solution.
(c) dy/dx = (1− y2)

1
2 . Real solutions will be restricted to −1 ≤ y ≤ 1. Separating the variables

∫
dy

(1− y2)
1
2

=
∫

dx + C, or arcsin y = x + C, or y = sin(x + C).

The figure shows 3 curves for C = 0 and C = ±2: the set of valid solutions is limited to the
segments on which dy/dx > 0.
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Figure 34: Problem 22.6(c)

(d) x(dy/dx) = (1− y2)
1
2 , −1 ≤ y ≤ 1. The general solution is

y = sin(C + ln |x|).

The figure shows three of these curves in x > 0, for C = 0 and C = ±1. Since x > 0 and
(1− y2)

1
2 > 0, only those parts of the solutions which have positive slope are solution curves: the

other sections of curves are spurious. Similar remarks apply for x < 0.
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Figure 35: Problem 22.6(d)

22.7. Differential forms are given in Section 22.4.
(a) dy/dx = (2x− y)/(x + 2y). In differential form this can be written as

0 = (2x− y)dx− (x + 2y)dy = d(x2)− d(xy)− d(y2) = d(x2 − xy − y2).
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Therefore the general solution is given by

x2 − xy − y2 = C.

Check for solutions y = mx in the differential equation: we obtain

m =
2−m

1 + 2m
, or m2 + m− 1 = 0,

which has roots m = 1
2 (−1±√5). There are two straight-line solutions. They can also be obtained

by putting C = 0 above.
(b) dy/dx = y/(y2 − x). In differential form the equation becomes

0 = ydx− (y2 − x)dy = d(xy)− d( 1
3y3) = d(xy − 1

3y3).

Therefore the general solution is given by xy − 1
3y3 = C.

(c) dy/dx = (x2 − y)/(x + y). In differential form this becomes

0 = (x2 − y)dx− (x + y)dy = d( 1
3x3)− d(xy)− d( 1

2y2) = d( 1
3x3 − xy − 1

2y2).

Therefore the general solution is given by 1
3x3 − xy − 1

2y2 = C.
(d) dy/dx = (2x− y)/(x− 2y). The general solution is given by

x2 − xy + y2 = C.

(e) dydx = (x− 2xy)/(x2 − y). In differential form the equation becomes

0 = (x− 2xy)dx− (x2 − y)dy = d( 1
2x2 − x2y + 1

2y2).

Therefore the general solution is given by

x2 − 2x2y + y2 = C.

(f) dy/dx = 3x2/(3y2 + 1). In differential form

0 = 3x2dx− (3y2 + 1)dy = d(x3 − y3 − y).

Therefore the general solution is given by x3 − y3 − y = C. (Note that the equation is also
separable.)
(g) dy/d + [2xy/(x2 − 1)] = 0. In differential form

0 = 2xydx + (x2 − 1)dy = d(x2y − y).

Hence the general solution is y(x2 − 1) = C.
(h) (1− sin y)(dy/dx) + cos x = 0. In differential form x and y satisfy

0 = cos xdx + (1− sin y)dy = d(sinx + y + cos y).

Therefore the general solution is sin x + y + cos x = C. (This is another separable equation.)
(i) (1 + 3e3y)(dy/dx) = 2e2x − 1. In differential form

0 = (2e2x − 1)dx− (1 + 3e3y)dy = d(e2x − x− y − e3y).

Hence the general solution is
e2x − x− y − e3y = C.

(j) (ex+y + 1)(dy/dx) + (ex+y − 1) = 0. In differential form

0 = (ex+y − 1)dx + (ex+y + 1)dy = d(ex+y − x + y).
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Therefore the general solution is given by

ex+y − x + y = C.

(k) dy/dx = (1 + cosx sin y)/(1− sinx cos y). In differential form

0 = (1 + cosx sin y)dx− (1− sin x cos y)dy = d(x + sin x sin y − y).

Hence the general solution is given by

x + sin x sin y − y = C.

22.8. (a) dy/dx = [y(y − 2x)/x(x− 2y)]. In differential form the equation can be written as

0 = (y2 − 2xy)dx− (x2 − 2xy)dy = d(y2x− x2y).

Therefore the general solution is given by

y2x− x2y = C.

(b) dy/dx = [y(1− x2)]/[x(1 + x2)]. In differential form

0 = (y − yx2)dx− (x + x3)dy.

This is not a perfect differential, so an integrating factor is needed; say 1/x2. Multiply through by
1/x2:

0 =
( y

x2
− y

)
dx−

(
1
x

+ x

)
dy = −d

(y

x

)
− d(xy).

Therefore the general solution is given by

y

x
+ xy = C.

(c) dy/dx = y2/(y2 − 1). In differential form

0 = dx− (1− y−2)dy = d(x− y − y−1).

Therefore the general solution is given by

x− y − 1
y

= C.

(d) dy/dx = [y(y − 1)]/[y2 − x]. In differential form

0 = y(y − 1)dx− (y2 − x)dy.

An integrating factor is required. Multiply through by 1/y2:

0 =
(

1− 1
y

)
dx−

(
1− x

y2

)
dy = d

(
x− y − x

y

)
.

(e) dy/dx = [y(x2 + y2 − y)]/[x(x2 + y2)]. In differential form

0 = y(x2 + y2 − y)dx− x(x2 + y2)dy,

which requires an integrating factor. Multiply through by 1/(x2y2):

0 =
(

1
y

+
y

x2
− 1

x2

)
dx−

(
x

y2
+

1
x

)
dy = d

(
x

y
− y

x
+

1
x

)
.

84



Therefore the general solution is given by

x

y
− y

x
+

1
x

= C.

(f) dy/dx = [y(x2 − y)]/[x(x3 + y)]. In differential form

0 = y(x3 − y)dx− x(x3 + y)dy = x3y2

(
1
y
dx− x

y2
dy

)
− y(ydx + xdy)

= x3y2d
(

x

y

)
− yd(xy).

We now perform a change of variable: u = xy and v = x/y, so that the differential form becomes

vdv =
1
u2

du,

which has the general solution

1
2
v2 = − 1

u
+ C, or

1
2

(
x

y

)2

= − 1
xy

+ C.

22.9. The logistic equation is
dP

dt
= aP − bP 2.

This is a separable equation: therefore
∫

dP

P (a− bP )
=

∫
dt + C, or

1
a

∫ (
1
P

+
b

a− bP

)
dP = t + C.

Hence
ln P − ln |a− bP | = at + aC.

Solve this equation for P . If a− bP > 0, then, taking exponentials of both sides of the equation:

P

a− bP
= Beat, or P =

Ba

Bb + e−at
.

If P (0) = P0, then the solution can be written as

P =
aP0

bP0 + (a− bP0)e−at
.

It can be checked that the same solution also holds for a − bP < 0. Note also that the equation
has special solutions P = a/b and P = 0.

To reduce the number of parameters, write the equation in the form

P =
κP0

P0 + (κ− P0)e−τ
,

where κ = a/b and τ = at. In Figure 36 κ = 1 and P0 = 0.5, 1, 2: the solutions P = 0 and P = 1
are also shown.

22.10. For small P , dP/dt ≈ aP . With P (0) = 10, it follows that

a ≈ P ′(0)
P (0)

=
150
100

= 1.5

Ultimately for large t, P → 25000. Hence

b = a/25000 = 1.5/25000 = 0.00006.
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Figure 36: Problem 22.9

With t measured in days,

P (t) =
aP0

bP0 + (a− bP0)e−at

=
15

0.0006 + (1.5− 0.0006)e−1.5t
=

15
0.0006 + 1.5e−1.5t

.

If we conjecture the law
dP

dt
= aP − bP 4,

then b = 1.5/(25000)4 = 9.6× 10−14. A comparison of the two solutions computed numerically is
shown in the figure both using the initial value P (0) = 10.
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t
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10000

15000

20000

25000

P

P2 law
P4 law

Figure 37: Problem 22.10

22.11. (a) The equation of motion of the falling body is

d2x

dt2
= g − K

m

(
dx

dt

)α

.

When the body reaches its limiting speed it will be moving with constant speed, which means that
its acceleration d2x/dt2 is zero. Therefore from the equation of motion its limiting speed vs is
given by

vs =
(mg

K

)1/α

.

(b) Let v = dx/dt. Then
d2x

dt2
=

dv

dt
=

dx

dt

dv

dx
= v

dv

dx
=

1
2

d(v2)
dx

.

Therefore the equation of motion can be expressed as

d(v2)
dx

= 2
(

g − K

m
(v2)

1
2 α

)
.

(c) The given data are K = 4, m = 80, α = 1.2, g = 10. A numerical solution for v against t
is shown. The graph shows that the speed reaches its limiting value of approximately 83ms−1 at
around 30m.
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Figure 38: Problem 22.11

22.12. If y = xw, then
dy

dx
=

d
dx

(xw) = w + x
dw

dx
.

Most solutions are expressed in implicit form.
(a) dy/dx = (x2 − xy + y2)/(xy). Substitute y = xw: then the equation in the variables x and w
becomes

w + x
dw

dx
=

x2 −−x2w + x2w2

x2w
=

1− w + w2

w
.

Therefore
dw

dx
=

1− w

wx
.

Separating the variables
∫

wdw

1− w
=

∫
dx

x
, or

∫ [
−1 +

1
1− w

]
dw = ln |x|+ C.

Integrating
w − ln |1− w| = ln |x|+ C, or y + x ln |x− y|+ Cx = 0

in terms of y and x.
(b) dy/dx + (x2 + y2)/(xy) = 0. Let y = xw: then

w + x
dw

dx
= −x2 + x2w2

x2w
= −1 + w2

w
.

Therefore
dw

dx
= −1 + 2w2

wx
.

Hence ∫
wdw

1 + 2w2
= −

∫
dx

x
+ C.

Integrating
1
4

ln(1 + 2w2) = − ln |x|+ C, or x2(x2 + 2y2) = B.

(c) dy/dx + (x− y)/(3x + y) = 0. Let y = xw: then

w + x
dw

dx
= −1− w

3 + w
.

Therefore
dw

dx
= − (1 + w)2

x(3 + w)
.

Separating and integrating
∫

(3 + w)dw

(1 + w)2
= −

∫
dx

x
, so that − 2

1 + w
+ ln |1 + w| = − ln |x|+ C.
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Hence the implicit solution is

− 2x

x + y
+ ln |x + y| = C.

(d) dy/dx = 2xy/(3x2 − 4y2). Let y = xw: then

w + x
dw

dx
=

2w

3− 4w2
.

Therefore
dw

dx
=

w(4w2 − 1)
3− 4w2

.

Using partial fractions
∫

3− 4w2

w(4w2 − 1)
dw =

∫ [
− 3

w
+

2
2w − 1

+
2w

2w + 1

]
dw =

∫
dx

x
+ C = ln |x|+ C.

Integrating
−3 ln |w|+ ln |4w2 − 1| = ln |x|+ C.

Substitute w = y/x and simplifying:

4y2 − x2 = By3.

(The moduli can be accommodated by the sign of the constant B.)
(e) dy/dx + 2(2x2 + y2)/(xy) = 0. Let y = xw: then

w + x
dw

dx
= −4 + 2w2

w
.

Separating the variables and integrating
∫

wdw

3w2 + 4
=

1
6

ln(4 + 3w2) = −dx

x
+ C = − ln |x|+ C.

Hence y satisfies
(4x2 + 3y2)x4 = B.

22.13. If w = y1−n (n 6= 1), then w′ = (1− n)y−ny′. Eliminate y from the Bernoulli equation

y′ + g(x)y = h(x)yn,

to give
w′ + (1− n)g(x)w = (1− n)h(x).

This is now a linear equation in w, to which the integrating-factor method (Section 19.5) can be
applied.
(a) y′ + y = y4. In this example of the Bernoulli equation g(x) = h(x) = 1 and n = −3. Hence
w = y−3 which satisfies

w′ − 3w = −3.

Using the integrating-factor method the general solution of this equation is

w = 1 + Ce3x, so that y = (1 + Ce3x)−
1
3 .

(b) y′ + y = y−
1
3 . In this example g(x) = f(x) = 1 and n = − 1

2 . Hence w = y
3
2 which satisfies

w′ + 3
2w = 3

2 .
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Using the integrating-factor method the general solution is

w = 1 + Ce−
3
2 x, so that y = w

2
3 = (1 + Ce−

3
2 x)

2
3 .

22.14. (a) The equation
d2y

dx2
+

(
b

x

)
dy

dx
+

( c

x2

)
y = 0.

is equidimensional.
(a) Let y = xM . Then

d2y

dx2
+

(
b

x

)
dy

dx
+

( c

x2

)
y = M(M − 1)xM−2 + bMxM−2 + cxM−2

= [M2 + (b− 1)M + c]xM−2

= 0

for all x if M satisfies M2 + (b − 1)M + c = 0. If the roots are M1 and M2, then the general
solution is

x = AxM1 + BxM2 , (M1 6= M2)

If the roots are equal, M1 = M2 = M , say, then it can be verified that the general solution is

x = AxM + BxM ln x.

(b) Let x = et. Then, applying the change of variable,

dy

dx
=

dy

dt

dt

dx
= e−t dy

dt
,

d2y

dx2
=

dt

dx

d
dt

(
dy

dt
e−t

)
= e−2t

(
d2y

dt2
− dy

dt

)
.

Hence the differential equation becomes

d2y

dt2
+ (b− 1)

dy

dt
+ cy = 0,

which is a constant-coefficient second order differential equation (see Chapter 18).
(c) (i) d2y/dx2− (2/x)dy/dx+(2/x2)y = 0. Use method (a) by putting y = xM . Then M satisfies

M2 − 3M + 2 = 0, or (M − 1)(M − 2) = 0.

Hence the roots are M1 = 1 and M2 = 2. The general solution is therefore

y = Ax + Bx2.

(ii) d2y/dx2 − (1/x)dy/dx + 1/x2 = 0. Note that this is a forced equation. In this case use
method (b) by making the change of variable x = et. Then in terms of the differential equation is
transformed into

d2y

dt2
− 2

dy

dt
= −1.

The characteristic equation is m2 − 2m = 0, which has roots m1 = 0 and m2 = 2. It is easy to
confirm that y = 1

2 t is a particular solution. Hence the general solution is

x = A + Be2t + 1
2 t = A + Bx2 + 1

2 ln x.

(iii) d2y/dx2 + (3/x)dy/dx + (2/x2)y = 0. Using method (a), let y = xM : the characteristic
equation is

M2 + 2M + 2 = 0, which has the roots M = −1± i.
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The general solution is therefore

y = Ax(−1+i)t + Be(−1−i)t,

which can be expressed in real form as indicated in (a).

22.15. In the location shown in the figure the velocity component of the boat in the x direction
is the component of V , and in the y direction the velocity component is v − V sin θ. Therefore

dx

dt
= V cos θ,

dy

dt
= v − V sin θ

Also from the figure

cos θ =
H − x√

[(H − x)2 + y2]
, sin θ =

y√
[(H − x)2 + y2]

.

Finally the differential equation for the path is

dy

dx
=

dy/dt

dx/dt
=

v
√

[(H − x)2 + y2]− V y

V (H − x)
.

Let z = H − x. Then in terms of z the equation can be expressed as

dy

dz
= −γ

√
[z2 + y2]− y

z
, γ =

v

V
.

This equation can be solved numerically but an analytic sokution is possible. Use the method of
Section 22.5: let y = zw so that

w + z
dw

dz
= −γ

√
[1 + w2] + w, or z

dw

dz
= −γ

√
[1 + w2].

This is a separable equation with solution given by
∫

dw√
[1 + w2]

= −
∫

dz

z
+ C.

Hence

5 10 15 20 25 30
x

0.5
1

1.5
2

2.5

y

Figure 39: Problem 22.15

sinh−1 w = − ln z + C,

or
y = (H − x) sinh[C − γ ln(H − x)],

in terms of the original variables. The constant C is given by the condition that y = 0 when x = 0.
Hence C = γ ln H. Finally the solution is given by

y = (H − x) sinh
[

v

V
ln

(
H

H − x

)]
.
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The graph of the path is shown for the given data.

22.16. From the previous problem we can quote the differential equation for the path with v
replaced by v(x), so that

dy

dx
=

v(x)
√

[(H − x)2 + y2]− V y

V (H − x)
=

ax(H − x)
√

[(H − x)2 + y2]− V y

V (H − x)
.

It is unlikely that there is a simple solution of this differential equation. Before fixing any values,
it is convenient to nondimensionalize the equation with respect to the length H and boat speed
V . Let X = x/H and Y = y/H. Then

dY

dX
=

βX(1−X)
√

[(1−X)2 + Y 2]− Y

1−X
,

where β = aH2/V : there is just one parameter β. The maximum river speed vm = 1
4aH2 occurs

mid-stream. Hence β = 4vm/V . We need only specify this parameter in the numerical solution.
The figure is computed with β = 2, that is, V = 2vm.

0.2 0.4 0.6 0.8 1
X

0.025

0.05

0.075

0.1

0.125

0.15

Y

Figure 40: Problem 22.16

22.17. Impose a speed v in the direction HO on both the mouse and the cat so that effectively
the mouse is stationary. The radial and transverse components of the velocity of the cat are (see
p.193)

dr

dt
= −V + v cos θ, r

dθ

dt
= −v sin θ

relative to the stationary mouse.
The equation of the pursuit path of the cat relative to the mouse is

dr

dθ
=

dr/dt

dθ/dt
= −r(v cos θ − V )

v sin θ
.

This is a separable equation with solution:
∫

dr

r
= ln r = −

∫
cos θ − V

sin θ
+ C

= − ln sin θ +
V

2v
ln

[
1− cos θ

1 + cos θ

]
+ C,

(see Appendix E). This can be rewritten as

r = Bcosec θ

[
1− cos θ

1 + cos θ

] V
2v

,

where B is a constant. To find the constant B, put OB = a, say, when θ = 1
2π, so that B = a.

Therefore the path of the cat is

r = acosec θ

[
1− cos θ

1 + cos θ

] V
2v

,

91



22.18. The equation of motion of the satellite is

m
d2r

dt2
= −γMm

r2
.

Let

v =
dr

dt
, so that

d2r

dt2
= v

dv

dr
.

Hence the equation above becomes the separable equation

v
dv

dr
= −γM

r2
.

Separating the variables and integrating:
∫

vdv = −γM

∫
dr

r2
, or

1
2
v2 = γM

1
r

+ C.

The constant C is given by the condition that v = V when r = a. Therefore the required solution
the velocity is given by

1
2
(v2 − V 2) = γ

(
1
r
− p

1
a

)
.

The minimum value of V in order that the satellite should escape the satellite’s gravitation
is given byh the condition that V = Ve in the limit r → ∞. Hence, the escape velocity is
Ve =

√
(2γM/a).

Chapter 23: Nonlinear differential equations and the phase plane

23.1. These are all linear systems (see Sections 23.2 and 23.3).
(a) ẋ = y, ẏ = −4x. The phase paths are given by

dy

dx
=
−4x

y
,

which generates the phase paths 4x2 + y2 = C. This is a centre (see Figure 41).
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x
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Figure 41: Problem 23.1(a)

(b) ẋ = y, ẏ = x. The phase paths are given by x2 − y2 = C which is a saddle (see Figure 42).
(c) ẋ = y, ẏ = −2x− 3y. This phase diagram is that of a stable node (see Figure 43).
(d) ẋ = y, ẏ = −3x− y. This is a stable spiral (see Figure 44).
(e) ẋ = y, ẏ = −2x + y. This is an unstable spiral (see Figure 45).
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Figure 42: Problem 23.1(b)
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Figure 43: Problem 23.1(c)

(f) The phase diagram Figure 46) from (a) shows time-steps of interval 0.3 for paths starting on
the positive x axis.
(g) Time-steps of interval 0.3 are shown on a separatrix and a phase path see Figure 47).
(h) ẋ = y, ẏ = −2y. Elimination of y leads to the second-order equation ẍ + 2ẋ + 0. The phase
paths (Figure 48) are given by y = −2x + C. which is a family of parallel straight lines. Note that
all points on the x axis are equilibrium points.

23.2. These are all linear systems.
(a) ẋ = y, ẏ = x. The general solution for the phase paths is x2 − y2 + C. The phase diagram is
given in Problem 23.1(b).
(b) ẋ = x, ẏ = y. The equation of the phase paths is given by dy/dx = y/x, which has the general
solution y = Cx. The system has an unstable equilibrium point at the origin with radial phase
paths.
(c) ẋ = −y, ẏ = x. The system has a centre at the origin. The phase diagram ia a family of
concentric circles with the sense of the phase paths being described in the counter-clockwise sense.
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Figure 44: Problem 23.1(d)
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Figure 45: Problem 23.1(e)
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Figure 46: Problem 23.1(f)

(d) ẋ = −x, ẏ = y. The system has an equilibrium point at the origin. The phase paths are given
by xy = C. The phase diagram is that of a saddle: it can be obtained from Fig. 23.4 by rotating
the figure through 45◦ counter-clockwise.
(e) ẋ = 2y, ẏ = x. The system is a saddle point with phase paths y2 − 1

2x2 = C.
(f) ẋ = −2y, ẏ = x. The phase diagram is a centre with phase paths x2 + 2y2 + C, but with the
phase paths described in a counter-clockwise sense. This can be seen since ẋ < 0, ẏ > 0 in the first
quadrant: by continuity the sense of the paths can be deduced.

23.3. In all cases put y = ẋ for the phase plane.
(a) ẍ = ex. Use the energy transformation:

1
2

dẋ2

dx
=

1
2

dy2

dx
= ex,

which can be integrated to give the phase paths 1
2y2 = ex + C. The phase diagram has no

equilibrium points.
(b) ẍ + ẋ2 + x = 0. The equation can be expressed as

d
dx

(y2) + 2y2 = −2x,

which is of first-order integrating-factor type. Its general solution is

y2 = −1
4

+
1
2
x + Ce−2x.

The equation has one equilibrium point at the origin which is a centre.
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Figure 47: Problem 23.1(g)
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Figure 48: Problem 23.1(h)

(c) ẍ = 8xẋ. The phase paths are given by y = 4x2 + C, which is a family of parabolas. All points
on the y axis are equilibrium points.
(d) ẍ = ex−e−x. The phase paths are given by 1

2y2 = ex+e−x+C. The system has one equilibrium
point at the origin. Near the origin

ẍ = ex − e−x ≈ 1 + x− 1 + x = 2x,

for small |x|. This indicates a saddle point. Qualitatively the phase diagram will be similar to
Fig. 23.4.

23.4. The only equilibrium point is at the origin in each case. The classification of linear systems
is given by (23.22) for the linear equations

ẋ = ax + by, ẏ = cx + dy.

(a) ẋ = x− 5y, ẏ = x− y. The coefficients are a = 1, b = −5, c = 1, d = −1, so that

p = a + d = 0, q = ad− bc = 4, ∆ = p2 − 4q = −16.

Since p = 0 and q > 0, the origin is a centre. See Fig. 23.2.
(b) ẋ = x + y, ẏ = x− 2y. The coefficients are a = 1, b = 1, c = 1, d = −2, so that

p = −1, q = −3, ∆ = 13.

Since q < 0, the equilibrium point is a saddle and therefore unstable. The separatrices are given
by y = mx where

m =
1− 2m

1 + m
, so that m2 + 3m− 1 = 0.

Hence m = 1
2 [−3±√13]. Qualitatively the phase diagram will be similar to Fig. 23.4.
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Figure 49: Problem 23.2(b)
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Figure 50: Problem 23.3(a)

(c) ẋ = −4x + 2y, ẏ = 3x− 2y. The coefficients are a = −4, b = 2, c = 3, d = −2, so that

p = −6, q = 2, ∆ = 28.

Since q > 0, ∆ > 0 and p < 0, the equilibrium point is a stable node. There are straight line
solutions y = mx with m = 1

2 [1±√7]. A typical stable node is shown in Fig. 23.6.
(d) ẋ = x + 2y, ẏ = 2x + 2y. The coefficients are a = 1, b = 2, c = 2, d = 2, so that

p = 3, q = −2, ∆ = 1.

Since q < 0, the phase diagram is a saddle. The separatrices are given by y = 2x and y = −x. A
typical saddle point is shown in Fig. 23.4.
(e) ẋ = 4x− 2y, ẏ = 3x− y. The coefficients are a = 4, b = −2, c = 3, d = −1, so that

p = 3, q = 2, ∆ = 1.

Since q > 0, ∆ > 0 and p > 0, the origin is an unstable node. The node has the straight line
solutions y = x and y = 3

2x.
(f) ẋ = 2x + 3y, ẏ = −3x− 3y. The coefficients are a = 2, b = 3, c = −3, d = −3, so that

p = −1, q = 3, ∆ = −11.

The phase diagram is a stable spiral, which is qualitatively similar to Fig. 23.5.
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Figure 51: Problem 23.3(b)
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Figure 52: Problem 23.3(c)

23.5. & 23.6. For the general system ẋ = P (x, y), ẏ = Q(x, y), equilibrium points are given by
any simultaneous solutions of P (x, y) = 0, Q(x, y) = 0. Phase paths have zero slope where they
cross the curve Q(x, y) = 0, and infinite slope (that is, parallel to the y axis) where they cross the
x axis.
(a) ẋ = x− y, ẏ = x + y − 2xy. Equilibrium points are given by

x− y = 0, x + y − 2xy = 0.

Elimination of y leads to x(1−x) = 0: hence equilibrium points occur at (0, 0) and (1, 1). Linearize
the equations near the equilibrium points.
Near (0, 0). ẋ = x− y, ẏ ≈ x + y. Since p = 2, q = 2 and ∆ = −4, the origin is locally an unstable
spiral according to (23.22).
Near (1, 1). Let x = 1 + X, y = 1 + Y . Then the linear approximation is given by

Ẋ = X − Y, Ẏ = 2 + X + Y − 2(1 + X)(1 + Y ) ≈ −X − Y.

Hence the coefficients are a = 1, b = 1, c = −1, d = −1, so that q = −2 < 0, which, according to
(23.22), means that (1, 1) is locally a saddle. A computed phase diagram is shown in Figure 54.
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Figure 53: Problem 23.4(e)
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Figure 54: Problem 23.5(a)

(b) ẋ = 1− xy, ẏ = (x− 1)(y + 1). Equilibrium points are given by solutions of

1− xy = 0, (x− 1)(y + 1) = 0,

and occur at (1, 1), (−1,−1).
Near (1, 1). Let x = 1 + X, y = 1 + Y . Then

Ẋ ≈ −X − Y, Ẏ = X.

Hence the coefficients are a = −1, b = −1, c = 1, d = 0. Therefore p = −1, q = 1, ∆ = −3. By
(23.22), (1, 1) is a stable spiral.
Near (−1,−1). Let x = −1 + X, y = −1 + Y . Then

Ẋ ≈ X + Y, Ẏ ≈ −2Y.

Here a = 1, b = 1, c = 0, d = −2. Since q = −2 < 0, (−1,−1) is a saddle. A computed phase
diagram is shown in Figure 55.
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Figure 55: Problem 23.5(b)

(c) ẋ = x− y, ẏ = x2 − 1. Equilibrium points are given by the solutions of

x− y = 0, x2 − 1 = 0.

Hence (1, 1) and (−1,−1) are equilibrium points.
Near (1, 1). Let x = 1 + X, y = 1 + Y . Then

Ẋ = X − Y, Ẏ ≈ 2X.

The coefficients of this linear approximation are a = 1, b = −1, c = 2, d = 0. Therefore p = 1,
q = 2, ∆ = −7. According to (23.22), (1, 1) is an unstable spiral.
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Near (−1,−1). Let x = −1 + X, y = −1 + Y . Then

Ẋ = X − Y, Ẏ ≈ −2X.

The coefficients are a = 1, b = −1, c = −2, d = 0. Therefore p = 1 and q = −2. Hence (−1,−1) is
a saddle. A computed phase diagram is shown in Figure 56
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Figure 56: Problem 23.5(c)

(d) ẍ + x − x3, ẋ = y. The corresponding first-order system is ẋ = y, ẏ = −x + x3. There are
equilibrium points at (0, 0), (1, 0) and (−1, 0).
Near (0, 0). The linear approximation is ẋ = y, ẏ = −x, which is locally a centre.
Near (1, 0) and (−1, 0). These equilibrium points are saddles. A computed phase diagram is shown
in Figure 57
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Figure 57: Problem 23.5(d)

(e) ẋ = 4x− 2xy, ẏ = −2y + xy. The equilibrium points are the simultaneous solutions of

x(2− y) = 0, y(−2 + x) = 0,

which are (0, 0) and (2, 2).
Near (0, 0). The linearized equations are ẋ = 4x, ẏ = −2y, for which a = 4, b = 0, c = 0, d = −2.
Hence q = −8 < 0, which means that the origin is a saddle. Note also that x = 0 and y = 0
are phase paths. The isoclines of zero slope are the lines y = 0 and x = 2, passing through the
equilibrium point at (2, 2).
Near (2, 2). Let x = 2 + X and y = 2 + Y . Then

Ẋ = 4(2 + X)− 2(2 + X)(2 + Y ) ≈ −4Y, Ẏ = −2(2 + Y ) + (2 + X)(2 + Y ) ≈ 2X.

Hence (2, 2) is locally a centre.
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The phase diagram is essentially similar to that given in Fig. 23.10.

23.7. The direction of the paths can be either way as long as there is continuity of direction
between adjacent paths. Below are some possible phase diagrams.
(a) The phase diagram shown as a centre at (0, 0) and a saddle at (1, 1). It has been computed
from the system ẋ = y, ẏ = x2 − x.
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Figure 58: Problem 23.7(a)

(b) A possible phase diagram is given by the phase diagram of Problem 23.5(d).
(c) Need to draw an unstable node near the origin as in the figure for Problem 23.4(e) and a stable
node near x = 1 as in Fig. 23.6, and then join up the paths without further equiliubrium points.
(d) Let ẋ = xy, ẏ = 1 − x2. This example has just two equilibrium points at (±1, 0) which are
both centres. Note that x = 0 is a phase path.
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Figure 59: Problem 23.7(d)

23.8. In all problems except (d) and (e) let y = ẋ.
(a) ẍ+ |ẋ|ẋ+x = 0. Then ẏ = −|y|y−x. The system has just one equilibrium point at the origin.
The linear approximation near the origin is ẋ = y, ẏ = −x, which predicts a centre. However,
the computed phase diagram clearly shows that the origin is a stable spiral. Note that the linear
approximation can fail if the linear approximation turns out to be a centre.
(b) ẍ+|ẋ|ẋ+x3 = 0. The system has one equilibrium point at the origin, but a linear approximation
near the origin is not helpful; the origin is a ‘higher order’ equilibrium point. The phase diagram
shows that the equilibrium is a stable spiral.

(c) ẍ = x4 − x2. There are equilibrium points at (0, 0) and (±1, 0), but the linear approximation
is identically zero, so is of no help at the origin. The phase diagram is shown in the figure. Near
the origin, if we neglect the term x4, then ẋ = y and ẏ ≈ −x2. Hence

dy

dx
= −x3

y
,
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Figure 60: Problem 23.8(a)
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Figure 61: Problem 23.8(b)

which can be integrated to give the phase paths

3y2 = −2x3 + C.

The paths which meet at the origin are given by 3y2 = −2x3, which can only be defined for x < 0.
The linear approximations close to x = −1 indicates a centre (which is the case for this problem),
and close to x = 1 indicates a saddle.
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Figure 62: Problem 23.8(c)

(d) ẋ = 2xy, ẏ = y2 − x2. The system has one equilibrium point at the origin. Note that x = 0 is
an equilibrium path since the first equation is satified identically.
(e) ẋ = 2xy, ẏ = x2 − y2. The system has one equilibrium point at the origin.

Let y = mx. Then
dy

dx
=

x2 − y2

2xy
becomes m =

1−m2

2m
.
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Figure 63: Problem 23.8(d)
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Figure 64: Problem 23.8(e)

Hence 3m2 = 1, so that m = ±1/
√

3. Hence y = ±x/
√

3 are separatrices. Further x = 0 is also a
solution which is a third separatrix as shown in the figure. The origin is an example of a higher
order saddle point.A computed phase diagram is shown in Figure 64.
(f) ẍ + ẋ(x2 + ẋ2) + x = 0. The equation has one equilibrium point at the origin. Note that the
origin is clearly a stable spiral although the linear approximation is a centre. A computed phase
diagram is shown in Figure 65.
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Figure 65: Problem 23.8(f)

23.9. The pendulum equation (Section 23.4) is ẍ + ω2 sin x = 0, which, for small x, can be
approximated by ẍ + ω2(x− 1

6x3) = 0 as stated. With ẋ = y, the approximation has equilibrium
points at (0, 0) and at (±√6, 0). The exact equation has an infinite number of equilibrium points
where sin x = 0, the two closest to the origin being x = ±π which differ significantly from x = ±√6.
Near the origin ẍ + ω2(x − x3) = 0 has a centre whilst near x = ±√6, the equation has saddle
points. The phase diagram of Figure 66 has been computed for the equation ẍ+x− 1

6x3 = 0, since
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the time t can always be rescaled by putting τ = ωt.
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Figure 66: Problem 23.9

23.10. ẋ = 4x− 2xy − x2, ẏ = −2y + xy − 2y2. Equilibrium points occur where

x(4− 2y − x) = 0, y((−2 + x− 2y) = 0,

but remember that since this is a population problem, we require x, y ≥ 0. There are three
equilibrium points at (0, 0), (4, 0) and (3, 1

2 ). The linear approximations near these points are as
follows.
Near (0, 0). ẋ ≈ 4x and ẏ ≈ −2y. This is a saddle point with separatrices x = 0 and y = 0: note
that these are also solutions of the full equations.
Near (4, 0). Let x = 4 + X, y = Y . Then the linear approximations are

Ẋ ≈ −4X − 8Y, Ẏ ≈ 2Y.

In the usual notation, a = −4, b = −8, c = 0, d = 2. Hence q = −8, which means that (4, 0) is a
saddle.
Near (3, 1

2 ). Let x = 3 + X and y = 1
2 + Y . Then

Ẋ ≈ −3X − 6Y, Ẏ ≈ 1
2
X − Y.

Then a = −3, b = −6, c = 1
2 , d = −1, so that p = −4, q = 6 and ∆ = −8. Hence (3, 1

2 ) is a stable
spiral.
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Figure 67: Problem 23.10

23.11. The equations can be expressed as Ḣ = (a − bP )H, HṖ = (cH − dP )P . The equations
are satisfied if H = 0 and P = 0, and if P = a/b and H = ad/(bc). Hence (0, 0) and (a/b, ad/(bc))
are equilibrium points. The origin is a saddle, and the full equations have solutions H = 0 and
P = 0. The linear approximations near the other equilibrium point are, if P = (a/b) + p and
H = ad/(bc) + h,

ḣ ≈ −ad

c
, ṗ ≈ −c2

d
h− cp.
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Hence

p = −ad2 + c3

cd
< 0, q = ac > 0, ∆ =

(ad2 − c3)2

cd
> 0,

which, by (23.22), means that the equilibrium point is a stable node.

23.12. The equation of motion is

ẍ +
s

m

(
1− l

(h2 + x2)
1
2

)
x = 0.

Equilibrium points occur where
x[(h2 + x2)

1
2 − l] = 0.

l < h. There is only one equilibrium point, at x = 0, which has the linear approximation

ẋ = y, ẏ ≈ − s

m

(
1− l

h

)
x.

This predicts a centre.
l = h. There is still just one equilibrium point, at x = 0, but the linear approximation will not
decide the type of equilibrium point.
l > h. This system has three equilibrium points at x = 0 and x = ±(l2 − h2)

1
2 . The point (0, 0) is

a saddle.
For the other equilibrium points, let x = ±(l2 − h2)

1
2 + X, y = Y . Then Ẋ = Y and

Ẏ = − s

m

(
1− l

[h2 + {±(l2 − h2)
1
2 + X} 1

2

)
[(l2 − h2)

1
2 + X]

≈ − s

ml
(l2 − h2)X.

Both equilibrium points are centres.

23.13. The equation of motion with friction included is

ẍ + kẋ +
s

m

(
1− l

(h2 + x2)
1
2

)
x = 0.

The equilibrium points are still at x = 0 if l ≤ h and at x = 0 and x = ±(l2 − h2)
1
2 if l > h. The

approximation near the origin is

ẋ = y, ẏ = − s

m

(
1− l

h

)
− ky.

This equilibrium point is a stable spiral if l < h and a saddle if l > h.
If l > h and k is small, then the other equilibrium points are both stable spirals.

23.14. ẍ + kẋ− x + x2 = 0. With ẋ = y, the equation has equilibrium points at (0, 0) and (1, 0).
Near the origin

ẋ = y, ẏ ≈ x− ky,

for which q = −1. Hence, for all k, the origin is a saddle with separatrices in the directions with
slopes

m = −k ±√(k2 + 4).

Near (1, 0), let x = 1 + X and y = Y . Then the linear approximation is given by

Ẋ = Y, Ẏ ≈ −X − kY.

The parameters are p = −k, q = 1, ∆k2 − 4. If k2 < 4, then (1, 0) is a spiral (stable if k > 0;
unstable if k < 0). If k2 > 4, then (1, 0) is a node (stable if k > 0; unstable if k < 0).
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Figure 68: Problem 23.14

The figure shows the phase diagram for k = 1, which gives a stable spiral at x = 1. For k > 2,
the spiral at x = 1 is replaced by a stable node (not shown).

23.15. Let ẋ = y in each case. The first-order system ẋ = y, ẏ = f(x, y) has been solved
numerically.
(a) ẍ+ 1

2 (x2 + ẋ2−1)ẋ+x = 0. The system has one equilibrium point, which is an unstable spiral,
at the origin. Check that x = cos(t + α) is a solution for all α, so that x2 + y2 = 1 is a limit cycle
. A computed phase diagram showing the stable limit cycle is displayed in Figure 69.
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Figure 69: Problem 23.15(a)

(b) ẍ + 1
5 (x2 − 1)ẋ + x = 0. The system has a stable limit cycle. A computed phase diagram is

shown in Figure 70
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Figure 70: Problem 23.15(b)

(c) ẍ + 1
5 ( 1

3 ẋ2 − 1)ẋ + x = 0. This equation has a stable limit cycle, and its phase diagram is very
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similar to that of the previous problem.
(d) ẍ + 5(x2 − 1)ẋ + x = 0. The equation has a stable limit cycle, shown in Figure 71, which is
distorted compared with that of Problem 23.15(c). This is caused by the large parameter associated
with the middle term. The equation represents the van der Pol oscillator.
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Figure 71: Problem 23.15(d)

23.16. (a) The phase diagram of Problem 23.15(a) is an example of this.
(b) The system

ẍ− (1− x2 − ẋ2)(4− x2 − ẋ2) + x = 0

has the exact solutions x = cos t and x = 2 cos t which generate the limit cycles x2 + y2 = 1 and
x2 + y2 = 4. The inner on is stable and the outer one is unstable.
(c) The phase diagram (Figure 72) shows a possible configuration of the equilibrium points, the
limit cycle and the separatrices through the saddle points. The paths can be taken in either sense
so long as they are consistent between adjacent paths.
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Figure 72: Problem 23.16(c)

(d) The phase diagram (Figure 73) shows a saddle at the origin with separatrices surrounding
centres at x = ±1. The larger circle is a phase path which is a stable limit cycle if paths inside
and outside it approach it as t →∞. The direction of the limit cycle can be in either direction.
(e) The phase diagram shows a centre at the origin, a circular limit cycle with radius 2 and two
paths spiralling into the limit cycle from the inside and the outside to indicate its stability.

23.17. ẋ = −y + x(1− x2 − y2), ẏ = x + y(1− x2 − y2). Differentiate r2 = x2 + y2 with respect
to t:

2rṙ = 2xẋ + 2yẏ = 2{x[−y + x(1− x2 − y2)] + y[x + y(1− x2 − y2)]} = 2r2(1− r2)

Hence ṙ = r(1− r2). Differentiate tan θ = y/x with respect to t:

sec2 θθ̇ =
xẏ − xẏ

x2
=

x2 + y2

x2
= sec2 θ.
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Figure 73: Problem 23.16(e)

Hence θ̇ = 1.
Any periodic solutions are given by ṙ = 0 which means that there is one non-zero solution r = 1

(r is greater than 0). It is stable since ṙ < 0 for r > 1, that is r is decreasing with t, and ṙ > 0 for
r < 1.

23.18. ẋ = (x2 + y2 − 1)y, ẏ = −(x2 + y2 − 1)x. Equilibrium points are given by

(x2 + y2 − 1)y = 0, (x2 + y2 − 1)x = 0.

The solutions are x = 0, y = 0 and x2 + y2 = 1. Hence the equilibrium points are the origin and
all points on the circle x2 + y2 = 1.

23.19. Let x = cos ω(t− t0). Then

ẍ +
(

1− x2 − ẋ2

ω2

)
ẋ + ω2x =

−ω2 cosω(t− t0)− (1− cos2 ω(t− t0)− sin2 ω(t− t0))ω sin ω(t− t0)
+ω2 cosω(t− t0) = 0

The limit cycle is given by x = cos ω(t− t0), ẋ = y = ω sinω(t− t0). Elimination of t gives

x2 +
y2

ω2
= 1,

which is an ellipse.
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Figure 74: Problem 23.20: remaining phase path directions can be inserted by maintaining conti-
nuity of directions

Near the origin the linear approximation is

ẍ + ẋ + ω2x = 0,
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which indicates a stable equilibrium point, a node if 0 < ω < 2, or a spiral if 2 < ω. The indicates
that the limit cycle is unstable with phase paths spiralling away from it.
23.20. ẋ = (x2− 1)y, ẏ = (y2− 1)x. Equilibrium points are given by all simultaneous solutions of

(x2 − 1)y = 0, (y2 − 1)x = 0.

Check that they are the points (0, 0), (1, 1), (1,−1), (−1, 1), (−1,−1). Note that the lines x = ±1
and y = ±1 are phase paths which each pass through two equilibrium points.

Near the origin ẋ = −y, ẏ = −x, which indicates a saddle. This information together with
further linear approximations indicate that all the other equilibrium points are nodes with ∆ = 0
in which the paths are locally radial. The lines y = ±x are also phase paths: these are the
separatrices of the saddle at the origin

The equations of the phase paths can be found since

dy

dx
=

ẏ

ẋ
=

(y2 − 1)x
(x2 − 1)y

.

This first-order equation is of separable type with general solution

(x2 − 1)(y2 − 1) = C.

The phase diagram is shown in Figure 74.
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