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Chapter 7: Matrix algebra

7.1. The elements are a13 = 3 and a31 = 2.

7.2. Comparison of A and B shows that A = B if x = −2 and y − x = 3. It follows that y = 1.

7.3. The answers are

A + B =
[

3 1 0
3 1 6

]
, A−B =

[ −1 3 −6
−5 −1 2

]
,

2A− 3B =
[ −4 7 −15
−14 −3 2

]
.

7.4. The distributive law is satisfied since, as follows:

B + C =




1 0
2 1

−1 −1


 +




2 1
−1 1

0 1


 =




3 1
1 2

−1 0


 .

Hence

A(B + C) =
[

1 3 0
2 1 1

]


3 1
1 2

−1 0


 =

[
6 7
6 4

]
.

Also

AB + AC =
[

1 3 0
2 1 1

] 


1 0
2 1

−1 −1


 +

[
1 3 0
2 1 1

] 


2 1
−1 1

0 1




=
[

7 3
3 0

]
+

[ −1 4
3 4

]
=

[
6 7
6 4

]
= A(B + C).

7.5. Verify the left- and right-hand sides:

A(BC) =
[ −1 2 −1

2 3 1

] 




−1 0

1 2
3 −1




[
1 1

−1 2

]


=
[ −1 2 −1

2 3 1

] 

−1 −1
−1 5

4 1




=
[ −5 10
−1 14

]
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Also

(AB)C =




[ −1 2 −1
2 3 1

]

−1 0

1 2
3 −1







[
1 1

−1 2

]

=
[

0 5
4 5

] [
1 1

−1 2

]

=
[ −5 10
−1 14

]

= A(BC),

as required.

7.6. Multiplication gives

AB =
[

4 2
2 1

] [ −2 −1
4 2

]
=

[
0 0
0 0

]
,

and

BA =
[ −2 −1

4 2

] [
4 2
2 1

]
=

[ −10 −5
20 10

]
6= AB.

7.7. Since A + C = I3,

C = I3 −A =




1 0 0
0 1 0
0 0 1


−




2 1 3
1 −1 2

−2 1 1


 =



−1 −1 3
−1 2 −2

2 −1 0


 .

Hence
AC = A(I3 −A) = A−A2 and CA = (I3 −A)A = A−A2 = AC.

Thus

AC =




2 1 3
1 −1 2

−2 1 1






−1 −1 3
−1 2 −2

2 −1 0


 =




3 −3 −8
4 −5 −1
3 3 4


 .

Since A + C = I3, multiplication by A and C give

A2 + AC = A,

and
CA + C2 = C.

Adding:
A2 + AC + CA + C2 = A + C = I3.

Finally, since AC = CA,

A2 + C2 = I3 − 2AC =



−5 6 16
−8 11 2
−6 −6 −7


 .

7.8. Using the transpose rules in Section 7.3 (following Example 7.7),

(A + AT )T = AT + (AT )T = AT + A = A + AT ,

which means that A + AT is a symmetric matrix (see Section 7.3).
Similarly

(A−AT )T = AT − (AT )T = AT −A = −(A−AT ),
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which means that A−AT is skew-symmetric.
Use the result that

A =
1
2
(A + AT ) +

1
2
(A−AT ).

For the given A

AT =




2 −2 3
1 0 1
3 1 2


 ,

so that

A =




2 − 1
2 3

− 1
2 0 1
3 1 2


 +




0 3
2 0

− 3
2 0 0
0 0 0


 .

7.9. Given

A =




1 3
−1 2

0 1


 , then AT =

[
1 −1 0
3 2 1

]
.

Also

AAT =




10 5 3
5 5 2
3 2 1


 , AT A =

[
2 1
1 14

]
.

7.10. The equation Ax = d becomes



1 −1 2
3 0 1

−1 2 −3







x
y
z


 =




x− y + 2z
3x + z

−x + 2y − 3z


 =




2
0

−1


 .

Hence
x− y + 2z = 2

3x + z = 0
−x + 2y − 3z = −1

.

Also

xT AT =
[

x y z
]



1 3 −1
−1 0 2

2 1 −3




=
[

x− y + 2z 3x + z −x + 2y − 3z
]

=
[

2 0 −1
]
.

The verification follows.

7.11.

A2 =




1 0 0
a −1 0
b c 1







1 0 0
a −1 0
b c 1


 =




1 0 0
0 1 0

2b + ac 0 1


 .

If 2b + ac = 0, then A2 = I3. Hence A−1 = A: in other words A is its own inverse. In this case,
eliminating, say, b:

A−1 = A =




1 0 0
a −1 0

− 1
2ac c 0


 ,

for any a and c.
It follows that

A2n−1A2n−1 = A4n−2 = (A2)2n−1 = (I3)2n−1 = I3.

Hence the inverse of A2n−1 is A2n−1.
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7.12. The two matrix products are

AB =




2 0 1
2 −2 2
0 4 −4







0 1
2

1
4

1 −1 − 1
4

1 −1 − 1
2


 =




1 0 0
0 1 0
0 0 1


 = I3.

Similarly

BA =




0 1
2

1
4

1 −1 − 1
4

1 −1 − 1
2







2 0 1
2 −2 2
0 4 −4


 =




1 0 0
0 1 0
0 0 1


 = I3.

By Section 7.4, B must be the inverse of A.

7.13. The powers of A are

A2 =




2 0 1
2 −2 2
0 4 1







2 0 1
2 −2 2
0 4 1


 =




4 4 3
0 12 0
8 −4 9


 ,

and

A3 = AA2 =




2 0 1
2 −2 2
0 4 1







4 4 3
0 12 0
8 −4 9


 =




16 4 15
24 −24 24
8 44 9


 .

Hence

A3 −A2 − 12A =




16 4 15
24 −24 24
8 44 9


−




4 4 3
0 12 0
8 −4 9


− 12




2 0 1
2 −2 2
0 4 1




= −12




1 0 0
0 1 0
0 0 1


 .

Multiplying both sides by A−1 (A is nonsingular):

A−1A3 −A−1A2 − 12A−1A = −12A−1I3,

that is,
A2 −A− 12I3 = −12A−1.

Hence

A−1 =
1
12

[A2 −A− 12I3] =
1
6




5 −2 −1
1 −1 1

−4 4 2


 ,

using A2 previously found.

7.14. Let A be the matrix in each case, and use rule (7.8).
(a) Then

det(A) =
∣∣∣∣

1 1
2 −1

]
= −3.

Hence

A−1 =
[ 1

3
1
3

2
3 − 1

3

]
.

(b)

det(A) =
∣∣∣∣

2 3
−7 11

∣∣∣∣ = 43, and A−1 =
[ 11

43 − 3
43

7
43

2
43

]
.
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(c)

det(A) =
∣∣∣∣

1 0
0 −2

]
= −2, and A−1 =

[
1 0
0 − 1

2

]
.

(d)

det(A) =
∣∣∣∣

10 −7
8 0

∣∣∣∣ = 56, and A−1 =
[

0 1
8

− 1
7

5
28

]
.

(e)

det(A) =
∣∣∣∣
−99 100

97 98

∣∣∣∣ = −19402, and A−1 =
[ − 49

9701
50

9701
97

19402
99

19402

]
.

7.15. The inverse of A must satisfy AA−1 = I4. Note that A has just one element in any row or
column. Hence to achieve the zeros in the correct positions in I4, we must have

A−1 =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 .

This suggests the form of inverse appropriate to the more general matrix:

A−1 =




0 0 c−1 0
a−1 0 0 0

0 b−1 0 0
0 0 0 d−1


 ,

assuming that a, b, c, d are all non-zero.

7.16. The equation Ax = d becomes



0 1 1
1 −2 2
1 0 1







x
y
z


 =




6
3

−9


 ,

or
y + z = 6

x − 2y + 2z = 3
x + z = −9

.

To find the inverse first calculate

det(A) =

∣∣∣∣∣∣

0 1 1
1 −2 2
1 0 1

∣∣∣∣∣∣
= 3.

Using (7.10)

A−1 =



− 2

3 − 1
3

4
3

1
3 − 1

3
1
3

2
3

1
3 − 1

3


 .

Multiplying Ax = d on the right by A−1:

A−1Ax = I3Ax = x = A−1d.

Hence

x =




x
y
z


 =



− 2

3 − 1
3

4
3

1
3 − 1

3
1
3

2
3

1
3 − 1

3







6
3

−9


 =



−17
−2

8


 ,
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which is the solution of the set of equations.

7.17. Thus,

(A−1BA)2 = (A−1BA)(A−1BA) = A−1BAA−1BA = A−1BInBA = A−1B2A.

Using this result, observe that

A−1B4A = (A−1B2A)2 = (A−1BA)4.

Using rule (7.8)

A−1BA =
[ 1

3 − 2
3

1
3

1
3

] [
1 2

−1 0

] [
1 2

−1 1

]
=

[ 1
3

8
3

− 2
3

2
3

]
.

Finally

A−1B4A = (A−1BA)4 =
[ 1

3
8
3

− 2
3

2
3

]4

=
[

1 −8
2 0

]
.

7.18. Since the parabola must pass through the points (x1, y1), (x2, y2) and (x3, y3),

y1 = a + bx1 + cx2
1,

y2 = a + bx2 + cx2
2,

y3 = a + bx3 + cx2
3.

These can be viewed as three linear equations in a, b and c, which can be expressed in the matrix
form 


1 x1 x2

1

1 x2 x2
2

1 x3 x2
3







a
b
c


 =




y1

y2

y3


 .

Let A be the 3× 3 matrix on the left. By (7.11)

det(A) =

∣∣∣∣∣∣

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣
= (x2x

2
3 − x2

2x3)− x1(x2
3 − x2

2) + x2
1(x3 − x2)

= (x1 − x2)(x2 − x3)(x3 − x1).

The determinant will be non-zero if x1, x2 and x3 are all different. By (7.10) the inverse of A
is given by

A−1 =
1

det(A)

∣∣∣∣∣∣

x2x
2
3 − x3x

2
2 −(x1x

2
3 − x3x

2
1) x1x

2
2 − x2x

2
1

−(x2
3 − x2

2) x2
3 − x2

1 −(x2
2 − x2

3)
x3 − x2 −(x3 − x1) x2 − x1


 ,

which equals the answer given in the question after some factorization. It follows that




y1

y2

y3


 =




x2x3y1
(x2−x3)(x3−x1)

x3x1y2
(x3−x2)(x1−x2)

x1x2y3
(x1−x3)(x2−x3)

− (x2+x3)y1
(x2−x3)(x3−x1)

− (x3+x1)y2
(x3−x2)(x1−x2)

− (x1+x2)y3
(x1−x3)(x2−x3)

y1
(x2−x3)(x3−x1)

y2
(x3−x2)(x1−x2)

y3
(x1−x3)(x2−x3)


 .

Note that if, for example, x1 = x2 then there will no parabola of the form given if y1 6= y2, but if
y1 = y2 (that is, two points coincide) there will be an infinite set of such parabolas.

For the three points given x1 = −2, x2 = 1 and x3 = 3,

A =




1 −2 4
1 1 1
1 3 9


 and A−1 =




1
5 1 − 1

5

− 4
15

1
6

1
10

1
15 − 1

6
1
10


 .
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Hence 


a
b
c


 =



− 14

5
1
15
11
15


 .

The required parabola through the given points is

y = − 14
5 + 1

15x + 11
15x2.

7.19. If aij = (−j)i − ij, then

A =



−2 −4 −6
−1 0 3
−4 −14 −36


 .

Also

det A =

∣∣∣∣∣∣

−2 −4 −6
−1 0 3
−4 −14 −36

∣∣∣∣∣∣
= 24, A−1 =




7
4 − 5

2 − 1
2

−2 2 1
2

7
12 − 1

2 − 1
6


 .

7.20. Calculate the powers of A:

A2 = AA =




8 7 11
3 6 3
5 1 8


 ,

A3 = AA2 =




2 1 3
1 −1 2
1 2 1







8 7 11
3 6 3
5 1 8


 =




34 23 49
15 3 24
19 20 25


 .

Hence

A3 − 2A2 − 9A =




34 23 49
15 3 24
19 20 25


− 2




8 7 11
3 6 3
5 1 8


− 9




2 1 3
1 −1 2
1 2 1




= 0.

Also

A2 − 2A− 9I3 =




8 7 11
3 6 3
5 1 8


− 2




2 1 3
1 −1 2
1 2 1


−




1 0 0
0 1 0
0 0 1




=



−5 5 5

1 −1 −1
3 −3 −3


 6= 0.

Suppose that A−1 exists. Then

A−1(A3 − 2A2 − 9A) = A2 − 2A− 9I3 = 0,

which contradicts the result above. We conclude that the inverse of A does not exist.

7.21. Given A2 = A and A 6= In.
(a) Suppose that A−1 exists. Then

A−1A2 = A−1A or A = In,

which contradicts the assumption that A is not the identity matrix. We conclude that the inverse
of A does not exist.
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(b) Verify the result:

(In + A)(In − 1
2A) = I2n + A− 1

2A− 1
2A2 = In + A− 1

2A− 1
2A = In.

Hence In − 1
2A must be the inverse of In + A.

(c) Use proof by induction. For m = 2,

(In + A)2 = (In + A)(In + A) = In + 2A + A2 = In + 3A,

since A2 = A. Hence the result is certainly true for m = 2. Suppose we know that the result is
true for some value of m, say m = r; that is that

(In + A)r = In + (2r − 1)A.

Then

(In + A)r+1 = (In + A)(In + A)r = (In + A)(In + (2r − 1)A
= I2n + A + (2r − 1)A + (2r − 1)A2

= In + A + (2r − 1)A + (2r − 1)A
= In + (2r+1 − 1)A.

Hence if the conjecture is true for m = r, then it is true for m = r + 1. Hence by induction it is
true for m = 3, 4, . . ..

7.22.

A1 + A2 =
[

x1 + x2 y1 + y2

−y1 − y2 x1 + x2

]
, A1A2 =

[
x1x2 − y1y2 x2y1 + x1y2

−x2y1 − x1y2 x1x2 − y1y2

]
.

Note that A2A1 = A1A2. The inverse

A−1
1 =

1
x2

1 + y2
1

[
x1 −y1

y1 x1

]
.

These results parallel the rules for complex numbers. For the complex numbers:

z1 + z2 = (x1 + x2) + i(y1 + y2), z1z2 = x1x2 − y1y2 + i(x1y2 + x2y1) = z2z1,

1
z1

=
x1 + iy1

x2
1 + y2

1

.

The top row in the matrix operations gives the real and imaginary parts of the corresponding
complex ones.

Also |z1|2 = x2
1 + y2

1 , corresponding to det A1 = x2
1 + y2

1 .
For the exponential function

ez1 = 1 + z1 +
1
2!

z2
1 + · · · .

Interpret the exponential of the matrix as

eA1 = In + A1 +
1
2!

A2
1 + · · · .

The real and imaginary parts of ez1 are given by the elements on the top rows of the terms of eA1 ,
since zn corresponds to An.

8



Chapter 8: Determinants

8.1. (a) ∣∣∣∣
1 2

−1 3

∣∣∣∣ = (1)× (3)− (2)× (−1) = 5.

(b) ∣∣∣∣∣∣

1 0 1
0 1 0
1 0 1

∣∣∣∣∣∣
= (1)×

∣∣∣∣
1 0
0 1

∣∣∣∣− (0)×
∣∣∣∣

0 0
1 1

∣∣∣∣ + (1)×
∣∣∣∣

0 1
1 0

∣∣∣∣ = 1.

(c) ∣∣∣∣∣∣

1 −1 2
3 1 −1
2 1 −1

∣∣∣∣∣∣
= 1.

(d) ∣∣∣∣∣∣∣∣

2 1 0 −1
0 0 2 0
3 1 2 1
0 1 −1 1

∣∣∣∣∣∣∣∣
= 20.

(e) Expanding by the top row at each step
∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣

0 0 1
1 0 0
0 1 0

∣∣∣∣∣∣
= −

∣∣∣∣
1 0
0 1

∣∣∣∣ = −1.

(f) After repeated expansion by the top rows
∣∣∣∣∣∣∣∣∣∣

2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

∣∣∣∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣∣

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

1 1 0 0
0 2 1 0
0 1 2 1
0 0 1 2

∣∣∣∣∣∣∣∣
= 2× 5− 4 = 6.

8.2. (a) The elements of row 1 are twice the elements in row 2 (Rule 5).
(b) Add the elements in row 2 to row 1 to give (Rule 6)

∣∣∣∣∣∣

−1 2 3
3 1 −2

−2 −3 −1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 3 1
3 1 2

−2 −− 3 −1

∣∣∣∣∣∣
.

The determinant is zero since the elements in row 1 are (-1) times the elements in row 3.
(c) The determinant is unchanged if the elements in row 1 become the elements in row 1 minus
the elements in row 2 (Rule 6). The determinant is therefore zero since the first and third rows
have the same elements (Rule 5).
(d) The determinant is zero since the elements in rows 2 and 3 are in the same ratio (3/5) (Rule
6).

8.3. Since a is a factor of each element in row 1 and also a factor of each element in column 1,
and c is factor of each element in column 3, by Rule 2,

∣∣∣∣∣∣

a3 ab ac2

a c ac
bac a bc

∣∣∣∣∣∣
= a2c

∣∣∣∣∣∣

a b c
b c a
c a b

∣∣∣∣∣∣
= a2c∆.
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8.4. There are many ways of simplifying determinants using the rules in Section 8.2. The usual
aim is to introduce zero elements and to reduce the size of numbers. These methods are illustrated
in the following solutions. Note that operations between columns (ci) are employed as well as
operations between rows (ri).
(a)

∣∣∣∣∣∣

99 100 200
98 102 199
−1 2 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 −2 1
98 102 199
−1 2 3

∣∣∣∣∣∣
(r′1 = r1 − r2)

=

∣∣∣∣∣∣

1 −2 0
98 102 101
−1 2 3

∣∣∣∣∣∣
(c′3 = c3 − c1)

=

∣∣∣∣∣∣

1 0 0
98 298 101
−1 0 4

∣∣∣∣∣∣
(c′2 = c2 − 2c1)

= 298× 4 = 1192.

(b)
∣∣∣∣∣∣

77 84 55
75 87 57
1 −2 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 −3 −2
75 87 57
1 −2 3

∣∣∣∣∣∣
(r′1 = r1 − r2)

= 3
∣∣∣∣

25 29 19
1 −2 3

∣∣∣∣ (r′1 = r1 − 2r2)

= 3

∣∣∣∣∣∣

0 1 −8
25 3 −6
1 −3 2

∣∣∣∣∣∣
(c′2 = c2 − c1, c′3 = c3 − c1)

= −3
∣∣∣∣

25 −6
1 2

∣∣∣∣− 24
∣∣∣∣

25 4
1 −3

∣∣∣∣
= −3× 56− 24× (−79) = 1728

(c)
∣∣∣∣∣∣

2 −1 1
99 98 55

200 197 111

∣∣∣∣∣∣
=

∣∣∣∣∣∣

3 −1 1
1 98 55
3 197 111

∣∣∣∣∣∣
(c′1 = c1 − c2)

=

∣∣∣∣∣∣

0 −198 −110
1 98 55
3 197 111

∣∣∣∣∣∣
(r′1 = r1 − r3)

=

∣∣∣∣∣∣

0 −198 −110
1 −1 0
3 −1 1

∣∣∣∣∣∣
(r′2 = r2 − 1

2r1, r′3 = r3 + r1)

=

∣∣∣∣∣∣

0 −198 −110
1 −1 0
2 0 1

∣∣∣∣∣∣
= −22

(d)
∣∣∣∣∣∣∣∣

87 84 83 81
77 76 77 75
54 53 52 54

−43 −44 −46 −4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

4 1 2 81
0 −1 2 75
2 1 −2 54
3 2 −42 −4

∣∣∣∣∣∣∣∣

(c′1 = c1 − c3)
(c′2 = c2 − c3)
(c′3 = c3 − c4)
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=

∣∣∣∣∣∣∣∣

4 0 4 156
0 −1 2 75
2 0 0 129
3 0 −38 146

∣∣∣∣∣∣∣∣

(r′1 = r1 + r2)
(r′3 = r3 + r2)
(r′4 = r4 + 2r2)

= −
∣∣∣∣∣∣

4 4 156
2 0 129
3 −38 146

∣∣∣∣∣∣
(expanding by column 2)

= −
∣∣∣∣∣∣

0 4 156
2 0 129

41 −38 146

∣∣∣∣∣∣
(c′1 = c1 − c2)

= 4
∣∣∣∣

2 129
41 146

∣∣∣∣− 156
∣∣∣∣

2 0
41 −38

∣∣∣∣ = −8132

8.5. If b = a, then the first two columns have the same elements which means that the determinant
will be zero (Rule 5). We conclude that the determinant has a factor (a − b). Similarly the
determinant has factors (b− c) and (c− a). The determinant is of degree three in a, b and c which
implies that

∆ = k(b− c)(c− a)(a− b),

where k is a number. Compare the leading diagonal term 1×b×c2 = bc2 in ∆ with the corresponding
term in the expansion which is kbc2. Hence k = 1, and

∆ = (b− c)(c− a)(a− b).

8.6. Operations between columns give

∆ =

∣∣∣∣∣∣

1 1 1
a b c

a3 b3 c3

∣∣∣∣∣∣

=

∣∣∣∣∣∣

1 0 0
a b− a c− a

a3 b3 − a3 c3 − a3

∣∣∣∣∣∣
(c′2 = c2 − c1)
(c′3 = c3 − c1)

= (b− a)(c3 − a3)− (c− a)(b3 − a3).

Taking out factors

∆ = (b− a)(c− a)
∣∣∣∣

1 1
b2 + a2 + ba c2 + a2 + ac

∣∣∣∣

= (b− a)(c− a)
∣∣∣∣

1 0
b2 + a2 + ba (c2 − b2) + a(c− b)

∣∣∣∣ (c′2 = c2 − c1)

= (b− a)(c− a)(c− b)(a + b + c) = (b− c)(c− a)(a− b)(a + b + c)

8.7. The determinant equation is linear equation in x and y, and therefore represents the equation
of a straight line. Also the determinant is zero if x = a1, y = b1 since two rows have the same
elements. Hence the line passes through the point (a1, b1). Similarly the line also passes through
the point (a2, b2).

The cofactors of x and y are X1 = b1−b2 and X2 = a2−a1, and the slope is −X1/X2 (a1 6= a2).
(a) The required line is y = 4x− 5.
(b) The required line is 5y = −x− 1.

8.8.
∣∣∣∣∣∣

1 1 −1
1 a 2

−1 1 2

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 0 0
1 a− 1 3

−1 2 1

∣∣∣∣∣∣
(c′3 = c3 − c1)
(c′2 = c2 − c1)

= (a− 1)− 6 = a− 7.
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The determinant is zero if a = 7.

8.9. Each term in the expansion contains three elements each from a different row and column.
Since there are x’s are in different rows and columns, terms in x3 will appear in the expansion,
although it is possible that terms could cancel. In the second determinant there is no x in row 1,
the expansion will be of degree 2, at most, in x.

∣∣∣∣∣∣

x 2 −2
2 x 3
x −1 x

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2x + 2 x + 1 x + 1
2 x 3
x −1 x

∣∣∣∣∣∣
(r′1 = r1 + r2 + r3)

= (x + 1)

∣∣∣∣∣∣

2 1 1
2 x 3
x −1 x

∣∣∣∣∣∣
= x3 + x2 + 5x + 4

Hence the determinant is zero if x = −1 or x2 + x + 4 = 0. The solutions are

x = −1, x = 1
2 (−1± i

√
15).

The expansion of the second determinant is
∣∣∣∣∣∣

1 1 2
3 x 2
x 1 x

∣∣∣∣∣∣
= 4− x− x2.

Hence the determinant is zero where x = 1
2 (−1±√17).

8.10. By the expansion (8.3)
∣∣∣∣∣∣

a11 + b11 a12 + b12 a13 + b13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= (a11 + b11)(a22a33 − a32a23)− (a12 + b12)(a21a33 − a31a23) +

(a13 + b13)(a21a32 − a31a22)
= a11(a22a33 − a32a23)− a12(a21a33 − a31a23) + a13(a21a32 − a31a22) +

b11(a22a33 − a32a23)− b12(a21a33 − a31a23) + b13(a21a32 − a31a22)

=

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
+

∣∣∣∣∣∣

b11 b12 b13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
.

8.11. Expansion by row 1, as in the previous problem, will lead to 2 determinants. Then expansion
by row 2 for each of these 2 determinants will result in 22 = 4 determinants: the number doubles
for each row. Therefore there will be 23 = 8 determinants.

For an n× n determinant with the sum of two terms in each element, the expansion will lead
to 2n determinants.

8.12. ∣∣∣∣∣∣

1 a1 − b1 a1 + b1

1 a2 − b2 a2 + b2

1 a3 − b3 a3 + b3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 2a1 a1 + b1

1 2a2 a2 + b2

1 2a3 a3 + b3

∣∣∣∣∣∣
(c′2 = c2 − c3)

=

∣∣∣∣∣∣

1 2a1 b1

1 2a2 b2

1 2a3 b3

∣∣∣∣∣∣
(c′3 = c3 − 1

2c2)

= 2

∣∣∣∣∣∣

1 a1 b1

1 a2 b2

1 a3 b3

∣∣∣∣∣∣

12



8.13. Easy to verify that

D1 = 2, D2 =
∣∣∣∣

2 1
1 2

∣∣∣∣ = 3.

Expanding Dn by the top row

Dn = 2Dn−1 − 1× 1×Dn−2 = 2Dn−1 −Dn−2,

or, equivalently,
Dn −Dn−1 = Dn−1 −Dn−2.

It follows that

Qn = Dn −Dn−1 = Qn−1 = Qn−2 = . . . = Q2 = D2 −D1 = 2− 1 = 1.

Also
Dn = Dn−1 + Qn = Dn−1 + 1 = Dn−2 + 2 = · · · = D2 + (n− 1) = n + 1.

8.14. First observe that the determinant is a quartic in x, that is, a polynomial of the fourth
degree. If x = a, then rows 1 and 2 have the same elements, which mean that the determinant
is zero. Similarly, if x = b and x = c, two rows have identical elements. There will be one more
solution. Then

∣∣∣∣∣∣∣∣

x a b c
a x b c
a b x c
a b c x

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

x + a + b + c x + a + b + c x + a + b + c x + a + b + c
a x b c
a b x c
a b c x

∣∣∣∣∣∣∣∣
(r′1 = r1 + r2 + r3 + r4)

= (x + a + b + c)

∣∣∣∣∣∣∣∣

1 1 1 1
a x b c
a b x c
a b c x

∣∣∣∣∣∣∣∣
,

showing a factor (x + a + b + c). Hence, the solutions are

x = a, b, c,−(a + b + c).

8.15. The determinants of A and B are

detA =
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21, detB =
∣∣∣∣

b11 b12

b21 b22

∣∣∣∣ = b11b22 − b12b21.

(a) The product AB is given by

AB =
[

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
.

Then it can be verified that

det(AB) = (a11b11 + a12b21)(a21b12 + a22b22)−
(a21b11 + a22b21)(a11b12 + a12b22)

= (a11a22 − a12a21)(b11b22 − b12b21) = det A detB.
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Put B = A to obtain det(A2) = (det A)2.
(b)

det(AT ) =
∣∣∣∣

a11 a21

a12 a22

∣∣∣∣ = a11a21 − a12a21 = det A.

(c) By (7.8)

A−1 =
1

detA

∣∣∣∣
a22 −a12

−a21 a11

∣∣∣∣ .

Since det A effectively divides each element in the matrix,

det(A−1) =
1

(det A)2
(a22a11 − a21a12) =

1
(det A)2

det A =
1

det A
.

(d) Result follows from (c) since A−1 = adj A/ detA.

8.16. The numerical answers are:
detA = −2; det B = 18; detAB = −36; det(AT ) = −2;
det(adjA) = −2. Since

A−1 =
1
2




7 1 −5
−2 0 2

1 1 −1


 ,

then det(A−1) = − 1
2

8.17. The matrix A in full is

A =




α− 2 2α− 4 3α− 8
α + 2 2α + 4 3α + 8
α− 2 2α− 4 3α− 8


 = 0,

and its determinant is zero since rows 1 and 3 have the same elements.

Chapter 9: Elementary operations with vectors

9.1. (a) PQ = −QP = (5,−3); (b) PQ = −QP = (−1,−3); (c) PQ = −QP = (−1,−3);
(d) PQ = −QP = (1, 1).

-2 -1 1 2 3
x

-2

-1

1

2

3

4

y

HaL

HbL

HcL

HdL

Figure 1: Problem 9.1

9.2. (a)
√

3, 0; (b)
√

2, 90◦; (c)
√

2, 135◦; (d)
√

2, 45◦; (e)
√

2, −135◦;
(f) 5, 127◦; (g) 5, −126◦; (h)

√
5, 153◦.

9.3. (a) (
√

2,
√

2); (b) (− 3
2 , 3

√
3

2 ); (c) ( 3
2 , 3

√
3

2 ); (d) (− 3
√

2
2 ,− 3

2 ).

9.4. BE = QE − QB = (3, 3) + (1, 1) + (2, 3) − [(2, 4) + (4, 1)] = (6, 1) − (6, 5) = (0,−4). The
bearing is due south.

9.5. (a) Distance between (0, 0, 0) and (1, 2, 3) is
√

(12 + 22 + 32) =
√

14.
(b) Distance between (1, 2, 3) and (3, 2, 1) is

√
[(1− 3)2 + (2− 2)2 + (3− 1)2] = 2

√
2.
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(c) Distance between (1, 0,−1) and (−1, 1, 0) is
√

[(1− (−1))2 + (0− 1)2 + (−1− 0)2] =
√

6.

9.6. The vector PQ = (2, 3, 3) − (1, 2, 1) = (1, 1, 2). The projections respectively are the compo-
nents of PQ, namely 1, 1, 2.

9.7. (a) 2a = 2(1, 2, 1) = (2, 4, 2); 3b = 3(2, 1, 2) = (6, 3, 6); 2a − 3b = (2, 4, 2) − (6, 3, 6) =
(−4, 1,−4).
(b) 2a = (6, 4, 6); 3b = (3, 3, 6); 2a− 3b = (3, 1, 0).
(c) 2a = (12, 6, 2); 3b = (12, 6, 3); 2a− 3b = (0, 0,−1).

The vector 2a− 3b is parallel to the (x, y) plane in (b) because the z component is zero, and
parallel to the z axis in (c) since both its x and y components are zero.

9.8. Figure 2 shows that AB + BC + CA = 0 by the triangle law.

B

A

C

Figure 2: Problem 9.8

9.9. Figure 3 shows that CD = CB + BA + AD.

B

A

C

D

A

B

C

D

E

Figure 3: Problem 9.9

9.10. The vector OP = (5, 2,−3), and the vector giving the origin Q in terms of O is OQ =
(2,−1, 3). Hence QP = OP −OQ = (3, 3,−6). In QXY Z, the point P has coordinates (3, 3,−6).

The relation between coordinates is x = X + 2, y = Y − 1, z = Z + 3. Hence the equation of
the sphere x2 + y2 + z2 = 1 becomes the sphere

(X + 2)2 + (Y − 1)2 + (Z + 3)2 = 1.

9.11. Let AB = a, BC = b, CD = c. By repeated application of the triangle rule, AD = a+b+c.
Since P and Q are midpoints

PQ = PB + BQ =
1
2
AB +

1
2
BC =

1
2
(a + b).

Simlarly

SR = SD + DR =
1
2
AD +

1
2
DC =

1
2
(a + b + c)− 1

2
c =

1
2
(a + b) = PQ.
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The quadrilateral PQRS has opposite sides which are parallel and equal in length, and is therefore
a parallelogram.

9.12. AP is the median vector from A; F is a representative point, position vector r, on AP . The
parametric equation for AP is

r = rA + λAP = rA + λ(b + 1
2a) (i)

= rA + λ[rC − rA + 1
2 (rB − rC)]

= (1− λ)rA + 1
2λrB + 1

2λrC , (ii)

where a = CB, b = AC, c = AC and λ is a parameter. By permuting the suffixes, A → B,
B → C, C → A, we obtain for the other medians:

r = (1− µ)rB + 1
2µrC + 1

2µrA, (iii)

and
r = (1− ν)rC + 1

2νrA + 1
2νrB , (iv)

where µ, ν are parameters. These lines meet at a single point C if values of λ, µ, ν can be found
that make the right-hand sides (ii), (iii), (iv) equal. If we put λ = µ = ν = 2

3 we obtain the
common point G, with

OG = 1
3 (rA + rB + rC).

Also the term λAP = 2
3AP in (i) shows that G is two-thirds of the way along AP .

9.13. Can one vector, say OC, be expressed in terms of the other two? We require constants α
and β such that, from eqn (9.12)

OC = αOA + βOB, or (5, 5, 7) = α(1, 1, 2) + β(1, 1, 1).

This will be possible if α + β = 5 and 2α + β = 7. Hence α = 2 and β = 3, and the three vectors
drawn from the origin lie in the same plane.

Similarly, for OA = (a, a, p), OB = (b, b, q), OC = (c, c, r), we require α and β such that

c = αa + βb, r = αp + βq.

Hence, the lines lie in the same plane since solutions for α and β can be found:

α =
cq − rb

aq − pb
, β =

ra− cp

aq − bp
,

provided aq − pb 6= 0. If aq − pb = 0, the vectors OA and OB lie in the same direction, and the
three vectors will still lie in a plane. The vectors all lie in a plane through the z axis, at 45◦ to the
x and y axes.

9.14. If vE is the velocity of the glider relative to the earth, then

vE = v −w = (40, 30, 10)− (5,−10, 0) = (35, 40, 10).

9.15. Let vBS be the velocity of the boat relative to the sea, vB be the velocity of the boat and
vS the velocity of the sea. Then vBS = vB − vS , so that

vS = vB − vBS = (4, 1)− (5, 4) = (−1,−3).

9.16. Let vWC be the velocity of the wind relative to the cyclist, vW the velocity of the wind,
and vC the velocity of the cyclist. Suppose that vW = (a, b). Then, in case (i):

vWC = (a, b)− (0, 10) = (a, b− 10).
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Since vWC has zero component in the northerly direction, it follows that b = 10. In case (ii)

vWC = (a, b)− (0, 20) = (a, b− 20) = (a,−10).

Since the wind appears to come from the north-west, a = 10. Its speed is

|vW | =
√

[102 + 102] = 10
√

2km h−1.

9.17. Let vS be the velocity of the ship, vW the velocity of the wind and vWS be the velocity of
the wind relative to the ships. In both cases vWS = vW − vS . Let vW = (a, b). Then

(a, b)− (0,−u) = (a, b− u) has direction −î.

Hence b = u, and a is negative. Secondly

(a, b)−
(
− 2u√

3
, 0

)
=

(
a +

2u√
3
, b

)

has direction

tan

(
b

a + 2u√
3

)
= −120◦.

Therefore
u

a + 2u√
3

= −
√

3,

so that
u = −

√
3a− 2u, or a = −

√
3u.

The true velocity of the wind is vW = (
√

3u, u).

9.18. The terminal point

R = a + 2r = (2, 3, 1) + 2(1, 1, 2) = (4, 5, 5).

9.19. (a) 0◦, 90◦, 90◦; (b) 45◦, 45◦, 90◦;
(c) 90◦, 90◦, 180◦; (d) arctan(1/

√
3) = 54.7◦, 54.7◦, 54.7◦;

(e) arctan(1/
√

3) = 54.7◦, 54.7◦, 125.3◦.

9.20. (a) The position vector of S is given by (a sketch of the points is helpful)

OS = OP + (PQ + PR) = (1, 1, 0) + (0, 0, 1) + (0, 1, 1) = (1, 2, 2).

(b) The diagonal PS = PQ + PR = (0, 1, 2). Hence the coordinates of the midpoint are

OP + 1
2PS = (1, 1, 0) + 1

2 (0, 1, 2) = (1, 3
2 , 1).

(c) As in (b) the midpoint of QR has coordinates

OQ + 1
2QR = OQ + 1

2 (QS + QP ) = (1, 1, 1) + 1
2 [(0, 1, 1) + (0, 0,−1)] = (1, 3

2 , 1),

which has the same coordinates as the midpoint of PS.
The coordinates of the midpoints are:

A has coordinates OP + 1
2PR = (1, 1, 0) + 1

2 (0, 1, 1) = (1, 3
2 , 1

2 );
B has coordinates OP + PR + 1

2RS = (1, 1, 0) + (0, 1, 1) + 1
2 (0, 0, 1) = (1, 2, 3

2 );
C has coordinates OP + PQ + 1

2QS = (1, 1, 0) + (0, 0, 1) + 1
2 (0, 1, 1) = (1, 3

2 , 3
2 );

D has coordinates OP + 1
2PQ = (1, 1, 0) + 1

2 (0, 0, 1) = (1, 1, 1
2 ).

Hence ABCD is a parallelogram since AB = (0, 1
2 , 1) = DC.
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9.21. Since AB = (2, 1,−1) and AC = (−4,−2, 2), then AC = −2AB.
(a) Since AC is of the opposite sign to AB, then A is between C and B.
(b) If P is a point on the line, then OP = OA + AP = OA + λAB, where λ is a parameter.
(c) As in (b)

(x, y, z) = (2λ + 1, λ + 2,−λ− 1) = λ(2, 1,−1) + (1, 2,−1) = λAB + OA,

which is the equation of the straight line.

9.22. (a) By the triangle law AB = b− a. Then

OC = OA +
1
2
AB = a +

1
2
(b− a) =

1
2
(a + b).

(b) As in (a)

OU = OA +
1
4
(b− a) =

3
4
a +

1
4
b.

(c) As in (b)

OV = OA + AV = OA +
1
2
BA = a +

1
2
(a− b) =

3
2
a− 1

2
b.

9.23. Let OA = a and OB = b.
(a) We are given that AU/UB = λ where 0 < λ < 1. Hence AU = λUB, and

OU = OA + AU = a + λUB = a + λ(b−OU).

Hence
OU =

1
1− λ

(a + λb).

(b) Since V does not lie between A and B, AV = λBA, where 0 < λ < 1. Thus

OV = OA + AV = a + λ(OV − b).

Therefore
OV =

1
1 + λ

(a− λb).

(c) If λ > 1, then B is outside AB, in the direction AB.

9.24. (a) The vector (2, 3, 4)− (1, 2, 3) = (1, 1, 1) is a vector in the direction of the line. If r is the
position vector a general point on the line, then

r = (x, y, z) = (1, 4, 2) + λ(1, 1, 1), or x = 1 + λ, y = 4 + λ, z = 2 + λ.

(b) From (a) λ = x− 1 = y − 4 = z − 2. The equation of the line can be represented in the form
of two simultaneous equations

x− 1 = y − 4 = z − 2.

(c) Using the representation in (b), the line intersects the (x, y) plane where

x− 1 = y − 4 = −2, that is, at (−1, 2, 0).

Similarly, the line meets the (y, z) plane where

−1 = y − 4 = z − 2, that is, at (0, 3, 1).

(d) Using these points the equation can be expressed in the form

r = (−1, 2, 0) + ν[(−1, 2, 0)− (0, 3, 1)] = (−1, 2, 0) + ν(−1,−1,−1).
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Two more equations for the line could be

x + 1 = y − 2 = z.

9.25. The position vector of P can be expressed as

r = λa + (1− λ)b = b + λ(a− b).

Hence P describes a straight line through A and B.
Looking at the line through AB, if λ < 0 then P lies on the extension of AB, if 0 < λ < 1, P

lies between A and B, and if λ > 1, P lies on the extension of BA.

9.26. The equation of a plane through the points a, b and c can be expressed in the from

r− a = λ(b− a) + µ(c− a).

(a) The plane is
r = (1, 0, 1) + λ(−1, 1,−1) + µ(−1, 0, 0).

Hence
x = 1− λ− µ, y = λ, z = 1− λ.

Eliminate λ between the second two equations gives the plane y + z = 1: x can take any value.
(b) The plane is

r = (0, 0, 0) + λ(1, 2,−1) + µ(2, 2, 2).

Hence
x = λ + 2µ, y = 2λ + 2µ, z = −λ + 2µ.

Eliminate λ giving
x + z = 4µ, y + 2z = 6µ.

Finally eliminate µ:
3x− 2y − z = 0

which is the equation of the plane.

9.27. The coordinates of any point on the line are (1 + t, 2 + t, 3 + t). The square of its distance
from the origin is

r2 = x2 + y2 + z2 = (1 + t)2 + (2 + t)2 + (3 + t)2 = 14 + 12t + 3t2.

Then
d(r2)

dt
= 12 + 6t,

which is zero where t = −2. The distance is a stationary minimum since the second derivative is
6 which is positive. The minimum distance is

√
(14− 24 + 12) =

√
2.

9.28. The unit vectors required are ±a/|a|.
(a) ±( 3√

34
, 4√

34
, 3√

34
); (b) ±( 2

7 , 3
7 , 6

7 );
(c) ±(− 1√

6
, 1√

6
, 2√

6
); (d) ±( 1√

6
,− 2√

6
, 1√

6
);

(e) ±( 1√
6
,− 2√

6
, 1√

6
).

9.29. (a) The vector is (−2̂i + 3ĵ + k̂)− (̂i + ĵ + k̂) = −3̂i + 2ĵ + 4k̂ with length
√

29.
(b) 2̂i− 3ĵ− k̂, and length

√
14.

9.30. The vector equation of the line is

r = (̂i− ĵ + 2k̂) + λ(2̂i− 2ĵ− 3k̂).
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If x = 0, then 1 + 2λ = 0 or λ = − 1
2 , in which case r = 7

2 k̂. The î and ĵ components are both zero
which means that the line cuts the z axis.

9.31. A square bounded by the 4 lines ±x± y = 1.

9.32. An octahedron bounded by the 8 triangular faces ±x± y ± z = 1.

9.33. The centre of mass is at

r̃ = 1
6 [1(1, 1, 2) + 2(−2, 3, 5) + 3(0, 3, 2)] = 1

6 (−3, 16,−2) = − 1
2 î + 8

3 ĵ− 1
3 k̂.

9.34. The vector equation of the line is r = (1, 1, 1) + λ(1, 2,−1). The line meets the plane where

−2 = x− y + z = (1 + λ)− (1 + 2λ) + (1− λ0 = 1− 2λ.

Hence λ = 3
2 . Therefore they intersect at 5

2 î + 4ĵ− 1
2 k̂.

9.35. The aircraft’s path is given by the position vector

r = î[P + R cos(V t/R)] + ĵ sin(V t/R) + Hk̂.

9.36. Let OA and OB be unit vectors in the directions of a and b. Thus

OA = â =
a
|a| , OB = b̂ =

a
|b| .

If C is the midpoint of AB, then OC bisects the angle AOB. Hence

OC = OA +
1
2
AB = a +

1
2
(b̂− â) =

1
2

(
a
|a| +

b
|b|

)
.

9.37. (a) For A: its path is given by

rA = 0.41̂i + 148t̂j + 0.99k̂,

which describes a straight line since the components are linear in t. The velocity of A is

vA =
dr
dt

= 148ĵ.

Hence its speed is 148 km.hr−1. For B: its path is given by

rB = 100t̂i + 250t̂j + 250tk̂,

which also describes a straight line. The velocity of B is

vB =
dr
dt

= 100̂i + 250ĵ + 250k̂.

Its speed is
√

[1002 + 2502 + 2502] = 150
√

6 ≈ 367 km.hr−1.
(b) Let S(t) be the distance between A and B at time t. Then

S(t) =
√

[(100t− 0.41)2 + (250t− 148t)2 + (250t− 0.99)2].

We require the minimum value of S(t), which is the same as that of [S(t)]2. Differentiate [S(t)]2:

d[S(t)]2

dt
= 200(100t− 0.41) + 2× 102 + 500(250t− 0.99),

which is zero when t = 0.0035 hr=12.6 s. The minimum distance is S(0.0035) = 0.38 km, which is
a close encounter for aircraft.
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9.38. (a) The position vector of B relative to A is rB − rA. The velocity of B relative A is

d
dt

[rB − rA] =
drB

dt
− drA

dt
.

(b) For the given points A : (t,−t2, t) and B : (t3, 2t2, 1 + 3t), the velocity of B relative to A is

d
dt

[(t− t3)̂i + (−t2 − 2t2)̂j + (t− 1− 3t)k̂] = (1− 3t2)̂i− 6t̂j− 2k̂.

The velocity of A relative to B is the vector in the opposite direction, namely

drA

dt
− drB

dt
= −(1− 3t2)̂i + 6t̂j + 2k̂.

(c) The relative speed is v(t) =
√

[(1− 3t2)2 + 36t2 + 4]. Since v(t) is never zero, any stationary
point of v(t) occurs at the same time as any stationary point of [v(t)]2. Hence

d
dt

[v(t)]2 = 12t(5 + 3t2),

which is zero only when t = 0. The stationary value is a minimum since the second derivative is
obviously positive.

9.39. Given r = îa cosωt + ĵ sin ωt, the velocity and acceleration are given by

v =
dr
dt

= −îaω sin ωt + ĵbω cos ωt,

a =
dv
dt

= −îaω2 cosωt− ĵbω2 sin ωt = −ω2r.

Hence the acceleration vector is in the opposite direction to r at the particle, and must, therefore,
be directed towards the origin.

9.40. The first and second derivatives of r = sec t and θ = t are

ṙ = sec t tan t, r̈ = 2 sec3 t− sec t, θ̇ = 1, θ̈ = 0.

From Example 9.15, the radial and transverse components of acceleration are given by

d2r
dt2

= (r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ = 2 sec t tan2 t êr + 2 sec t tan t êθ.

9.41. Given r = îa cosωt sin νt + ĵa sin ωt sin νt + k̂ cos νt,

|r|2 = a2 cos2 ωt sin2 νt + a2 sin2 ωt sin2 νt + a2 cos2 νt,

= a2 sin2 νt + a2 cos2 νt = a2

The velocity is given by

v =
dr
dt

= îa(−ω sin ωt sin νt + ν cos ωt cos νt)

+ĵa(ω cos ωt sin νt + ν sinωt cos νt)− k̂aν sin νt

Its magnitude is

|v| = a[(−ω sin ωt sin νt + ν cos ωt cos νt)2

+(ω cosωt sin νt + ν sin ωt cos νt)2 + ν2 sin2 νt]
1
2

= a(ν2 + ω2 sin2 νt)
1
2 = v(t), say.
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To find the minimum and maximum speeds differentiate v(t) with respect to t:

dv(t)
dt

=
aω2ν sin νt cos νt

(ν2 + ω2 sin2 νt)
1
2
.

This zero when sin νt cos νt = 0, that is when t = 0, π
2ν , π

ν , 3π
2ν . At t = 0 and t = π

ν , the sign of
dv/dt changes from negative to positive as t increases through these values of t. Hence they are
both minima, and they occur at r = ±k̂a, the highest and lowest points of the sphere. Similarly,
maxima occur at the times t = π

2ν and t = 3π
2ν . At these times the k̂ component of r is zero which

means that the maximum speeds occur on the equator of the sphere.

Chapter 10: The scalar product

10.1. (a) (2, 2, 1) · (3, 1, 2) = 10; (b) (2,−3, 2) · (−2, 3,−1) = −15;
(c) (2, 2,−3) · (−1, 1,−2) = 6; (d) (2, 3, 4) · (1,−2, 1) = 0;
(e) p− q, p + q, p) · (p + q, q,−p− q) = (p2 − q2) + q(p + q) + p(−p− q) = 0.

10.2. (a) (2, 3) · (3, 4) = 18; (b) (1, 0) · (0, 1) = 0; (c) (5, 6) · (0,−4) = −24; (d) (2, 3) · (3,−2) = 0.

10.3. By (10.1c)

|a + b|2 + |a− b|2 = (a + b) · (a + b) + (a− b) · (a− b)
= a · a + a · b + b · a + b · b + a · a− a · b− b · a + b · b
= 2a · a + 2b · b = 2(|a|2 + |b|2),

using (10.1c) again.

10.4. (a) (2,−3, 4) · (−1,−2, 3) = 16.

(b) a · b = (2̂i− 3ĵ + 4k̂) · (−1̂i− 2ĵ + 3k̂) = −2 + 6 + 12 = 16,
since î · î = 1, î · ĵ = 0, and so on.

10.5. Given that a = î + 2ĵ− k̂, b = î + 3ĵ + k̂,
(a) a · b = (1, 2,−1) · (1, 3, 1) = 6;
(b) (a− b) · (a + b) = (0,−1,−2) · (2, 5, 0) = −5;
(c) (a− b) · (a− b) = (0,−1,−2) · (0,−1,−2) = 5;
(d)

a · a + 2a · b + b · b = (1, 2,−1) · (1, 2,−1) + 2(1, 2,−1) · (1, 3, 1) + (1, 3, 1) · (1, 3, 1)
= 6 + 12 + 11 = 29,

or note that it is the same as |a + b|2.
(e) (a · a)b− (b · b)b = 6(1, 2,−1)− 11(1, 3, 1) = (6, 12,−6)− (11, 33, 11) = (−5,−21,−17)

10.6. Use (10.4) which states that the angle θ between a and b, in the range 0 ≤ θ ≤ 180◦, is
given by

θ = arccos
a · b
|a||b| .

(a) θ = arccos[2/(
√

3
√

2) = 35.3◦;
(b) θ = arccos 0 = 90◦;
(c) θ = arccos[(2− 3 + 6)/(

√
14
√

14)] = arccos[5/14] = 69.1◦.

10.7. (a) arccos 0 = 90◦;
(b) θ = arccos[(2 + 2)/(

√
5
√

5)] = arccos[4/5] = 36.9◦;
(c) θ = arccos 0 = 90◦.

10.8. Imagine a cube placed with the origin of coordinate axes at one corner, and with three edges
coincident with the positive directions of the axes. Assume that these three edges are represented
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by the vectors âi, aĵ and ak̂ (the cube has side-length a). The diagonal joins the origin (0, 0, 0)
to (a, a, a) which can be represented by the vector r = âi + aĵ + ak̂. The angle α between this
diagonal and, say, the x axis is given by

α = arccos[âi · r/(a.a
√

3)] = arccos[1/
√

3] = 54.7◦.

10.9. The position vector r of any point on the cone will be in the cone, and always make an angle
α with the axial unit vector â. Hence, by (10.4a) the equation of the cone is

â · r = |r| cosα.

Let r = x̂i+ yĵ+ zk̂, â = 2
7 î− 3

7 ĵ− 6
7 k̂ and α = 60◦. Then the cartesian equation of the cone is

( 2
7 ,− 3

7 ,− 6
7 ) · (x, y, z) = 1

2

√
(x2 + y2 + z2),

or, after squaring both sides,

4(2x− 3y − 6z)2 = 49(x2 + y2 + z2),

or
33x2 + 13y2 − 95z2 + 48xy − 144yz + 96zx = 0.

10.10. Let BC = a, CA = b, and AB = c. By the triangle law,

a = (−1, 1,−1), b = (3, 0,−1), c = (−2,−1, 2).

In each case the scalar product gives the supplement of the corresponding internal angle. Thus,
α = B̂AC, β = ĈBA, γ = ÂCB, then

cos(π − α) =
b · c
|b||c| =

−8√
10
√

9
= − 8

3
√

10
,

cos(π − β) =
c · a
|c||a| =

−1√
9
√

3
= − 1

3
√

3
,

cos(π − γ) =
a · b
|a||b| =

−2√
3
√

10
= − 2√

30
.

We can now find the internal angles;

α = 32.5◦, β = 78.9◦, γ = 68.6◦.

10.11. Using (10.1c)

1
4
(|a + b|2 − |a− b|2) =

1
4
[(a + b) · (a + b)− (a− b) · (a− b)]

= a · b

10.12. From the definition of the scalar product

F · a
|a| =

|F||a| cos θ

|a| = |F| cos θ,

which is the component of F in the direction of a. Due regard to sign occurs since 0 ≤ θ ≤ π. For
each of the vectors

F · a
|a| = F · â = (8, 15, 9) · (2, 3, 6)/7 = (16 + 45 + 54)/7 = 115/7;
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F · b̂ = (8, 15, 9) · (0, 3, 4)/7 = (45 + 36)/7 = 81/7,

F · ĉ = (8, 15, 9) · (2, 2, 1) = (16 + 30 + 9)/7 = 55/7.

Looking at the components in F = λa + µb + νc, we have

8 = 2λ + 2ν,

15 = 3λ + 3µ + 2ν,

9 = 6λ + 4µ + ν.

Now solve these equations by elimination: the solution is

λ = −13/11, µ = 310/11, ν = 57/11.

Hence
F = − 13

11a + 30
11b + 57

11c.

10.13. Form the scalar product of a and b:

a · b = (1, 3, 4) · (−2, 6,−4) = 0,

which means that the vectors are perpendicular.
The vector c = c1 î + c2ĵ + c3k̂ will be perpendicular to both a and b if c · a = 0 and c · b = 0.

This will be the case if
c1 + 3c2 + 4c3 = 0,

and
−2c1 + 6c2 − 4c3 = 0.

We have two equations in three unknowns, so specify one of them: put, say, c3 = 1. Then

c1 + 3c2 = −4, and − 2c1 + 6c2 = 4.

Hence c1 = −3 and c2 = − 1
3 . The solution is any (nonzero) multiple of (−9,−1, 3). Unit vectors

in the directions of c and −C are

ĉ = ± (−9,−1, 3)√
(81 + 1 + 9)

=
1√
91

.

10.14. By (10.4), the angle is given by

arccos
1, 1,−1) · (2,−1, 2)

3
√

3
= arccos[1/

√
3] = 101.1◦.

Let c = c1 î + c2ĵ + c3k̂ be a vector perpendicular to both a and b. Then we must have
c · a = c · b = 0, which in component form become:

c1 + c2 − c3 = 0, and 2c1 − c2 + 2c3 = 0.

These are two equations in three unknowns, so specify one component, c1 = 1, and solve the two
equations for c2 and c3. The result is c2 = −4, c3 = −3. Hence any vector which is perpendicular
to both a and b is any multiple of î− 4ĵ− 3k̂.

10.15. The two vectors are perpendicular if

(λ, 2,−1) · (1, 1,−3λ) = λ + 2 + 3λ = 2 + 4λ = 0.

Hence λ = − 1
2 .
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10.16. The three vectors are mutually perpendicular if b · c = c · a = a · b = 0. Hence α, β, and
γ must satisfy

−2 + 2β − 6γ = 0, 2α + 2 + 9γ = 0, −α + 4β − 6 = 0.

By elimination the solutions are

α = − 2
5 , β = 7

5 , γ = 2
15 .

10.17. The vectors giving relevant edges of the tetrahedron are

AB = (−1, 1, 0), AD = (−1, y, z), BD = (0, y − 1, z),

BC = (0, 0, 1), DC = (0, 1− y, 1− z).

Then B̂CD is a right angle if BC ·DC = (0, 0, 1) · (0, 1− y, 1− z) = 1− z = 0. Hence z = 1. The
triangle ABD is equilateral if AB = BD = DA, that is, if

√
2 =

√
[1 + (y − 1)2] =

√
(y2 + 2).

Obviously, y = 0. Hence D is the point (0, 0, 1).

10.18. The axes are shown in the figure. For a general point (x, y) whose coordinates are (X, Y )
in axes rotated through an angle α anticlockwise

-2 -1 1 2
x

-1

1

2

3

y

XY

Figure 4: Problem 10.18

x = X cos α− Y sin α, y = X sin α + Y cosα,

or solving for X and Y

X = x cosα + y sin α, Y = −x sin α + y cos α.

(a) Given α = 45◦ and P : (x, y) = (2, 2), X = 2 1√
2

+ 2 1√
2

= 2
√

2, Y = −2 1√
2

+ 2 1√
2

= 0.

(b) If Q : (X, Y ) = (1,−1), then x = 1√
2

+ 1√
2

=
√

2, y = 1√
2
− 1√

2
= 0.

(c) Express x and y in terms of X and Y in the equation of the circle. It becomes

(
1√
2
X − 1√

2
Y − 1

)2

+
(

1√
2
X +

1√
2
Y

)2

= 1,

which can be simplified to (
X − 1√

2

)2

+
(

Y +
1√
2

)2

= 1.

10.19. The lengths and direction cosines are (a) 1, (0, 1, 0); (b)
√

3, ( 1√
3
, 1√

3
, 1√

3
);

(c) 3, ( 1
3 ,− 2

3 ,− 2
3 ); (d)

√
3, ( 1√

3
,− 1√

3
, 1√

3
);

(e)
√

3, ( 1√
3
,− 1√

3
,− 1√

3
); (f) 7, ( 2

7 , 3
7 , 6

7 );
(g) 3, ( 1

3 ,− 2
3 , 2

3 ); (h) 3, (0, 0, 1); (i) 3, (0, 0,−1).
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10.20. (a) Check the scalar products:

19Y · 19Z = (15,−10, 6) · (10, 6,−15) = 150− 60− 90 = 0,

19Z · 19X = (10, 6,−15) · (6, 15, 10) = 60 + 90− 150 = 0,

19X · 19Y = (6, 15, 10) · (15,−10, 6) = 90− 150 + 60 = 0.

They are all zero: hence the vectors are mutually perpendicular. They are also all unit vectors
since for each 62 + 152 + 102 = 361 = 192.
(b) The base vectors for OXY Z are Î = (6, 15, 10)/19, Ĵ = (15,−10, 6)/19, K̂ = (10, 6,−15)/19.
Hence using (10.13a) 


X
Y
Z


 =

1
19




6 15 10
15 −10 6
10 6 −15







x
y
z


 .

Similarly 


x
y
z


 =

1
19




6 15 10
15 −10 6
10 6 −15







X
Y
Z


 .

(c) From (b) 


X
Y
Z


 =

1
19




6 15 10
15 −10 6
10 6 −15







1
2
2


 =

1
19




56
7

−8


 .

(d) The plane x + y + z = 0 in the new coordinates is

[(6X + 15Y + 10Z) + (15X − 10Y + 6Z) + (10X + 6Y − 15Z)]/19 = 0,

or
31X + 11Y + Z = 0.

10.21. The direction cosines are
(a) ±( 3

13 , 4
13 , 12

13 ); (b) ±( 6
19 ,− 10

19 , 15
19 ).

10.22. We are given that for each particle with position vector r(t), its velocity is v = f(t)r. Let
s(t) be the position vector of another particle. The velocity of the particle with position vector r
relative to that with position vector s is

vs =
d
dt

(r− s) = f(t)r− f(t)s = f(t)(r− s).

Hence the relative velocity obeys the same rule.

10.23. If α1, α2 and α3 are the angles the vector makes with the axes then

cos2 α1 + cos2 α2 + cos2 α3 = 1.

In this problem cos α1 = cos 45◦ = 1/
√

2, cos α3 = cos 60◦ = 1
2 , so that

1
2 + cos2 α2 + 1

4 = 1, or cos2 α2 = 1
4 .

Therefore cos α2 = ± 1
2 . Hence a makes either 60◦ or 120◦ with y axis.

10.24. The direction cosines are
(a) ±( 3

13 , 4
13 , 12

13 ).
(b) ±( 6

19 , −10
19 , 15

19 ).

10.25. (a) The coefficients of λ give a vector in the direction of the line, namely (−1, 3, 1).
(b) The normal n to the plane is in the direction of the line. We can put n = (−1, 3, 1). Since the
plane passes through the origin, its equation is n · r = 0, that is, −x + 3y + z = 0.
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(c) The plane passes through the origin. Therefore its equation takes the form px + qy + rz = 0.
The plane must also pass through two points on the line. Choose obvious points, such as λ = 1
giving the point (0, 5, 2) and λ = −1 giving (2,−1, 0). Therefore p, q, r must satisfy

5q + 2r = 0, 2p− q = 0.

Put q = 2 (or any nonzero value). Then p = 1 and r = −5.The equation of the is

x + 2y − 5z = 0.

10.26. The angle between the planes is the same as the angle between the normals. For any plane
ax + by + cz = p, the direction of its normal is the vector n = (p, q, r).
(a) From (10.22), the normals to the planes 2x − 3y + z = 2 and x − y = 0 are, respectively,
n1 = (2,−3, 1) and n2 = (1,−1, 0). If θ is the angle between the planes then

cos θ =
n1 · n2

|n1||n2| =
5√

14
√

2
=

5
2
√

7
.

Hence θ = 19.1◦.
(b) The normals to the planes x + y + z = 0 and z = 0 are, respectively, n1 = (1, 1, 1) and
n2 = (0, 0, 1). If θ is the angle between the planes then cos θ = 1/

√
3. Hence θ = 54.7◦.

10.27. Since the directions of the normals to the planes are given by a and b, the planes are
perpendicular if a · b = 0.

The direction of the normal to the plane x+y+z = 0 is (1, 1, 1), from(10.22). Any vector (p, q, r)
is perpendicular to (1, 1, 1) if p + q + r = 0. The set of all vectors perpendicular to the normal is
(p, q,−p− q) for any p and q. The set of all perpendicular planes is given by px+ qy− (p+ q)z = d
for any p, q and d.

10.28. (a) The normal vector of the plane ax+ by + cz = d is (a, b, c) (see (10.22)) which is a fixed
vector.
(b) The normal to the plane 2x + y − z = 2 is n = (2, 1,−1). Since the line passes through the
origin, the position vector must be in the direction of n. Therefore r = λ(2, 1,−1).
(c) The point λ(2, 1,−1) must lie on the plane. Hence 4λ+λ+λ = 2, so that λ = 1

3 and the point
of intersection ( 2

3 , 1
3 ,− 1

3 ). The length is
√

[(4 + 1 + 1)/9] =
√

(2/3).
(d) The planes are parallel. The line meets this plane where 4λ1 + λ1 + λ1 = 1 so that λ1 = 1

6 .
The point of intersection is ( 1

3 , 1
6 ,− 1

6 ). The distance between the planes is the distance between
the two points of intersection, namely

√
[(

2
3
− 1

3

)2

+
(

1
3
− 1

6

)2

+
(
−1

3
+

1
6

)2
]

=
√[

1
9

+
1
36

+
1
36

]
=

1√
6
.

10.29. The parametric equation for the straight line through q perpendicular to the plane is
r− q = λp. The line intersects the plane p · r = d where

p · (λp + q) = d, so that λ = (d− p · q)/|p|2.

The line meets the plane at the point

r1 = q +
p
|p|2 (d− p · q).

The distance of Q from the plane is

|r1 − q| = |d− p · q|/p| = |p · q− d|/|p|.
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For the given point and plane q = (1, 1, 2), p = (1, 2,−4) and d = −3. Using the formula above
the perpendicular distance is

|p · q− d|
|p| =

|(1, 2,−4) · (1, 1, 2) + 3|√
21

=
| − 5 + 3|√

21
=

2√
21

.

10.30. (a) For the plane P1 through A, −ĵ + k̂ will be the direction of its normal. Hence (see
(10.22)) its equation is

0x− y + z = 0 + 1 + 3, or − y + z = 4.

Let the equation of P2 be ax + by + cz = d. It passes through A : (0,−1, 3), B : (1, 0, 3) and
C : (0, 0, 5). Hence

−b + 3c = d, a + 3c = d, 5c = d.

Let d = 5. Then c = 1, a = d− 3c = 2, and b = 3c− d = −2. The equation of P2 is

2x− 2y + z = 5.

(b) The normals of P1 and P2 are n1 = (0,−1, 1) and n2 = (2,−2, 1) so the angle θ between the
planes is

cos θ =
n1 · n2

|n1||n2| =
2 + 1√
2
√

9
=

1√
2
.

Hence θ = 45◦.
(c) The equation of the normal to P1 which passes through the origin is (x, y, z) = λn1 = λ(0,−1, 1).
This meets P1 where λ + λ = 4. Hence λ = 2, so that the line meets the plane at (0,−2, 2). The
perpendicular distance is

√
[(−2)2 + 22] = 2

√
2. (The result can also be found using the formula

in Problem 10.29.)
(d) The line OD is given by

x = λ, y = 4λ, z = −4λ.

This meets P1 where −4λ − 4λ = 4, that is where λ = − 1
2 . Similarly the line meets P2 where

2λ− 8λ− 4λ = 5, from which it follows that λ = − 1
2 again. Since λ takes the same values on both

planes the points of intersection coincide, and the point must therefore lie on the line of intersection
of the planes.
(e) From (d), λ = − 1

2 at the point of intersection of L with OD. Therefore the point of intersection
has coordinates (− 1

2 ,−2, 2).

10.31. Since F · n̂ = |F||n̂| cos θ = |F| cos θ (see (10.4)), it follows that the right-hand side is the
component in the direction n̂. Hence

F = Fs + (F · n̂)n̂.

For the straight line 2x− 3y = 1, we can choose ŝ = (3, 2)/
√

13 and n̂ = (2,−3)/
√

13. Then

Fn = (F · n̂)n̂ = ( 2√
13

+ 9√
13

)( 2√
13

,− 3√
13

) = ( 22
13 ,− 33

13 ).

The other component Fs is given by

Fs = F− Fn = (1,−3)− (22
13 ,− 33

13 ) = (− 9
13 ,− 6

13 ).

10.32. (a) The component of û in the direction ŝ is

ûs = (û · ŝ)ŝ

so that
ûn = û− (û · ŝ)ŝ.
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s`1

s`2

u`

u`1

u`2

ΘΘ60°

2Θ-60°

Figure 5: Problem 10.32

The vector û1 is û with the n̂ component reversed. Thus

û1 = ûs − ûn = −û + 2(û · ŝ)ŝ.

(b) In this example, ŝ = î, n̂ = ĵ, and û = 1√
2 î + 1√

2 ĵ. Therefore, by (a),

û1 =
(

1√
2
î +

1√
2
ĵ
)

+ 2
(
− 1√

2

)
î = − 1√

2
î +

1√
2
ĵ.

(c) For the first reflection, ŝ = î, n̂ = −ĵ, and

û = −î cos θ − ĵ sin θ.

Using (a)
û1 = î cos θ + ĵ sin θ + 2(− cos θ)̂i = −î cos θ + ĵ sin θ.

For the second reflection, ŝ2 = 1
2 î +

√
3

2 ĵ, n̂2 =
√

3
2 î− 1

2 ĵ. Therefore

û = î cos θ − ĵ sin θ + 2(− 1
2 cos θ +

√
3

2 sin θ)( 1
2 î +

√
3

2 ĵ)

= î( 1
2 cos θ +

√
3

2 sin θ) + ĵ(−
√

3
2 cos θ + 1

2 sin θ)

= î cos(θ − 60◦) + ĵ sin(θ − 60◦).

10.33. For one point choose x = 0. Then y + z = 2 and y − 2z = 1. Solving these equations
y = 5

3 and z = 1
3 . For the other point choose z = 0. Then x + y = 2 and 2x + y = 1. solving

these equations x = −1 and y = 3. Two points on the line of intersection are a = (0, 5
3 , 1

3 ) and
b = (−1, 3, 0).
(b) A vector equation of the line of intersection (see Example 9.9a) is

r = b + λ(a− b) = (−1, 3, 0) + λ(1,− 4
3 , 1

3 ).

(c) A cartesian equation can be written down from (b):

x + 1
1

=
y − 3
− 4

3

=
z
1
3

.

10.34. Select any two points on the line of intersection of 2x + 3y − z = 1 and x + y + z = 0; say
a = (0, 1

4 ,− 1
4 ) and b = ( 1

3 , 0,− 1
3 ). From(10.25) the line of intersection can be expressed as

x

− 1
3

=
y − 1

4
1
4

− z + 1
4

1
12

.

(Note: an infinite number of alternative expressions may be obtained.)
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10.35. Let (p, q, r) be a vector in the direction of the line of intersection. If the vector is parallel to
both planes it must be parallel to the line of intersection, and it must also therefore be perpendicular
to both normals of the planes. Hence

2p + 3q − 2r = 0, p− 3q + 2r = 0.

One obvious solution is p = 0, q = 2, z = 3. Hence direction ratios in the direction of the line of
intersection are 0, 2, 3 or any non-zero multiple of these numbers.

10.36. The plane P1 with normal vector n1 = ĵ + k̂ is y + z = d. This plane passes through
B : (−1,−2, 0) if −2 = d. Hence P1 has the equation y+z = −2. The plane P2 with normal vector
n2 = 2̂i− ĵ + 3k̂ is 2x− y + 3z = h. This plane passes through C : (−1, 0, 3) if −2 + 9 = h. Hence
h = 7, and P2 has the equation 2x−y+3z = 7. The vector AC = (−1, 0, 3)−(−1,−2, 1) = (0, 2, 2),
which is a multiple of n1, the normal of P1. Hence AC is perpendicular to P1.

10.37. The vector (p, q, r) is perpendicular to both (a1, b1, c1) an (a2, b2, c2), the normals to the
two planes, and therefore must be parallel to the line of intersection. The components p, q, r are
possible direction ratios for this line.

10.38. Let the line EQ meet the screen at the point (X, Y, Z). Then, comparing directions,

X − 1
x− 1

=
Y − 1
y − 1

=
Z − 1
z − 1

= λ.

The point (X,Y, Z) lies on the plane 1.1x + 1.1y + z = 1 if

1.1[1 + λ(x− 1)] + 1.1[1 + λ(y − 1)] + 1 + λ[1 + λ(z − 1)] = 1,

Hence
λ = − 1.2

1.1x + 1.1y + z − 3.2
.

The apparent position is
(1 + (x− 1)λ, 1 + (y − 1)λ, 1 + zλ).

10.39. Pythagoras’ theorem for an increment of arc-length gives

(δs)2 ≈ (δx)2 + (δy)2.

Divide through by (δt)2and let δt → 0 (and take the square root):

ds

dt
=
√

[(
dx

dt

)2

+
(

dy

dt

)2
]

=
√

[a2 sin2 t + b2 cos2 t].

The unit tangent vector is

t̂ =
dr
dt

=
dr
dt

dt

ds
=

(−a sin t, b cos t)√
[a2 sin2 t + b2 cos2 t]

.

A vector normal to t̂ is

n =
dt̂
dt

=
ab(−b cos t,−a sin t)

(a2 sin2 t + b2 cos2 t)
3
2
.

A unit normal is

n̂ =
(−b cos t,−a sin t)√
(a2 sin2 t + b2 cos2 t)

.

The curvature κ is given by
dt̂
ds

= κn̂.
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Hence
κ =

ab

(a2 sin2 t + b2 cos2 t)
3
2
.

The radius of curvature
ρ = 1/|κ| = (a2 sin2 t + b2 cos2 t)

3
2 /(ab).

At t = 0,
t̂ = (0, 1); n̂ = (−1, 0); κ = a/b2; ρ = b2/a.

At t = 1
4π,

t̂ =
(−a, b)√
(a2 + b2)

; n̂ =
(−b,−a)√
(a2 + b2)

; κ =
2

3
2 ab

(a2 + b2)
3
2
; ρ =

(a2 + b2)
3
2

2
3
2 ab

.

At t = 1
2π,

t̂ = (−1, 0); n̂ = (0,−1); κ = b/a2; ρ = a2/b.

10.40. With x as the parameter, the arc-length satisfies

ds

dx
=
√

[1 + f ′(x)2]

(since δs2 = δx2 + δy2). The unit tangent vector is

t̂ =
dr
dt

=
dr
dx

dx

ds
=

î + f ′(x)̂j√
[1 + f ′(x)2]

.

A normal vector n is given by

n =
dt̂
dx

=
−f ′(x)f ′′(x)̂i + f ′′(x)̂j

[1 + f ′(x)2]
3
2

.

Further
dt̂
ds

=
−f ′(x)f ′′(x)̂i + f ′′(x)̂j

[1 + f ′(x)2]2
= − n̂

[1 + f ′(x)2]2
.

Hence
κ = −f ′′(x)/[1 + f ′(x)]

3
2 ,

(the sign of κ depends on the direction of the unit normal).
(a) For the parabola y = x2, f(x) = x2. Hence

κ = 2/(1 + 4x2)
3
2 .

(b) For the cosine curve y = cos x, f(x) = cos x. Hence

κ = − cos x/(1 + sin2 x)
3
2 .

Chapter 11: Vector product

11.1. Given a = (1,−2, 2), b = (3,−1,−1), and c = (−1, 0,−1):
(a) a× b = (4, 7, 5); (b) b× a = (−4,−7,−5); (c) a× a = 0;
(d) a · (b× c) = −9; (e) c · (a× b) = −9; (f) b · a× c) = 9;
(g) (a× b) · b = 0; (h) a× (a× b) = (−24, 3, 15);
(i) (c× b)× a = (−6, 3, 6).
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11.2. The vector n1×n2 is a vector perpendicular to both normals n1 and n2, and therefore must
be in the direction of the line of intersection of the two planes. Hence the required plane must
have this vector as its normal, and since it passes through the origin it can be represented by

r · (n1 × n2) = 0.

11.3. (a) r = a + λ(b× c), since (r− a) · b = λb · (b× c = 0, and similarly (r− a) · c = 0.
(b) r = (1, 2, 1) + λ(1,−1, 0)× (0, 1, 1) = (1, 2, 1) + λ(−1,−1, 1).

11.4. The vector a is perpendicular to the plane r · a = d, and a × u is perpendicular to a.
Therefore a× u is parallel to the plane.

In this example a = (2,−3,−1). Choose two simple vectors for u, say, u1 = î and u2 = ĵ, in
which case two parallel vectors are

a× u1 = (2,−3,−1)× (1, 0, 0) = (0, 1,−3),

a× u2 = (2,−3,−1)× (0, 1, 0) = (−1, 0,−2).

11.5. Since, by (11.8),
|a× b| = |a||b| sin θ,

the vector product will be zero if a = 0 or b = 0 or θ = 0 or θ = 180◦.

11.6. The vectors a = 2̂i + 3ĵ + 6k̂ and b = 6̂i + 2ĵ− 3k̂ are perpendicular since

a · b = (2, 3, 6) · (6, 2,−3) = 12 + 6− 18 = 0.

The vectors a,b, c form a right-handed system if

c = a× b = (2, 3, 6)× (6, 2,−3) = (−21, 42,−14).

11.7. (a) Two sides are AB = b− a and CA = c− a. As in Example 11.2 the area of the triangle
ABC is

1
2
|(b− a)× (c− a)| =

1
2
|b× c− a× c− b× a + a× a|

=
1
2
|c× c + c× a + a× b|

(b) The first vertex a is moved to a+λa(b− c) which is the same distance as a from the side BC.
In other words the height of the triangle on the same base is the same as that of ABC. Hence the
area will be the same as that of ABC.
(c) In (a) take a = (1,−2,−1), b = (1,−1, 2) and b = (1,−1, 2) and c = (1, 2,−1). Then

Area =
1
2
|(1,−1, 2)× (1, 2,−1) + (1, 2− 1)× (1,−2,−1) +

(1,−2,−1)× (1,−1, 2)|.
= (6, 0, 0)

11.8. Let E be the foot of the perpendicular from D on to the plane, and let θ be the angle
between AD and DE. The vector b× c is a vector in the direction of ED. From a property of the
scalar product

d · (b× c) = |d||b× c| cos θ.

Since ED = |d| cos θ, the required perpendicular distance is (taking account of the possibility that
cos θ < 0)

ED = |d · (b× c)|/|b× c|.
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11.9. The answer is essentially given by equation 11.11. Let

a = QA = (x1 − x0, y1 − y0, z1 − z0), b = QB = (x2 − x0, y2 − y0, z2 − z0),

c = QB = (x3 − x0, y3 − y0, z3 − z0).

By (11.1) and (11.10), the volume V of the parallelepiped is given by

V = |a · (b× c)| = | detA1|,
where

A1 =

∣∣∣∣∣∣

x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣
,

after a transpose between rows and columns in the determinant: this does not affect the answer.

11.10. (a) Let a, b, c be any three given vectors, no two of which are parallel, and let v be an
arbitrary vector. We may express v in the form

v = Xa + Y b + Zc,

by choosing the coefficients X, Y , Z suitably. (X, Y , Z may be called the components of v in
terms of the oblique axes a, b, c, which need not always be unit vectors.) The components can
be worked out as follows.

Form the scalar product of v with b× c. Since b · (b× c) and c · (b× c) are zero by (11.10d),
we obtain

v · (b× c) = Xa · (b× c).

Therefore

X =
v · (b× c)
a · (b× c)

.

Similarly

Y =
v · (c× a)
a · (c× a)

, Z =
v · (a× b)
a · (a× b)

.

(b) For the given vectors a = (1, 1, 0), b = (0, 1, 1), c = (1, 0, 1),

D = a · (b× c) = 2,v · (b× c) = 1,v · (c× a) = 1,

v · (a× b) = 1.

Hence X = Y = Z = 1
2 .

11.11. Let v = (v1, v2, v3), a = (a1, a2, a3), etc. Hence

v1 = a1X + b1Y + c1Z,

v2 = a2X + b2Y + c2Z,

v3 = a3X + b3Y + c3Z.

Let

D =

∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
, D1 =

∣∣∣∣∣∣

v1 b1 c1

v2 b2 c2

v3 b3 c3

∣∣∣∣∣∣
,

D2 =

∣∣∣∣∣∣

a1 v1 c1

a2 v2 c2

a3 v3 c3

∣∣∣∣∣∣
, D3 =

∣∣∣∣∣∣

a1 b1 v1

a2 b2 v2

a3 b3 v3

∣∣∣∣∣∣
,

By elimination, it can be shown that

X = D1/D, Y = D2/D, Z = D3/D.
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11.12. (a) If v = X(b× c) + Y (c× a) + Z(a×b), then the scalar multiplication of v by a, b and
c leads to

a · v = Xa · (b× c),

b · v = Y b · (c× a) = Y a · (b× c),

c · v = Zc · (a× b) = Za · (b× c).

In these results we have used (11.10d) and (11.10b).
(b) a · (b× c) = −6, v · v = 1, b · v = 4, c · v. Hence X = − 1

6 , Y = − 2
3 , Z = − 5

6 .

11.13. (a) The line L1 is in the direction u and L2 is in the direction v. The vector product of
these vectors is perpendicular to both. Therefore, let w = u× v.
(b) The position vector (a + λu) is a point on L1 and (b + µv) is a point on L2. The difference is
a vector joining the two points, which will be perpendicular to both if it is in the direction of w,
that is, if

(b + µv)− (a + λu) = νw.

This represents three equations for the three unknowns λ, µ, ν.
(c) The equation in (b) becomes

(1,−1, 0) + µ(1, 1, 1)− (−1, 0, 0)− λ(0, 0, 1) = ν(0, 0, 1)× (1, 1, 1) = ν(−1, 1, 0).

Equating components and solving: λ = − 1
2 , µ = − 1

2 , ν = − 3
2 . Hence, the end-points of the

perpendicular line are

a1 = a + λu = (−1, 0, 0)− 1
2 (0, 0, 1) = (−1, 0,− 1

2 ) on L1,

and
b1 = b + µv = (1,−1, 0)− 1

2 (1, 1, 1) = ( 1
2 ,− 3

2 ,− 1
2 ) on L2.

A vector equation for L3 is

r = a1 + νu× v = (−1, 0,− 1
2 ) + ν(−1, 1, 0).

The perpendicular distance is |b1 − a1| = 3
2

√
2.

11.14. If the position vector of P is r then the moment M of the force F about the point Q with
position vector a is given by M = (r− a)× F.
(a)

F =

∣∣∣∣∣∣
î ĵ k̂
0 3 0
2 0 0

∣∣∣∣∣∣
= −6k̂.

(b)

F =

∣∣∣∣∣∣
î ĵ k̂
0 3 −3
2 0 0

∣∣∣∣∣∣
= −6ĵ− 6k̂.

(c)

F =

∣∣∣∣∣∣
î ĵ k̂
0 −3 −3
2 0 0

∣∣∣∣∣∣
= −− 6ĵ + 6k̂.

11.15. Since the magnitude of F is 4, and a unit vector in the given direction is 1
3 (̂i− 2ĵ− 2k̂),

F = 4
3 (̂i− 2ĵ− 2k̂).

(a) M = (1,−1, 2)× 4
3 (1,−2,−2) = 4

3 (6, 4,−1).
(b) M = (3,−2, 0)× 4

3 (1,−2,−2) = 4
3 (4, 6,−4).
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(c) The component is ĵ · (R× F) = (0, 1, 0) · 4
3 (6, 4,−1) = 16

3 in case (a).

11.16. The moment about an axis in the direction ŝ is ŝ · (R× F).
(a) ŝ = k̂. Hence, using (11.10a),

ŝ · (R× F) =

∣∣∣∣∣∣

0 0 1
0 3 0
2 0 0

∣∣∣∣∣∣
= −6.

(b) ŝ = −k̂. Hence

ŝ · (R× F) =

∣∣∣∣∣∣

0 0 −1
0 3 0
2 0 0

∣∣∣∣∣∣
= 6.

(c) ŝ = î. Hence

ŝ · (R× F) =

∣∣∣∣∣∣

1 0 0
0 3 0
2 0 0

∣∣∣∣∣∣
= 0.

(d) ŝ = ĵ. Hence

ŝ · (R× F) =

∣∣∣∣∣∣

0 1 0
0 3 0
2 0 0

∣∣∣∣∣∣
= 0

(e) ŝ = 1√
3 î + 1√

3 ĵ + 1√
3 k̂. Hence

ŝ · (R× F) =
1√
3

∣∣∣∣∣∣

1 1 1
0 3 0
2 0 0

∣∣∣∣∣∣
= −2

√
3.

11.17. The axis AB is in the direction (1, 1, 1) − (2, 3, 2) = (−1,−2,−1). The unit vector in the
direction AB is ŝ = (−1,−2,−1)/

√
6. Let

R1 = AP = (2,−3, 1)− (2, 3, 2) = (0,−6,−1),

R2 = BP = (2,−3, 1)− (1, 1, 1) = (1,−4, 0).

Then the moment about AB using point A is

ŝ · (R1 × F) =
1√
6

∣∣∣∣∣∣

−1 −2 −1
0 −6 −1
1 1 2

∣∣∣∣∣∣
=

7√
6
.

The answer can be checked using the alternative point B:

ŝ · (R2 × F) =
1√
6

∣∣∣∣∣∣

−1 −2 −6
1 −4 0
1 1 2

∣∣∣∣∣∣
=

7√
6
.

Any point on point X on AB is

r = −OA + λAB = (2, 3, 2) + λ(−1,−2,−1).

A vector in the direction PX is

R3 = (2, 3, 2) + λ(−1,−2,−1)− (2,−3, 1) = (0, 6, 1) + λ(−1,−2,−1).

The component of F in this direction will be a multiple of R3, and its vector product with R3 will
be zero which means that its contribution to the moment will be zero.
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11.18. The moment of F at r about an axis through the origin in the direction ŝ is

M = ŝ · (r× F).

In this formula r× F is fixed. Taking the magnitude of M,

|M| = |ŝ · (r× F)| = |ŝ||r× F| cos θ = |r× F| cos θ.

This is a maximum when θ = 0, which occurs when ŝ is in the direction of r× F.

11.19. (a) A point P on the lamina has position vector

v = r = r cos θî + r sin θĵ,

where r is constant. The velocity of P is

ṙ = −r sin θ θ̇î + r cos θ θ̇ĵ = −îωr sin θ + ĵωr cos θ.

(b) If ω = ωk̂, then

v =

∣∣∣∣∣∣
î ĵ k̂
0 0 ω

r sin θ r cos θ 0

∣∣∣∣∣∣
= −îωr sin θ + ĵωr cos θ.

(c) Let OP = r and OQ = q. We are given that R = QP , so that, by the triangle law,

r = OP = OQ + QP = q + R.

The velocity of P relative to Q is

Ṙ = ṙ− q̇ = ω × r− ω × q = ω ×R.

11.20. Let a point P of the body have position vector r. Let Q be the foot of the perpendicular
from P on to the axis of ω, and let θ (0 ≤ θ ≤ π) be the angle between r and ω. Since OP
is constant, the point P must move perpendicular to OP (follows since r · ṙ = 0), whilst since
QP is constant P must move perpendicular to QP . To satisfy both conditions P must move
perpendicular to ω.

Since v is perpendicular to both ω and r, it follows that v = kω × r for some value of the
constant k. Taking the magnitude of v,

|v| = |k||ω||r| sin θ = |k|ωPQ.

Since ω is the angular rate, it follows that |k| = 1. in order that v, ω, and r form a right-handed
system of vectors, we must put k = 1.

Let ω = (ω1, ω2, ω3). From the vector product expansion,

v = ω × r = (zω2 − yω3, xω3 − zω1, yω1 − xω2).

This can be expressed as the matrix product

v =




0 z −y
−z 0 x

y −x 0







ω1

ω2

ω3


 or Sω,

interpreting v and ω as column vectors. Note that S is a skew-symmetric matrix (see Section 7.3).
Still using matrix notation

|v|2 = vT v = ωT ST Sω,
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(use the rule for transpose of a product given in Section 7.3). Finally

ST S =




0 −z y
z 0 −x
−y x 0







0 z −y
−z 0 x
y −x 0


 =




y2 + z2 −xy −zx
−xy z2 + x2 −yz
−zx −yz y2 + z2


 .

11.21. By the definition of the vector product a × b is perpendicular to both a and b. Also
a× (a× b) is perpendicular to both a and a× b, and must therefore lie in the plane of a and b.
A similar argument can be applied to b× (a× b).

11.22. Use the identity (11.18) for the vector triple product in two different expansions. In the
first

v = (a× b)× (c× d) = [(a× b) · d]c− [(a× c) · c]d,

which confirms that v lies in the plane of c and d The coefficients are

m = (a× b) · d, n = (a× b) · d.

Similarly
v = −(c× d)× (a× b) = −[(c× d) · b]a + [(c× d) · a]b,

which confirms that the vector also lies in the plane of a and b.The coefficients are

p = (c× d) · b, q = (c× d) · a.

Suppose that the vectors a,b, c,d are all drawn from the origin. Then v lis in the direction of the
line of intersection of the plane through a and b, and the plane through c and d.

11.23. Use (11.18) repeatedly:

a× (b× c) = b× (c× a) + c× (a× b) =
(a · c)b− (a · b)c + (b · a)c− (b · c)a + (c · b)a− (c · a)b = 0.

11.24. (a) The vector n×b is perpendicular to n and b. The vector n× (n×b) is perpendicular
to n and n× b and is also in the plane of n and b.
(b) The straight line

r = b + µn× [(a− b)× n]

passes through r when µ = 0.
Do the lines intersect? Can we find values of λ and µ for which this occurs? Consider the

difference of the position vectors of the two lines:

b + µn× [(a− b× n]− [a + λn]
= b + µn · n(a− b)− µ[n · (a− b)]n− a− λn

= (µn · n− 1)(a− b)− [λ + µn · (a− b)]n
= 0

if µ = 1/(n · n) and λ = −µn · (a − b). We can find solutions for λ and µ which means that the
lines intersect. The lines must be at right angles since the scalar product of their directions is

n · {n× [(a− b)× n]} = 0,

by (11.10d).

11.25. Let N be the closest point to the origin on the line of intersection. The direction of the
line of intersection is perpendicular to both normals n1 and n2, that is in the direction n1 × n2.
Also ON is perpendicular to the line of intersection so that ON · (n1 × n2) = 0. The two vectors
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(n1 × n2) × n1 and (n1 × n2) × n2 are not parallel, and ON can be expressed in terms of these
two vectors:

ON = α[(n1 × n2)× n1] + β[(n1 × n2)× n1].

To obtain α and β, substitute this position vector into the equations for the planes:

β[(n1 × n2)× n2] · n1 = d1,

α[(n1 × n2)× n1] · n2 = d1.

Alternative forms can obtained by using formula (11.18) for the vector triple products.

11.26. Given H = (r− q)× (mv),

dH
dt

=
[

d
dt

(r− q)
]
× (mv) + (r− q)×m

dv
dt

= [(v − u)×mv] + (r− [q)× F]
= −[mu× v] + [(r− q)× F],

using v × v = 0 and Newton’s law F = m(dv/dt). If u = 0, then

dH
dt

= (r− q)× F = M,

the moment of F about Q.

Chapter 12: Linear algebraic equations

12.1. Generally Cramer’s rule (Section 12.1) is not a recommended way of solving linear equations
but it can occasionally be useful as a formula. For some problems just the answer is given.
(a) Given

x1 + x3 = 1
x2 − x3 = 3

2x1 + x2 = −1
.

Let

D1 =

∣∣∣∣∣∣

1 0 1
3 1 −1

−1 1 0

∣∣∣∣∣∣
= 5, D2 =

∣∣∣∣∣∣

1 1 1
0 3 −1
2 −1 0

∣∣∣∣∣∣
= −9,

D3 =

∣∣∣∣∣∣

1 0 1
0 1 3
2 1 −1

∣∣∣∣∣∣
= −6, D =

∣∣∣∣∣∣

1 0 1
0 1 −1
2 1 0

∣∣∣∣∣∣
= −1.

Hence the solution is

x1 =
D1

D
= −5, x2 =

D2

D
= 9, x3 =

D3

D
= 6.

(b) The solution is x1 = 188
5 , x2 = − 21

5 , x3 = − 36
5 .

(c) The solution is x1 = 1, x2 = −1, x3 = −5.
(d) Given

x1 + x2 + x3 = 1
ax1 + bx2 + cx3 = d

a2x1 + b2x2 + c2x3 = d2
.

Let

D1 =

∣∣∣∣∣∣

1 1 1
d b c
d2 b2 c2

∣∣∣∣∣∣
= (b− c)(c− d)(d− b),
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D2 =

∣∣∣∣∣∣

1 1 1
a d c
a2 d2 c2

∣∣∣∣∣∣
= (d− c)(c− a)(a− d),

D3 =

∣∣∣∣∣∣

1 1 1
a b d
a2 b2 d2

∣∣∣∣∣∣
= (b− d)(d− a)(a− b),

D =

∣∣∣∣∣∣

1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣
= (b− c)(c− a)(a− b).

The solution is

x1 =
(c− d)(d− b)
(c− a)(a− b)

, x2 =
(d− c)(a− d)
(b− c)(a− b)

, x3 =
(b− d)(d− a)
(b− c)(c− a)

,

provided a, b, c are all different.
(e) The solution is x1 = 2, x2 = −1, x3 = 2, x4 = 2.

12.2. Given the equations

4i1 − i2 − i3 = 12 (i)
−i1 − Ri2 = 24 (ii)

i1 + 5i3 = −12 (iii)
,

i2 = (24 + i1)/R from (ii), and i3 = (−12− i1)/5, from (iii). Substitute i1 and i2 into (i):

4i1 +
1
R

(24 + i1)− 1
5
(−12− i1) = 12.

Hence

i1 =
24(2R− 5)
21R + 5

, i2 = − 552
21R + 5

, i3 = −12(5R− 1)
21R + 5

.

If i2 = 2 amps, then R = 1/51.

12.3. (a) The augmented matrix is



1 2 1 3
1 −3 2 4
5 5 6 1


 →




1 2 1 3
0 −5 1 1
0 −5 1 −4


 (r′2 = r2 − 5r1)

(r′3 = r3 − 5r1)

→



1 2 1 3
0 −5 1 1
0 0 0 −15


 (r′3 = r3 − r2) .

By row 3 the equations are inconsistent.
(b) The augmented matrix is




1 1 1 0 2
1 0 1 2 3
1 1 0 1 4
0 −1 2 0 2


 →




1 1 1 0 2
0 −1 0 2 1
0 0 −1 1 2
0 −1 2 0 2




(r′2 = r2 − r1)
(r′3 = r3 − r1)

→




1 1 1 0 2
0 −1 0 2 1
0 0 −1 1 2
0 0 2 −2 1


 (r′4 = r4 − r2)

→




1 1 1 0 2
0 −1 0 2 1
0 0 −1 1 2
0 0 0 0 5


 (r′4 = r4 + 2r3)
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By row 4 the equations are inconsistent.
(c) The augmented matrix is




1 1 0 0 0 1
0 1 1 0 0 1
0 0 1 1 0 1
0 0 0 1 1 1
1 3 5 7 4 1



→




1 1 0 0 0 1
0 1 1 0 0 1
0 0 1 1 0 1
0 0 0 1 1 1
0 0 0 0 0 −9




,

after the following sequence of row operations

r′5 = r5 − r1, r′5 = r5 − 2r2, r′5 = r5 − 3r3, r′5 = r5 − 4r4.

From row 5 the equations are inconsistent.

12.4. The equations are
x + y − z = 2

2x + 3y + z = 3
5x + 7y + az = b

.

Using row operations on the augmented matrix,



1 1 −1 2
2 3 1 3
5 7 a b


 →




1 1 −1 2
0 1 3 −1
0 2 a + 5 b− 10


 (r′2 = r2 − 2r1)

(r′3 = r3 − 5r1)

→



1 1 −1 2
0 1 3 −1
0 0 a− 1 b− 8


 (r′3 = r3 − 2r2)

(i) The equations have a unique solution if a 6= 1, in which case z = (b − 8)/(a − 1) and x and y
can be found by back substitution.
(ii) The equations have no solutions if and only if a = 1 and b 6= 8.
(iii) There is an infinite set of solutions if a = 1 and b = 8, in which case

z = λ, y = −1− 3λ, x = 3 + 4λ.

12.5. Row operations on the augmented matrix give



1 −1 2 1
1 1 3 2
1 2 −1 3
1 −2 6 0


 →




1 −1 2 1
0 2 1 1
0 3 −3 2
0 −1 4 −1




(r′2 = r2 − r1)
(r′3 = r3 − r1)
(r′4 = r4 − r1)

→




1 −1 2 1
0 2 1 1
0 0 − 9

2
1
2

0 0 9
2 − 1

2




(r′3 = r3 − 3
2r2)

(r′4 = r4 + 1
2r2)

→




1 −1 2 1
0 2 1 1
0 0 − 9

2
1
2

0 0 0 0


 (r′4 = r4 + r3)

Row 4 is consistent, and the solution can be found by back substitution:

z = − 1
9 , y = 5

9 , x = 16
9 .
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12.6. The augmented matrix is



1 1 1 −1 10
1 −1 −1 0 1
4 −2 −2 −1 5


 →




1 1 1 −1 10
0 −2 −2 1 −9
0 0 0 0 −5


 ,

after the sequence of row operations

r′2 = r2 − r1, r′3 = r3 − 4r1, r′3 = r3 − 3r2.

By row 3, the equations are inconsistent.

12.7. Transform the augmented matrix by row operations into echelon form:



0 1 2 −1 11
1 1 1 1 1
2 1 −1 4 0
1 −1 1 −2 2


 →




1 1 1 1 1
0 1 2 −1 11
2 1 −1 4 0
1 −1 1 −2 2


 (r1 ↔ r2)

→




1 1 1 1 1
0 1 2 −1 11
0 −1 −3 2 −2
0 −2 0 −3 1




(r′3 = r3 − 2r1)
(r′4 = r4 − r1)

→




1 1 1 1 1
0 1 2 −1 11
0 0 −1 1 9
0 0 4 −5 23




(r′3 = r3 + r2)
(r′4 = r4 + 2r2)

→




1 1 1 1 1
0 1 2 −1 11
0 0 −1 1 9
0 0 o −1 59


 (r′4 = r4 + 4r3)

By back substitution x4 = −59, x3 = −68, x2 = 88, x1 = 40.

12.8. After interchanging rows 1 and 3 (to cover the possibility that a may be zero), the augmented
matrix is




4 1 −2 2
1 2 −a 2
a −1 2 1


 →




4 1 −2 2
0 7

4
1−a
2

3
2

0 −a+4
4

a+4
2

2−a
2


 (r′2 = r2 − 1

4r1)
(r′3 = r3 − 1

4ar1)

→



4 1 −2 2
0 7

4
1−a
2

3
2

0 0 16−a2

7
13−2a

7


 (r′4 = r4 + 1

7 (a + 4)r2)

Row 3 is inconsistent if a = ±4. If a is not equal to either of these values then the solution is

x =
3

a + 4
, y =

2(a + 1)(a− 5)
a2 − 16

, z =
2a− 13
a2 − 16

.

12.9. The method of Section 12.3 should be used. The inverses are
(a) 


1
18 0 − 1

18
− 5

54
1
9 − 1

54
7

108
1
18

5
108


 .

(b) 


1
5 0 − 1

5
− 6

25
1
9

1
25

7
25

1
5

3
25


 .
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(c) 


0 1 −1 0
−1 4 −4 2

0 1 −1 1
0 1

2 0 1
2


 .

(d) 


1 −1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −1
0 0 0 0 0 1




.

(e) 


1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1




.

12.10. A matrix A is singular if det A = 0. For the matrix

A =




1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1




,

rows 1 and 3 have the same elements. Hence det A = 0 (Section 8.2) and the matrix is singular.

12.11. We need to find the points of intersection every set of three planes chosen from

x

y

z

Figure 6: Problem 12.11

6x − 3y − z = −3
2x − y + 5z = 15

y + z = 1
2x + y − z = 1

.

This is equivalent to solving 4 sets of linear equations, which can be solved either by elimination
or by row operations. The 4 sets of solutions are

(−1,−2, 3), (1, 2, 3), (0, 1, 0), (2,−1, 2),

which are the vertices of the tetrahedron. The tetrahedron is shown in the Figure 6.
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12.12. The equations of the straight lines PA, PB, PC are:

x− 3
2

=
y − 2

1
=

z − 2
1

= λ,

x− 3
2

=
y − 2

2
=

z − 2
1

= µ,

x− 3
1

=
y − 2

1
=

z − 2
1

= ν.

The lines PA, PB, PC meet the plane x = 0 where λ = − 3
2 , µ = − 3

2 , ν = −3. Hence the corners
of the triangle projected on to the plane x = 0 are

(0, 1
2 , 1

2 ), (0,−1, 1
2 ), (0,−1,−1).

The lines PA, PB, PC meet the plane y = 0 where λ = −2, µ = −1, ν = −2. Hence the corners
of the triangle projected on to the plane y = 0 are

(−1, 0, 0), (1, 0, 1), (1, 0, 0).

The lines meet the plane z = 0 where λ = −2, µ = −2, ν = −2. Hence the corners of the triangle
projected on to the plane z = 0 are

(−1, 0, 0), (−1,−2, 0), (1, 0, 0).

12.13. The parabola y = α + βx + γx2 passes through the points (x1, y1), (x2, y2), (x3, y3) if
solutions of

α + βx1 + γx2
1 = y1,

α + βx2 + γx2
2 = y2,

α + βx3 + γx2
3 = y3,

for α, β, γ can be found. Leaving aside existence of solutions for the moment, elimination or row
reduction gives

α =
x2x3y1(x3 − x2) + x3x1y2(x1 − x3) + x1x2y3(x2 − x1)

(x2 − x3)(x3 − x1)(x1 − x2)
,

β =
y1(x2

2 − x2
3) + y2(x2

3 − x2
1) + y3(x2

1 − x2
2)

(x2 − x3)(x3 − x1)(x1 − x2)
,

γ =
y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)

(x2 − x3)(x3 − x1)(x1 − x2)
.

There are various exceptional cases. For example if x1 = x2 and y1 6= y2 then there are no solutions.
A similar result holds for the other pairs of x’s.

12.14. The augmented matrix for

x + y + z = 4
x − y + z = 2

2x + y − λz = µ
,

is



1 1 1 4
1 −1 1 2
2 1 −λ µ


 →




1 1 1 4
0 −2 0 −2
0 −1 −λ− 2 µ− 8


 (r′2 = r2 − r1)

(r′3 = r3 − r1

→



1 1 1 4
0 −2 0 −2
0 0 −λ− 2 µ− 7


 (r′3 = r3 − 1

2r2)
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(a) There is just one solution if λ 6= −2.
(b) No solutions if λ = −2 and µ 6= 7.
(c) An infinite set of solutions if λ = −2 and µ = 7.

12.15. The augmented matrix is



1 1 1 3
3 5 1 −1
1 2 0 0


 →




1 1 1 3
0 2 −2 −10
0 1 −1 −3


 (r′2 = r2 − r3)

(r′3 = r3 − r1)

→



1 1 1 3
0 2 −2 −10
0 0 0 2




By row 3 the equations are inconsistent.
(b) The augmented matrix is




0 1 1 1
1 1 2 3
1 −1 0 1


 →




1 1 2 3
0 1 1 1
1 −1 0 1


 (r1 ↔ r2)

→



1 1 2 3
0 1 1 1
0 −2 −2 −2


 (r′3 = r3 − r1)

→



1 1 2 2
0 1 1 1
0 0 0 0


 .

The equations are consistent with solution z = λ, y = 1− λ, x = 2− λ.
(c) The augmented matrix is




1 2 1 4
1 1 0 −1
3 4 −1 12


 →




1 2 1 4
0 −1 −1 −5
0 −2 −4 0


 (r′2 = r2 − r1)

→



1 2 1 4
0 −1 −1 −5
0 0 −2 10


 (r′3 = r3 − 2r2)

There is a unique solution given by z = −5, y = 10, x = −11.

12.16. The determinant simplifies to

∆ =

∣∣∣∣∣∣

1− k 2 −1
2 1− k −1
−1 −1 2− k

∣∣∣∣∣∣
=

∣∣∣∣∣∣

4− k 4− k −4 + k
2 1− k −1
−1 −1 2− k

∣∣∣∣∣∣
(r′1 = r1 + r2 − r3)

= (4− k)

∣∣∣∣∣∣

0 0 −1
1 −k −1

1− k 1− k 2− k

∣∣∣∣∣∣
(c′1 = c1 + c3)
(c′2 = c2 + c3)

= (4− k)(k − 1)(1 + k)

Hence the determinant is zero when k = −1, 1, 4.
The equations

(1− k)x + 2y − z = 0
2x + (1− k)y − z = 0
−x − y + (2− k)z = 0

have non-trivial solutions (that is, not all zero) ,if and only if, ∆ = 0, that is, if k = −1, k = 1, or
k = 4.
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Case k = −1. The equations are

2x + 2y − z = 0
2x + 2y − z = 0
−x − y + 3z = 0

.

The solution is x = λ, y = −λ, z = 0.
Case k = 1. the equations are

+ 2y − z = 0
2x + − z = 0
−x − y + z = 0

.

The solution is x = λ, y = λ, z = 2λ.
Case k = 4.

−3x + 2y − z = 0
2x + −3y − z = 0
−x − y − 2z = 0

The solutions is x = −λ, y = −λ, z = λ.

12.17. Simplifying the determinant:

∆ =

∣∣∣∣∣∣

a2 + t ab cd
ab b2 + t bc
ca bc c2 + t

∣∣∣∣∣∣

= (t + a2 + b2 + c2)

∣∣∣∣∣∣

1 1 1
b2 b2 + t b2

c2 c2 c2 + t

∣∣∣∣∣∣
(r′1 = ar1 + br2 + cr3)

= (t + a2 + b2 + c20

∣∣∣∣∣∣

0 0 1
0 t b2

−t −t c2 + t

∣∣∣∣∣∣
(c′1 = c1 − c3)
(c′2 = c2 − c3)

= t2(t + a2 + b2 + c2).

The equations
(1 + t)x + 2y + 3z = 0

2x + (4 + t)y + 6z = 0
3x + 6y + (9 + t)z = 0

have non-trivial solutions, if and only if,

∆ =

∣∣∣∣∣∣

1 + t 2 3
2 4 + t 6
3 6 9 + t

∣∣∣∣∣∣
= 0.

Put a = 1, b = 2, and c = 3 in the first determinant above. Then

∆ = t2(t + 12 + 22 + 32) = t2(t + 14) = 0

when t = 0 or t = −14.
Case t = 0. The equations are

1x + 2y + 3z = 0
2x + 4y + 6z = 0
3x + 6y + 9z = 0

.

There is effectively just one equation, so the solution will contain two parameters:
x = −2µ− 3λ, y = µ, z = λ.
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Case t = −14. The equations become

−13x + 2y + 3z = 0
2x − 10y + 6z = 0
3x + 6y − 5z = 0

The solution is x = 2
3λ, y = 1

3λ, z = λ.

12.18. The equations have non-trivial solutions if, and only if,
∣∣∣∣∣∣∣∣

k 4 −1 3
4 k −1 3
4 −1 k 3
4 −1 3 k

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

k + 6 4 −1 3
k + 6 k −1 3
k + 6 −1 k 3
k + 6 −1 3 k

∣∣∣∣∣∣∣∣
(c′1 = c1 + c2 + c3 + c4)

= (k + 6)

∣∣∣∣∣∣∣∣

1 4 −1 3
1 k −1 3
1 −1 k 3
1 −1 3 k

∣∣∣∣∣∣∣∣
= (k + 6)(k + 1)(k − 3)(k − 4) = 0,

after further row operations. The equations have non-trivial solutions if k = −6,−1, 3, or 4.

12.19. The augmented matrix is



1 2 3 0 4
2 3 8 −1 20
2 5 4 1 5


 →




1 2 3 0 4
0 −1 2 −1 12
0 1 −2 1 −3


 (r′2 = r2 − 2r1)

(r′3 = r3 − 2r1)

→



1 2 3 0 4
0 −1 2 −1 12
0 0 0 0 9


 (r′3 = r3 + r2)

By row 3 the equations are inconsistent.

12.20. Denote the matrices by A and B respectively. By row operations reduce A to the identity
matrix I3, and then perform the same operations on I3. Thus

A =




1 λ 0
0 1 λ
0 0 1


 →




1 0 0
0 1 0
0 0 1


 (r′2 = r2 − λr3)

(r′1 = r1 − λr2)

whilst



1 0 0
0 1 0
0 0 1


 →




1 −λ λ2

0 1 −λ
0 0 1


 (r′2 = r2 − λr3)

(r′1 = r1 − λr2)

= A−1

Similarly

B−1 =




1 0 0
−µ 1 0
µ2 −µ 1


 .

Let λ = 3 and µ = 4. Then 


13 3 0
4 13 3
0 4 1


 = AB.
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Using the inverse formula (AB)−1 = B−1A−1,

(AB)−1 =




1 −λ λ2

0 1 −λ
0 0 1


 (r′2 = r2 − λr3)

(r′1 = r1 − λr2)

=




1 0 0
−µ 1 0
µ2 −µ 1




=




1 −3 9
−4 13 −39
16 −52 157


 .

12.21. Denote the determinant by ∆. Then

∆ =

∣∣∣∣∣∣

1 1 1
a2 b2 c2

a(b + c) b(c + a) c(a + b)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 0 0
a2 b2 − a2 c2 − a2

a(b + c) c(b− a) b(c− a)

∣∣∣∣∣∣
(c′2 = c2 − c1), (c′3 = c3 − c1)

= −(a− b)(c− a)
∣∣∣∣

a + b c + a
c b

∣∣∣∣
= −(b− c)(c− a)(a− b)(a + b + c).

The equations have non-trivial solutions if, and only if, ∆ = 0. From the expansion above this
occurs if b = c, or c = a, or a = b or a + b + c = 0.
Case a + b + c = 0. The equations can be expressed as

x + a2y − b2z = 0,

x + b2y − a2z = 0,

x + (a + b)2y − (a + b)2z = 0.

The solution is
x = 0, y = λ, z = λ.

12.22. Write the equations as
x1 = 1

3 (−x2 − x3 + 5),
x2 = 1

6 (2x3 − 3x4 + 6),
x3 = 1

4 (−x1 + 2x4 + 1),
x4 = 1

4 (x2 + 2x3 − 2).
Start with the values x

(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = 0 and x

(0)
4 = 0, and compute x

(1)
1 , x

(1)
2 , x

(1)
3 , . . .

in sequence, but update variables at the first opportunity. For example, x
(1)
1 = 5

3 from the first
computation and this value should replace x

(0
1 in the equation for x

(1)
3 . The first two iterations

and the final numerical solutions are shown in the table:

x1 1.6667 1.3611 . . . 1.3981
x2 1.0000 1.1181 . . . 1.0900
x3 -0.0833 -0.2661 . . . -0.2844
x4 -0.2917 -0.3385 . . . -0.3697

The matrix of coefficients in the equations is



3 1 1 0
0 6 −2 3
1 0 4 −2
0 1 2 −4


 .
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The system is diagonally dominant since 3 ≥ 1 + 1 = 2 in the first row, 6 ≥ | − 2| + 3 = 5 in the
second row, 4 ≥ 1 + | − 2| = 3 in the third row, and | − 4| ≥ 1 + 2 = 3 in the fourth row.

12.23. The matrix of coefficients is



1 −2 1
1 −1 −1
2 3 −4


 .

Looking at the diagonal elements, 1 < | − 2| + 1 = 3 in the first row, | − 1| < 1 + | − 1| = 2 in
the second row, | − 4| < 2 + 3 = 5 so that the system of equations is not diagonally dominant. In
this case the Gauss-Seidel scheme may or may not converge. Let x

(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = 0. The

equations can be written as
x1 = 2x2 + x3 + 4.
x2 = x1 − x3 − 1.
x3 = 1

4 (2x1 + 3x2 − 4).
As the following table indicates, the sequences do not converge.

x1 4 6.75 4.75 2 . . .
x2 3 2.5 -0.5 0 . . .
x3 3.25 4.25 1 0 . . .

However, the equations do have the unique solution x = 0.45, y = −0.55, z = 0.75 found by
elimination.

12.24. The matrix of coefficients is 


6 −1 1
3 2 1
1 −1 4


 .

Row 2 fails the dominant diagonal test.
The equations can be written as

x1 = 1
6 (x2 − x3 + 2),

x2 = 1
2 (−3x1 − x3 + 1),

x3 = 1
4 (−x1 + x2 + 5).

Let x
(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = 1. Then the table shows the convergence of the Gauss-Seidel scheme:

x1 0.1667 0.1007 . . . 0.1000
x2 -0.2500 -0.2240 . . . -0.2333
x3 1.1458 1.1688 . . . 1.1667

12.25. Equations (12.7)-(12.9) are
x1 = 1

3 (−x2 − x3 − 1),
x2 = 1

4 (x1 − x3 − 8),
x3 = 1

5 (−2x1 − x2 − 14).
Let x

(0)
2 = 0, x

(0)
3 = 0. Using the Jacobi scheme we have to specify additionally x

(0)
1 . We have

chosen, for comparison purposes, x
(0)
1 = − 1

3 which is the first value x
(1)
1 .

x1 -0.3333 1.2500 0.8889 . . .
x2 -2.0833 -1.4167 -1.1250 . . .
x3 -2.2500 -2.2500 3.0167 . . .

This table can be compared with the one following eqn (12.12).
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Chapter 13: Eigenvalues and eigenvectors

13.1. (a) The eigenvalues are given by
∣∣∣∣

2− λ 3
4 6− λ

∣∣∣∣ = (2− λ)(6− λ)− 12 = λ(λ− 8) = 0.

Hence the eigenvalues are λ1 = 0, λ2 = 8.
The eigenvector si is given by [A− λiI2]si = 0, (i = 1, 2). If

si =
[

ai

bi

]
,

then, in this example,
[

2 3
4 6

] [
a1

b1

]
=

[
0
0

]
or

2a1 + 3a2 = 0
4a1 + 6a2 = 0 .

A particular convenient solution is

s1 =
[

3
−2

]
.

Similarly, we can choose

s2 =
[

1
2

]
.

(b) The eigenvalues and eigenvectors of

A =
[

6 3
2 7

]
are λ1 = 4, λ2 = 9, s1 =

[ −3
2

]
s2 =

[
1
1

]
.

(c) The eigenvalues and eigenvectors of

A =
[

2 1
4 6

]
are λ1 = 4− 2

√
2, λ2 = 4 + 2

√
2,

s1 =
[ −1−√2

2

]
, s2 =

[ −1 +
√

2
2

]
.

(d) The eigenvalues and eigenvectors of

A =
[

1 1
4 5

]
are λ1 = 3− 2

√
2, λ2 = 3 +

√
2,

s1 =
[ −1−√2

2

]
s2 =

[ −1 +
√

2
2

]
.

(e) The eigenvalues and eigenvectors of

A =
[

1 2
14 5

]
are λ1 = 3− 4

√
2, λ2 = 3 + 4

√
2,

s1 =
[ −1− 2

√
2

7

]
s2 =

[ −1 + 2
√

2
7

]
.

(f) The eigenvalues and eigenvectors of

A =
[

2 −2
4 6

]
are λ1 = 4− 2i, λ2 = 4 + 2i,
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s1 =
[ −1− i

2

]
s2 =

[ −1 + i
2

]
.

13.2. The eigenvalues of

A =
[

a b
b c

]

are given by the equation
∣∣∣∣

a− λ b
b c− λ

∣∣∣∣ = 0 or λ2 − (a + c)λ + ac− b2 = 0.

Hence
λ = 1

2{(a + c)±√[(a− c)2 + 4b2]}.
Since (a− c)2 + 4b2 ≥ 0, both eigenvalues are real.

13.3. The eigenvalues of

A =
[

6 3
2 7

]

are λ1 = 4 and λ2 = 9. The inverse of A is

A−1 =
[

7
36

1
12

− 1
18

1
6

]
.

The eigenvalues of this matrix are given by
∣∣∣∣

6− µ 3
2 7− µ

∣∣∣∣ = 0, or 36µ2 − 13µ + 1 = 0, or (4µ− 1)(9µ− 1) = 0.

Hence the eigenvalues are µ1 = 1
4 = 1/λ1 and µ2 = 1

9 = 1/λ2. The eigenvalues of the inverse of a
matrix are their reciprocals of the eigenvalues of the matrix.

The square of A is

A2 =
[

42 39
26 55

]
.

Its eigenvalues are λ2
1 = 16 and λ2

2 = 81.

13.4. (a) The eigenvalues of

A =




1 1 2
1 2 1
2 1 1




are given by
∣∣∣∣∣∣

1− λ 1 2
1 2− λ 1
2 1 1− λ

∣∣∣∣∣∣
= −λ3 + 4λ2 + λ− 4 = −(λ + 1)(λ− 1)(λ− 4).

Hence the eigenvalues are λ1 = −1, λ2 = 1, λ3 = 4.
The eigenvector si associated with the eigenvalue λi, (i = 1, 2, 3) is given by any non-zero

solution of
[A− λi]si = 0.

Thus s1 = [a1 b1 c1]T satisfies



2 1 2
1 3 1
2 1 2







a1

b1

c1


 = 0, or

2a1 + b1 + 2c1 = 0
a1 + 3b1 + c1 = 0

2a1 + b1 + 2c1 = 0.
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The general solution is

s1 =



−k

0
k


 : a convenient choice is s1 =



−1

0
1


 .

Eigenvectors associated with λ2 and λ3 are

s2 =




1
−2

1


 , s3 =




1
1
1


 .

(b) Eigenvalues and eigenvectors are

λ1 = 0, λ2 = 1, λ3 = 5, s1 =



−2
−2

3


 s2 =




1
−3

1


 s3 =




1
1
1


 .

(c) Eigenvalues and eigenvectors are

λ1 = −2, λ2 = 2, λ3 = 3, s1 =




0
−1

2


 s2 =




1
0
0


 s3 =




0
2
1


 .

(d) Eigenvalues and eigenvectors are

λ1 = 1, λ2 = 1, λ3 = 16, s1 =



−1

0
1


 s2 =



−1

1
0


 s3 =




1
1
1


 .

13.5. The eigenvalues are given by the solutions of
∣∣∣∣∣∣∣∣

1 2 0 0
3 2 0 0
0 0 3 1
0 0 1 3

∣∣∣∣∣∣∣∣
= λ4 − 9λ3 + 22λ2 − 32 = (λ + 1)(λ + 2)(λ− 4)2 = 0.

Hence the eigenvalues are

λ1 = −1, λ2 = 2, λ3 = 4 (repeated).

The corresponding eigenvectors are

s1 =




−1
1
0
0


 , s2 =




0
0

−1
1


 , s3 =




0
0
1
1


 , s4 =




2
3
0
0


 .

Note that two independent eigenvectors are associated with the repeated eigenvalue λ3 = 4, since

[A− λ3]s3 =




−3 2 0 0
3 −2 0 0
0 0 −1 1
0 0 1 −1







a3

b3

c3

d3


 = 0.

where s3 = [a3 b3 c3 d3]T . The linear equations become

−3a3 + 2b3 = 0,
3a3 − 2b3 = 0,
−c3 + d3 = 0,

c3 − d3 = 0.

.
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The general solution contains two parameters, say α and β such that

a3 = 2α, b3 = 3α, c3 = β, d3 = β.

We can obtain two independent eigenvectors, one with β = 0 and α = 1, and one with α = 0 and
β = 1, which accounts for s3 and s4 above.

Note the relation between the eigenvalues of A and the eigenvalues of the two 2×2 submatrices
[

1 2
3 2

]
,

[
3 1
1 3

]
.

13.6. The eigenvalues are given by



1− λ 0 0
0 2− λ 2
0 2 3


 = −λ3 + 8λ2 − 13λ + 6 = −(λ− 1)2(λ− 6) = 0.

Hence the eigenvalues are λ1 = 1 (repeated) and λ3 = 6. The eigenvector s1 = [a1, b1 c1]T satisfies



0 0 0
0 1 2
0 2 4







a1

b1

c1


 = 0, or

b1 + 2c1 = 0
2b1 + 4c1 = 0 .

The general solution can be expressed in terms of two parameters: a1 = α, b1 = −2β, c1 = β so
that

s1 =




α
−2β

β


 .

We can associate two independent eigenvectors with λ1, one with α = 1, β = 0, and one with
α = 0, β = 1. Hence, three independent eigenvectors are

s1 =




0
−2

1


 , s2 =




1
0
0


 , s3 =




0
1
2


 ,

where s3 is the eigenvector associated with λ3.

13.7. The eigenvalues of A are given by
∣∣∣∣∣∣

−1− λ −1 a + 1
a + 1 −a− λ −1
−a a + 1 −a− λ

∣∣∣∣∣∣
= −λ(λ2 + (2a + 1)λ + 2a2 + 5a + 2) = 0.

Hence A as a zero eigenvalue. A second solution must be λ = 3 which means that a must satisfy

9 + 3(2a + 1) + 2a2 + 5a + 2 = 0, or 2a2 + 11a + 14 = 0, or (2a + 7)(a + 2) = 0.

The solutions are a = −2 and a = − 7
2 .

Case a = −2. det A = λ2(3− λ). The third eigenvalue is a repeated λ = 0.
Case a = − 7

2 . det A = −λ(λ− 3)2. The third eigenvalue is a repeated λ = 3.

13.8. The eigenvalues of A occur where Ax = λx has non-trivial solutions. Since A2 = A,

Ax = λx ⇒ A2x = λx ⇒ λAx = λx ⇒ λ2x = λx.

Therefore
λ(λ− 1)x = 0,

which will only have non-trivial solutions for x if λ = 0 or λ = 1.
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A is idempotent since

A2 =




1 0 0
0 3 6
0 −1 −2




2

=




1 0 0
0 3 6
0 −1 −2


 = A.

The matrices A and A2 have the same eigenvalues 0, 1, 1. The corresponding eigenvectors of both
A and A2 are 


0

−2
1


 ,




0
−3

1


 ,




1
0
0


 .

13.9. Check that

A2 =
1
4




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




2

= I4.

Multiply Ax = λx on the left by A:

A2x = λAx = λ2x.

Since A2 = I4, it follows that
I4x = λ2x, or (λ2 − 1)x = 0.

Non-trivial solutions for x only exist if (λ2 − 1) = 0, or λ = ±1. The eigenvectors are

s1 =




−1
1
1
1


 , s2 =




1
0
0
1


 , s3 =




1
0
1
0


 , s4 =




1
1
0
0


 .

Since A has 4 independent eigenvectors it can be diagonalized.

13.10. The eigenvalues of

A =




1 2 1
2 1 1
1 1 2




are λ1 = −1, λ = 1, λ3 = 4. Check that

trace A = 1 + 1 + 2 = 4 = λ1 + λ2 + λ3,

and that
detA = −4 = λ1λ2λ3.

13.11. The determinant
[

s1 s2 s3

]
=




1 2 4
2 −1 3
1 3 5




is zero, which means that the vectors are linearly dependent.

13.12. Use the method explained in Section 13.4. The eigenvalues and eigenvectors of

A =



−4 1 −2

2 −2 1
0 1 0
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are

λ1 = −5, λ2 = −1, λ3 = 0, s1 =




7
−5

1


 , s2



−1
−1

1


 , s3 =



−1

0
2


 .

Form the matrix

C =
[

s1 s2 s3

]
=




7 −1 −1
−5 −1 0

1 1 2


 .

Next find the inverse of C:

C−1 =
1
20




2 −1 1
−10 −15 −5

4 8 12


 .

Now evaluate the product C−1AC:

C−1AC =
1
20




2 −1 1
−10 −15 −5

4 8 12






−4 1 −2

2 −2 1
0 1 0







7 −1 −1
−5 −1 0

1 1 2




=



−5 0 0

0 −1 0
0 0 0


 ,

which is a diagonal matrix of eigenvalues of A.

13.13. The eigenvalues and eigenvectors of

A =
[

1 8
2 1

]

are

λ1 = −3, λ2 = 5, s1 =
[ −2

1

]
, s2 =

[
2
1

]
.

Let

C =
[

s1 s2

]
=

[ −2 2
1 1

]
.

Then

C−1 =
[ − 1

4
1
2

1
4

1
2

]
.

Confirm that

C−1AC =
[ − 1

4
1
2

1
4

1
2

] [
1 8
2 1

] [ −2 2
1 1

]
=

[ −3 0
0 5

]
,

a diagonal matrix of the eigenvalues.

13.14. The eigenvalues of A are given by



2− λ 0 0
0 2− λ 2
0 2 −1− λ


 = −λ3 + 3λ2 + 4λ− 12 = −(λ + 2)(λ− 2)(λ− 3) = 0.

Hence the eigenvalues are
λ1 = −2, λ2 = 2, λ3 = 3.

The corresponding eigenvectors are

s1 =




0
−1

2


 , s2 =




1
0
0


 , s3 =




0
2
1


 .
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Let

C =
[

s1 s2 s3

]
=




0 1 0
−1 0 2

2 0 1


 .

Its inverse is

C−1 =
1
5




0 −1 2
5 0 0
0 2 1


 .

Then

C−1AC = 1
5




0 −1 2
5 0 0
0 2 1







2 0 0
0 2 2
0 2 −1







0 1 0
−1 0 2

2 0 1




=



−2 0 0

0 2 0
0 0 3


 = D.

13.15. Use results outlined in Problem 8.15. Take determinants of both sides of C−1AC = D:

det[C−1AC] = detD, or det C−1 detA det C = det D,

or (1/ det C) det A det C = det D.

Hence det A = det D: the result follows, since

detD = λ1λ2 . . . λn.

13.16. The eigenvalues and eigenvectors of

A =




1
4

1
2

1
4

1
2

1
4

1
4

1
4

1
4

1
2




are

λ1 = −1
4
, λ2 =

1
4
, λ3 = 1, s1 =



−1

1
0


 , s2 =



− 1

2
− 1

2
1


 , s3 =




1
1
1


 .

Let

C =
[

s1 s2 s3

]
=



−1 − 1

2 1
1 − 1

2 1
0 1 1


 , so that C−1 =



− 1

2
1
2 0

− 1
3 − 1

3
2
3

1
3

1
3

1
3


 .

Let D be the diagonal matrix of eigenvalues:

D =



− 1

4 0 0
0 1

4 0
0 0 1


 .

Then, by Section 13.5,

An = CDnC−1

=



−1 − 1

2 1
1 − 1

2 1
0 1 1







(− 1
4 )n 0 0

0 ( 1
4 )n 0

0 0 1n






− 1

2
1
2 0

− 1
3 − 1

3
2
3

1
3

1
3

1
3




=




1
3 + 1

3 [1 + 3(−1)n]2−2n−1 1
3 + 1

3 [1− 3(−1)n]2−2n−1 1
3 (1− 4−n)

1
3 + 1

3 [1− 3(−1)n]2−2n−1 1
3 + 1

3 [1 + 3(−1)n]2−2n−1 1
3 (1− 4−n)

1
3 (1− 4−n) 1

3 (1− 4−n) 1
3 + 2

34−n


 .

55



Therefore

An → 1
3




1 1 1
1 1 1
1 1 1


 ,

as n →∞, since 2−2n−1 → 0 and 4−n → 0.

13.17. A matrix A is orthogonal if AT = A−1. In this example

A−1 =




1 0 0
0 cos α sin α
0 sin α cosα



−1

=




1 0 0
0 cos α sin α
0 sin α cosα


 = AT ,

and so A is orthogonal. Expanding X = Ax:

X = x. Y = y cosα, Z = z sin α,

or, inverting,
x = X, y = Y cos α, z = −Y sin α + Z cos α.

The x and X axes remain coincident and the OXY Z coordinate frame is rotated about the x axis
through an angle α relative to the Oxyz frame. The points on the x axis are unaffected by the
rotation.

13.18. The matrix is orthogonal since

A−1 =
1
2




1 −1 1 −1
1 −1 −1 1
1 1 −1 −1
1 1 1 1




−1

=
1
2




1 1 1 1
−1 −1 1 1

1 −1 −1 1
−1 1 −1 1


 = AT .

13.19. The matrix [
cosα − sin α
sin α cos α

]

is orthogonal, which implies that the X and Y axes are orthogonal. Expanding

X = x cosα− y sinα, Y = x sin α + y cosα,

or, inverting,
x = X cosα + Y sin α, y = −X sin α + Y cosα.

A sketch of the axes drawn from these relations shows that α is the angle between the x axis
and the X axis. The x axis becomes the line Y cos α = X sin α, and the y axis becomes the line
Y sin α = −X cos α.

13.20. The eigenvalues are given by


−λ a b
−a −λ c
−b −c λ


 = −λ(λ2 + a2 + b2 + c2).

Hence the eigenvalues are

λ1 = 0, λ2 = −√[−a2 − b2 − c2], λ3 =
√

[−a2 − b2 − c2].

The two eigenvalues λ2 and λ3 are imaginary assuming that a, b and c are not all zero.

13.21. Given

A =




1 2 1
2 1 1
1 1 2


 ,
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then

det(A− λI3) =

∣∣∣∣∣∣

1− λ 2 1
2 1− λ 1
1 1 2− λ

∣∣∣∣∣∣
= (1− λ)[(1− λ)(2− λ)− 1]− 2[2(2− λ)− 1] + [2− (1− λ)]
= −λ3 + 4λ2 + λ− 4.

The required powers of A are

A2 =




6 5 5
5 6 5
5 5 6


 , A3 = AA2 =




21 22 21
22 21 21
21 21 22


 .

Hence

−A3 + 4A2 + A− 4I3 = −



21 22 21
22 21 21
21 21 22


 + 4




6 5 5
5 6 5
5 5 6




+




1 2 1
2 1 1
1 1 2


− 4




1 0 0
0 1 0
0 0 1




= 0

Mutiply both sides of this equation by A−1:

−A−1A3 + 4A1A2 + A−1A− 4A−1 = −A2 + 4A + I3 + A1 = 0.

Therefore

A−1 =
1
4
[−A2 + 4A + I3] =

1
4



−1 3 −1

3 −1 −1
−1 −1 3


 .

13.22. The eigenvalues and eigenvectors of

A =




5 −1 −3 3
−1 5 3 −3
−3 3 5 −1

3 −3 −1 5




are
λ1 = 0, λ2 = λ3 = 4, λ4 = 12,

s1 =




−1
1

−1
1


 , s2 =




0
0
1
1


 , s3 =




1
1
0
0


 , s4 =




1
−1
−1

1


 .

The matrix has 4 independent eigenvectors even though there is a repeated eigenvalue. Let

C =




−1 0 1 1
1 0 1 −1

−1 1 0 −1
1 1 0 1


 , and C−1 =

1
4




−1 1 −1 1
0 0 2 2
2 2 0 0
1 −1 −1 1


 .

We can then check that

C−1AC =




0 0 0 0
0 4 0 0
0 0 4 0
0 0 0 12


 .
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Since A has a zero eigenvalue, det A = 0.

13.23. Let x = [x1 x2 x3]T .
(a) In matrix form

x2
1 + x2

2 + x3
3 + 4x1x2 − 4x1x3 + 4x2x3 = xT




1 2 −2
2 1 2

−2 2 1


x.

The eigenvalues and eigenvectors of A are

λ1 = −3, λ2 = λ3 = 3, s1 =




1
−1

1


 , s2 =



−1

0
1


 , s3 =




1
1
0


 .

The required matrix

C =
[

s1 s2 s3

]
=




1 −1 1
−1 0 1

1 1 0


 .

(b) In matrix form

x1x2 − x1x3 + x2x3 = xT




0 1
2 − 1

2
1
2 0 1

2
− 1

2
1
2 0


x.

The eigenvalues and eigenvectors of A are

λ1 = −1, λ2 = λ3 =
1
2
, s1 =




1
−1

1


 , s2 =



−1

0
1


 s3 =




1
1
0


 .

The required matrix is

C =
[

s1 s2 s3

]
=




1 −1 1
−1 0 1

1 1 0


 .

13.24. Express each quadratic form as xT Ax and find the eigenvalues of A. Then the quadratic
form is positive-definite if, and only if, all its eigenvalues are positive (Section 13.7).
(a) In matrix form

4x2
1 + x2

2 − 4x1x2 = xT

[
4 −2

−2 1

]
x.

Hence

A =
[

4 −2
−2 1

]
,

and its eigenvalues are 0 and 5. Therefore the quadratic form is not positive-definite.
(b) In matrix form

x2
1 + x2

2 + 2x2
3 + x2x3 + 2x3x1 + 4x1x2 = xT




1 2 1
2 1 1
1 1 2


x.

Hence

A =




1 2 1
2 1 1
1 1 2


 ,

and its eigenvalues are −1, 1, 4. Since it has a negative eigenvalue, the quadratic form is not
positive-definite.
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(c) In matrix form

6x2
1 + 2x2

2 − x3x1 = xT




6 0 − 1
2

0 2 0
− 1

2 0 0


x.

Its eigenvalues are 2 and 1
2

√
[6±√37]. One eigenvalue is negative so that the quadratic form is

not positive-definite.

13.25. The equations of motion can be obtained as in Section 13.8 but with three particles. As in
a generalization of Fig. 13.2, the first spring has extension x and tension −kx, the second extension
y−x and tension k(y−x), the third extension z− y and tension k(z− y) and the fourth extension
−z and tension −kz. Applying Newton’s law to each particle:

mẍ = −kx + k(y − x) = k(−2x + y),

mÿ = −k(y − x) + k(z − y) = k(x− 2y + z),

mz̈ = −k(z − y)− kz = k(y − 2z).

Let

x =




x
y
z


 , A =

k

m




2 −1 0
−1 2 −1

0 −1 2


 .

Then the equations of motion can be expressed in the matrix form

ẍ + Ax = 0.

The eigenvalues and eigenvectors of A are

λ1 = 2k/m, λ2 = [2−√2]k/m, λ2 = [2 +
√

2]k/m.

s1 =



−1

0
1


 , s2 =




1√
2
1


 , s3 =




1
−√2

1


 .

Let

C =
[

s1 s2 s3

]
=



−1 1 1

0
√

2 −√2
1 1 1


 .

Introduce the normal coordinates X = [X Y Z]T where

x = CX =



−X + Y + Z√

2Y −√2Z
X + Y + Z


 .

The equations of motion become

CẌ + ACX = 0 or Ẍ + DX = 0,

where

C−1AC = D =
k

m




2 0 0
0 2−√2 0
0 0 2 +

√
2


 .

13.26. Calculating A2 and A3:

A2 =




0 1 0
0 0 1
1 0 0




2

=




0 0 1
1 0 0
0 1 0


 , A3 = AA2 = I3.
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Therefore
A4 = A3A = A, A5 = A3A2 = A2,

and, in general,

A3m = I3, A3m+1 = A, A3m+2 = A2, (m = 1, 2, 3, . . .).

The eigenvalues and eigenvectors of A are

λ1 = 1, λ2 =
1
2
(−1− i

√
3), λ3 =

1
2
(−1 + i

√
3),

s1 =




1
1
1


 , s2 =



− 1

2 (1 + i
√

3)
− 1

2 (1− i
√

3)
1


 , s3 =



− 1

2 (1− i
√

3)
− 1

2 (1 + i
√

3)
1


 .

Let

C =
[

s1 s2 s3

]
=




1 − 1
2 (1 + i

√
3) − 1

2 (1− i
√

3)
1 − 1

2 (1− i
√

3) − 1
2 (1 + i

√
3)

1 1 1




Its inverse is given by

C−1 =
1
6




2 2 2
−1 + i

√
3 −1− i

√
3 2

−1− i
√

3 −1 +
√

3 2


 .

By (13.5)

An = CDnC−1

=




1 − 1
2 (1 + i

√
3) − 1

2 (1− i
√

3)
1 − 1

2 (1− i
√

3) − 1
2 (1 + i

√
3)

1 1 1







1 0 0
0 −(−1)

1
3 n 0

0 0 −(−1)
2
3 n




n

×1
6




2 2 2
−1 + i

√
3 −1− i

√
3 2

−1− i
√

3 −1 +
√

3 2




=





I3 n = 3m
A n = 3m + 1
A2 n = 3m + 2

where m = 1, 2, 3, . . ..

13.27. Multiply S on the right by A:

S = A + A2 + · · ·+ An

SA = A2 + · · ·+ An + An−1 ,

and take the difference S − SA, so that

S − SA = A−An−1, or S(I3 −A) = A(I3 −An).

Therefore
S = A(I3 −An)(I3 −A)−1.

The method fails if I3 −A is a singular matrix, which is equivalent to A having a unit eigenvalue.
The eigenvalues and eigenvectors of

A =
[

1 3
2 2

]
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are

λ1 = −1, λ2 = 4, s1 =
[ −3

2

]
, s2 =

[
1
1

]
.

Then

An = CDnC−1 =
1
5

[
3(−1)n + 22n+1 −3(−1)n + 3× 4n

−2(−1)n + 22n+1 2(−1)n + 3× 4n

]

Finally

[I2 −A]−1 =
[

1
6 − 1

2
− 1

3 0

]

so that

S = A(I2 −An)(I2 −A)−1

=
1
5

[
1 3
2 2

] [
5− 3(−1)n − 22n+1 3(−1)n − 3× 4n

2(−1)n − 22n+1 5− 2(−1)n − 3× 4n

] [
1
6 − 1

2
− 1

3 0

]

=
1
30

[
5− 3(−1)n − 22n+1 −27[(−1)n − 4n]
−8[(−1)n − 4n] 0

]
.

13.28. As in Example 13.5, the eigenvalues of

A =




1 2 1
2 1 1
1 1 2




are
λ1 = −4, λ2 = 1, λ3 = −1.

We now choose different eigenvectors (compare Example 13.5):

s1 =




2
2
2


 , s2 =



−1
−1

2


 , s3 =



−3

3
0


 .

Let

C =
[

s1 s2 s3

]
=




2 −1 −3
2 −1 3
2 2 0


 .

Its inverse is

C−1 =




1
6

1
6

1
6

− 1
6 − 1

6
1
3

− 1
6

1
6 0


 .

We can now check that

C−1AC =




1
6

1
6

1
6

− 1
6 − 1

6
1
3

− 1
6

1
6 0







1 2 1
2 1 1
1 1 2







2 −1 −3
2 −1 3
2 2 0


 =




4 0 0
0 1 0
0 0 −1


 .

The problem illustrates the point that the choice of eigenvectors and consequently the choice of C
does not affect the matrix C−1AC: it always equals D.

13.29. The remaining 3× 3 minors of

A =




1 2 3 4
10 11 12 5
9 8 7 6


 ,
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are ∣∣∣∣∣∣

1 2 3
10 11 12
9 8 7

∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣

1 3 4
10 12 5
9 7 6

∣∣∣∣∣∣
= −160,

∣∣∣∣∣∣

2 3 4
11 12 5
8 7 6

∣∣∣∣∣∣
= −80.

The matrix has 18 (2× 2) minors. Their values are:
with elements from rows 1 and 2: −9,−18,−35,−9,−34,−33;
with elements from rows 1 and 3: −10,−20,−30,−10,−20,−10;
with elements from rows 2 and 3: −19,−38, 15,−19, 26, 37.

13.30. (a) Let

A =




1 2 3
3 4 5
6 7 8


 .

Then det A = 0 which means that rank A < 3. However, the 2× 2 minor
∣∣∣∣

1 2
3 4

∣∣∣∣ = −2 6= 0.

Therefore the rank of A is 2.
(b) Let

A =




3 2 1
1 2 3
2 1 3


 .

In this case det A = 12, which means that the matrix is non-singular and has rank 3.
(c) The matrix

A =




1 2 3 2
1 3 4 5
2 3 5 1




is of rank 2.

13.31. Apply row operations to the matrix in Problem 13.30c:



1 2 3 2
1 3 4 5
2 3 5 1


 →




1 2 3 2
0 1 1 3
0 −1 −1 −3


 (r′2 = r2 − r1)

(r′3 = r3 − 2r1)

→



1 2 3 2
0 1 1 3
0 0 0 0


 (r′3 = r3 + r2)

In echelon form the matrix has one row of zeros which means that its rank is 2.

13.32. The eigenvalues of

A1 =




1 2 −1
1 2 −1
2 2 −1




are λ1 = 0 and the repeated eigenvalue λ2 = 1. The rank of λ1I3 − A1 is 2, and the rank of
λ2I3 −A1 is also 2.

The eigenvalues of

A2 =




3 0 −1
0 1 0
2 0 0




are λ3 = 2 and the repeated eigenvalue λ4 = 1. The rank of λ3I3 − A2 is 2, but the rank of
λ4I3 − A2 is 1. The vector space associated with this eigenvalue is 2, which means that we can
define two independent eigenvalues.
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The eigenvalues of

A =




2 1 0 0
0 −1 0 2
0 0 1 0
0 0 2 1




are λ1 = −1, λ2 = 1 (repeated), λ3 = 2. The rank of A is 4 (since det A 6= 0). The ranks of
λ1I4 − A and λ3I4 − A are both 3. The rank of λ2I2 − A is 3. Hence in this problem we can find
only three independent eigenvectors, which can be expressed as

s1 =




−1
3
0
0


 , s2 =




−1
1
0
0


 , s3 =




1
0
0
0


 .
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