Introduction to Physical Hydrology – Martin R. Hendriks

(update 03-01-2018)

Page xiii, Equation 1.1

The lower annotation should point to 'Out' in the equation

Page 82, 11 lines from top of page

Change 'follows from Equation 3.29 that' to 'follows from Equation 3.28 that'

Page 103, Box 3.5, 6th line:

Change

As an example, the mass to be used for PO_4^{3-} equals 30.97 (for P) + 4×16.00 (for 4×O)) = 94.97; for Na⁺, it is simply 22.99, and for Ca²⁺ it is 2×40.08 = 80.16. The latter means that 1 mmol of Ca²⁺ has a mass of 80.16 mg.

As a further example: 100 mg litre⁻¹ Ca²⁺ = $\frac{100}{80.16}$ mmol litre⁻¹ \approx 1.25 mmol litre⁻¹ = 2.5 meq litre⁻¹.

to

As an example, the mass to be used for PO_4^{3-} equals 30.97 (for P) + 4×16.00 (for 4×O)) = 94.97; for Na⁺, it is simply 22.99, and for Ca²⁺ it is 40.08. The latter means that 1 mmol of Ca²⁺ has a mass of 40.08 mg.

As a further example: 100 mg litre⁻¹ Ca²⁺ = $\frac{100}{40.08}$ mmol litre⁻¹ \approx 2.5 mmol litre⁻¹ = 5 meq litre⁻¹.

Page 103, Figure 3.42 left top; under meq litre⁻¹: Change CI⁻ to Cl⁻

Page 172, Figure 4.17 Change to:

Figure 4.17 An example of a potential diagram for ponded infiltration

Page 185, 2 lines under section title 'Non-ponding infiltration'

Change

well-vegetated areas, the infiltration rate i_r equals the rainfall intensity f and there will to

well-vegetated areas, the infiltration rate f equals the rainfall intensity i_r and there will

Page 310, last line under 3.15.2.1d:

Change 4.4 m³ year⁻¹ to 584000 m³ year⁻¹