
Chapter 10

Binary choice and limited dependent
variable models, and maximum
likelihood estimation

10.1 Overview

The first part of this chapter describes the linear probability model, logit analysis, and
probit analysis, three techniques for fitting regression models where the dependent
variable is a qualitative characteristic. Next it discusses tobit analysis, a censored
regression model fitted using a combination of linear regression analysis and probit
analysis. This leads to sample selection models and heckman analysis. The second part
of the chapter introduces maximum likelihood estimation, the method used to fit all of
these models except the linear probability model.

10.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

describe the linear probability model and explain its defects

describe logit analysis, giving the mathematical specification

describe probit analysis, including the mathematical specification

calculate marginal effects in logit and probit analysis

explain why OLS yields biased estimates when applied to a sample with censored
observations, even when the censored observations are deleted

explain the problem of sample selection bias and describe how the heckman
procedure may provide a solution to it (in general terms, without mathematical
detail)

explain the principle underlying maximum likelihood estimation

apply maximum likelihood estimation from first principles in simple models.
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

10.3 Further material

Limiting distributions and the properties of maximum likelihood estimators

Provided that weak regularity conditions involving the differentiability of the likelihood
function are satisfied, maximum likelihood (ML) estimators have the following
attractive properties in large samples:

(1) They are consistent.

(2) They are asymptotically normally distributed.

(3) They are asymptotically efficient.

The meaning of the first property is familiar. It implies that the probability density
function of the estimator collapses to a spike at the true value. This being the case,
what can the other assertions mean? If the distribution becomes degenerate as the
sample size becomes very large, how can it be described as having a normal
distribution? And how can it be described as being efficient, when its variance, and the
variance of any other consistent estimator, tend to zero?

To discuss the last two properties, we consider what is known as the limiting
distribution of an estimator. This is the distribution of the estimator when the
divergence between it and its population mean is multiplied by

√
n. If we do this, the

distribution of a typical estimator remains nondegenerate as n becomes large, and this
enables us to say meaningful things about its shape and to make comparisons with the
distributions of other estimators (also multiplied by

√
n).

To put this mathematically, suppose that there is one parameter of interest, θ, and that
θ̂ is its ML estimator. Then (2) says that:

√
n
(
θ̂ − θ

)
∼ N(0, σ2)

for some variance σ2. (3) says that, given any other consistent estimator θ̃,
√
θ̃ − θ

cannot have a smaller variance.

Test procedures for maximum likelihood estimation

This section on ML tests contains material that is a little advanced for an introductory
econometrics course. It is provided because likelihood ratio tests are encountered in the
sections on binary choice models and because a brief introduction may be of help to
those who proceed to a more advanced course.

There are three main approaches to testing hypotheses in maximum likelihood
estimation: likelihood ratio (LR) tests, Wald tests, and Lagrange multiplier (LM) tests.
Since the theory behind Lagrange multiplier tests is relatively complex, the present
discussion will be confined to the first two types. We will start by assuming that the
probability density function of a random variable X is a known function of a single
unknown parameter θ and that the likelihood function for θ given a sample of n
observations on X, L(θ |X1, . . . , Xn), satisfies weak regularity conditions involving its

214

A study guide produced by Christopher Dougherty to accompany the module "EC2020 Elements of Econometrics" offered as part of the University of London 
International Programmes in Economics, Management, Finance, and the Social Sciences.

© Christopher Dougherty, 2016. All rights reserved. 
Published on the Online Resource Centre to accompany Dougherty: Introduction to Econometrics, 5th edition, by Oxford University Press.



10.3. Further material

differentiability. In particular, we assume that θ is determined by the first-order
condition dL/dθ = 0. (This rules out estimators such as that in Exercise A10.7) The
null hypothesis is H0 : θ = θ0, the alternative hypothesis is H1 : θ 6= θ0, and the
maximum likelihood estimate of θ is θ̂.

Likelihood ratio tests

A likelihood ratio test compares the value of the likelihood function at θ = θ̂ with its
value at θ = θ0. In view of the definition of θ̂, L(θ̂) ≥ L(θ0) for all θ0. However, if the

null hypothesis is true, the ratio L(θ̂)/L(θ0) should not be significantly greater than 1.
As a consequence, the logarithm of the ratio:

log

(
L(θ̂)

L(θ0)

)
= logL(θ̂)− logL(θ0)

should not be significantly different from zero. In that it involves a comparison of the
measures of goodness of fit for unrestricted and restricted versions of the model, the LR
test is similar to an F test.

Under the null hypothesis, it can be shown that in large samples the test statistic:

LR = 2
(

logL(θ̂)− logL(θ0)
)

has a chi-squared distribution with one degree of freedom. If there are multiple
parameters of interest, and multiple restrictions, the number of degrees of freedom is
equal to the number of restrictions.

Examples

We will return to the example in Section 10.6 in the textbook, where we have a
normally-distributed random variable X with unknown population mean µ and known
standard deviation equal to 1. Given a sample of n observations, the likelihood function
is:

L(µ̂ |X1, . . . , Xn) =

(
1√

2πe(X1−µ)2/2

)
× · · · ×

(
1√

2πe(Xn−µ)2/2

)
.

The log-likelihood is:

logL(µ̂ |X1, . . . , Xn) = n log

(
1√
2π

)
− 1

2

∑
(Xi − µ̂)2

and the unrestricted ML estimate is µ̂ =X. The LR statistic for the null hypothesis
H0 : µ = µ0 is therefore:

LR = 2

((
n log

(
1√
2π

)
− 1

2

∑
(Xi −X)2

)
−
(
n log

(
1√
2π

)
− 1

2
(Xi − µ0)2

))
=

∑
(Xi − µ0)2 −

∑
(Xi −X)2 = n(X− µ0)2.

If we relaxed the assumption σ = 1, the unrestricted likelihood function is:

L(µ̂, σ̂ |X1, . . . , Xn) =

(
1

σ̂
√

2π
e
− 1

2

(
X1−µ̂
σ̂

)2)
× · · · ×

(
1

σ̂
√

2π
e−

1
2(Xn−µ̂

σ̂ )
2
)
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

and the log-likelihood is:

logL(µ̂, σ̂ |X1, . . . , Xn) = n log

(
1√
2π

)
− n log σ̂ − 1

2σ̂2

∑
(Xi − µ̂)2.

The first-order condition obtained by differentiating by σ is:

∂ logL

∂σ
= −n

σ
+

1

σ3

∑
(Xi − µ)2 = 0

from which we obtain:

σ̂2 =
1

n

∑
(Xi − µ̂)2.

Substituting back into the log-likelihood function, the latter now becomes a function of
µ only (and is known as the concentrated log-likelihood function or, sometimes, the
profile log-likelihood function):

logL(µ |X1, . . . , Xn) = n log

(
1√
2π

)
− n log

(
1

n

∑
(Xi − µ)2

)1/2

− n

2
.

As before, the ML estimator of µ is X̄. Hence the LR statistic is:

LR = 2

((
n log

(
1√
2π

)
− n log

(
1

n

∑
(Xi −X)2

)1/2

− n

2

)

−

(
n log

(
1√
2π

)
− n log

(
1

n

∑
(Xi − µ0)2

)1/2

− n

2

))

= n
(

log
∑

(Xi − µ0)2 − log
∑

(Xi −X)2
)
.

It is worth noting that this is closely related to the F statistic obtained when one fits
the least squares model:

Xi = µ+ ui.

The least squares estimator of µ is X and RSS =
∑

(Xi −X)2.

If one imposes the restriction µ = µ0, we have RSSR =
∑

(Xi− µ0)2 and the F statistic:

F (1, n− 1) =

∑
(Xi − µ0)2 −

∑
(Xi −X)2(∑

(Xi −X)2
)
/(n− 1)

.

Returning to the LR statistic, we have:

LR = n log

∑
(Xi − µ0)2∑
(Xi −X)2

= n log

(
1 +

∑
(Xi − µ0)2 −

∑
(Xi −X)2∑

(Xi −X)2

)

∼= n

∑
(Xi − µ0)2 −

∑
(Xi −X)2∑

(Xi −X)2
=

n

n− 1
F ∼= F.

Note that we have used the approximation log(1 + a) = a which is valid when a is small
enough for higher powers to be neglected.
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10.3. Further material

Wald tests

Wald tests are based on the same principle as t tests in that they evaluate whether the
discrepancy between the maximum likelihood estimate θ and the hypothetical value θ0

is significant, taking account of the variance in the estimate. The test statistic for the
null hypothesis H0 : θ̂ − θ0 = 0 is: (

θ̂ − θ0

)2

σ̂2
θ̂

where σ̂2
θ̂

is the estimate of the variance of θ evaluated at the maximum likelihood

value. σ̂2
θ̂

can be estimated in various ways that are asymptotically equivalent if the
likelihood function has been specified correctly. A common estimator is that obtained as
minus the inverse of the second differential of the log-likelihood function evaluated at
the maximum likelihood estimate. Under the null hypothesis that the restriction is
valid, the test statistic has a chi-squared distribution with one degree of freedom. When
there are multiple restrictions, the test statistic becomes more complex and the number
of degrees of freedom is equal to the number of restrictions.

Examples

We will use the same examples as for the LR test, first, assuming that σ = 1 and then
assuming that it has to be estimated along with µ. In the first case the log-likelihood
function is:

logL(µ |X1, . . . , Xn) = n log

(
1√
2π

)
− 1

2

∑
(Xi − µ)2.

The first differential is
∑

(Xi − µ) and the second is −n, so the estimate of the variance
is 1/n. The Wald test statistic is therefore n(X− µ0)2.

In the second example, where σ was unknown, the concentrated log-likelihood function
is:

logL(µ |X1, . . . , Xn) = n log

(
1√
2π

)
− n log

(
1

n

∑
(Xi − µ)2

)1/2

− n

2

= n log

(
1√
2π

)
− n

2
log

1

n
− n

2
log
(∑

(Xi − µ)2
)
− n

2
.

The first derivative with respect to µ is:

d logL

dµ
= n

∑
(Xi − µ)∑
(Xi − µ)2

.

The second derivative is:

d2 logL

dµ2
= n

(−n) (
∑

(Xi − µ)2)− (
∑

(Xi − µ)) (−2
∑

(Xi − µ))

[
∑

(Xi − µ)2]2
.

Evaluated at the ML estimator µ̂ =X,
∑

(Xi − µ) = 0 and hence:

d2 logL

dµ2
= − n2∑

(Xi − µ)2
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

giving an estimated variance σ̂2/n, given:

σ̂2 =
1

n

∑
(Xi −X)2.

Hence the Wald test statistic is:
(X− µ0)2

σ̂2/n
.

Under the null hypothesis, this is distributed as a chi-squared statistic with one degree
of freedom.

When there is just one restriction, as in the present case, the Wald statistic is the square
of the corresponding asymptotic t statistic (asymptotic because the variance has been
estimated asymptotically). The chi-squared test and the t test are equivalent, given
that, when there is one degree of freedom, the critical value of the chi-squared statistic
for any significance level is the square of the critical value of the normal distribution.

LR test of restrictions in a regression model

Given the regression model:

Yi = β1 +
k∑
j=2

βjXij + ui

with u assumed to be iid N(0, σ2), the log-likelihood function for the parameters is:

logL(β1, . . . , βk, σ |Yi, Xi, i = 1, . . . , n) = n log

(
1

σ
√

2π

)
− 1

2σ2

∑(
Yi − β1 −

k∑
j=2

βjXij

)2

.

This is a straightforward generalisation of the expression for a simple regression derived
in Section 10.6 in the textbook. Hence

logL(β1, . . . , βk, σ |Yi, Xi, i = 1, . . . , n) = −n log σ − n

2
log 2π − 1

2σ2
Z

where:

Z =
∑(

Yi − β1 −
k∑
j=2

βjXij

)2

.

The estimates of the β parameters affect only Z. To maximise the log-likelihood, they
should be chosen so as to minimise Z, and of course this is exactly what one is doing
when one is fitting a least squares regression. Hence Z = RSS. It remains to determine
the ML estimate of σ. Taking the partial differential with respect to σ, we obtain one of
the first-order conditions for a maximum:

∂ logL(β1, . . . , βk, σ)

∂σ
= −n

σ
+

1

σ3
RSS = 0.

From this we obtain:

σ̂2 =
RSS

n
.
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10.4. Additional exercises

Hence the ML estimator is the sum of the squares of the residuals divided by n. This is
different from the least squares estimator, which is the sum of the squares of the
residuals divided by n− k, but the difference disappears as the sample size becomes
large. Substituting for σ̂2 in the log-likelihood function, we obtain the concentrated
likelihood function:

logL(β1, . . . , βk |Yi, Xi, i = 1, . . . , n) = −n log

(
RSS

n

)1/2

− n

2
log 2π − 1

2Z/n
RSS

= −n
2

log
RSS

n
− n

2
log 2π − n

2

= −n
2

(logRSS + 1 + log 2π − log n).

We will re-write this as:

logLU = −n
2

(logRSSU + 1 + log 2π − log n)

the subscript U emphasising that this is the unrestricted log-likelihood. If we now
impose a restriction on the parameters and maximise the loglikelihood function subject
to the restriction, it will be:

logLR = −n
2

(logRSSR + 1 + log 2π − log n)

where RSSR ≥ RSSU and hence logLR ≤ logLU. The LR statistic for a test of the
restriction is therefore:

2(logLU − LR) = n(logRSSR − logRSSU) = n log
RSSR

RSSU

.

It is distributed as a chi-squared statistic with one degree of freedom under the null
hypothesis that the restriction is valid. If there is more than one restriction, the test
statistic is the same but the number of degrees of freedom under the null hypothesis
that all the restrictions are valid is equal to the number of restrictions.

An example of its use is the common factor test in Section 12.3 in the text. As with all
maximum likelihood tests, it is valid only for large samples. Thus for testing linear
restrictions we should prefer the F test approach because it is valid for finite samples.

10.4 Additional exercises

A10.1 What factors affect the decision to make a purchase of your category of expenditure
in the CES data set?

Define a new variable CATBUY that is equal to 1 if the household makes any
purchase of your category and 0 if it makes no purchase at all. Regress CATBUY
on EXPPC, SIZE, REFAGE, and COLLEGE (as defined in Exercise A5.6) using:
(1) the linear probability model, (2) the logit model, and (3) the probit model.
Calculate the marginal effects at the mean of EXPPC, SIZE, REFAGE, and
COLLEGE for the logit and probit models and compare them with the coefficients
of the linear probability model.
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

A10.2 Logit analysis was used to relate the event of a respondent working (WORKING,
defined to be 1 if the respondent was working, and 0 otherwise) to the respondent’s
educational attainment (S, defined as the highest grade completed) using 1994 data
from the National Longitudinal Survey of Youth 1979–. In this year the respondents
were aged 29–36 and a substantial number of females had given up work to raise a
family. The analysis was undertaken for females and males separately, with the
output shown below (first females, then males, with iteration messages deleted):

. logit WORKING S if MALE==0

Logit Estimates Number of obs = 2726

chi2(1) = 70.42

Prob > chi2 = 0.0000

Log Likelihood = -1586.5519 Pseudo R2 = 0.0217

------------------------------------------------------------------------------

WORKING | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

S | .1511872 .0186177 8.121 0.000 .1146971 .1876773

_cons | -1.049543 .2448064 -4.287 0.000 -1.529355 -.5697314

------------------------------------------------------------------------------

. logit WORKING S if MALE==1

Logit Estimates Number of obs = 2573

chi2(1) = 75.03

Prob > chi2 = 0.0000

Log Likelihood = -802.65424 Pseudo R2 = 0.0446

------------------------------------------------------------------------------

WORKING | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

S | .2499295 .0306482 8.155 0.000 .1898601 .3099989

_cons | -.9670268 .3775658 -2.561 0.010 -1.707042 -.2270113

------------------------------------------------------------------------------

95 per cent of the respondents had S in the range 9–18 years and the mean value of
S was 13.3 and 13.2 years for females and males, respectively.

From the logit analysis, the marginal effect of S on the probability of working at
the mean was estimated to be 0.030 and 0.020 for females and males, respectively.
Ordinary least squares regressions of WORKING on S yielded slope coefficients of
0.029 and 0.020 for females and males, respectively.

As can be seen from the second figure below, the marginal effect of educational
attainment was lower for males than for females over most of the range S ≥ 9.
Discuss the plausibility of this finding.

As can also be seen from the second figure, the marginal effect of educational
attainment decreases with educational attainment for both males and females over
the range S ≥ 9. Discuss the plausibility of this finding.

Compare the estimates of the marginal effect of educational attainment using logit
analysis with those obtained using ordinary least squares.
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Figure 10.1: Probability of working, as a function of S.
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Figure 10.2: Marginal effect of S on the probability of working.

A10.3 A researcher has data on weight, height, and schooling for 540 respondents in the
National Longitudinal Survey of Youth 1979– for the year 2002. Using the data on
weight and height, he computes the body mass index for each individual. If the
body mass index is 30 or greater, the individual is defined to be obese. He defines a
binary variable, OBESE, that is equal to 1 for the 164 obese individuals and 0 for
the other 376. He wishes to investigate whether obesity is related to schooling and
fits an ordinary least squares (OLS) regression of OBESE on S, years of schooling,
with the following result (t statistics in parentheses):

ÔBESE = 0.595− 0.021S (1)

(5.30) (2.63)

This is described as the linear probability model (LPM). He also fits the logit

221

A study guide produced by Christopher Dougherty to accompany the module "EC2020 Elements of Econometrics" offered as part of the University of London 
International Programmes in Economics, Management, Finance, and the Social Sciences.

© Christopher Dougherty, 2016. All rights reserved. 
Published on the Online Resource Centre to accompany Dougherty: Introduction to Econometrics, 5th edition, by Oxford University Press.



10. Binary choice and limited dependent variable models, and maximum likelihood estimation

model:

F (Z) =
1

1 + e−Z

where F (Z) is the probability of being obese and Z = β1 + β2S, with the following
result (again, t statistics in parentheses):

Ẑ = 0.588− 0.105S (2)

(1.07) (2.60)

The figure below shows the probability of being obese and the marginal effect of
schooling as a function of S, given the logit regression. Most (492 out of 540) of the
individuals in the sample had 12 to 18 years of schooling.
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Figure 10.3: Scatter diagram of probability of being obese against years of schooling.

• Discuss whether the relationships indicated by the probability and marginal
effect curves appear to be plausible.

• Add the probability function and the marginal effect function for the LPM to
the diagram. Explain why you drew them the way you did.

• The logit model is considered to have several advantages over the LPM.
Explain what these advantages are. Evaluate the importance of the advantages
of the logit model in this particular case.

• The LPM is fitted using OLS. Explain how, instead, it might be fitted using
maximum likelihood estimation:

◦ Write down the probability of being obese for any obese individual, given
Si for that individual, and write down the probability of not being obese
for any non-obese individual, again given Si for that individual.

◦ Write down the likelihood function for this sample of 164 obese
individuals and 376 non-obese individuals.

◦ Explain how one would use this function to estimate the parameters.
[Note: You are not expected to attempt to derive the estimators of the
parameters.]
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10.4. Additional exercises

◦ Explain whether your maximum likelihood estimators will be the same or
different from those obtained using least squares.

A10.4 A researcher interested in the relationship between parenting, age and schooling
has data for the year 2000 for a sample of 1,167 married males and 870 married
females aged 35 to 42 in the National Longitudinal Survey of Youth 1979–. In
particular, she is interested in how the presence of young children in the household
is related to the age and education of the respondent. She defines CHILDL6 to be
1 if there is a child less than 6 years old in the household and 0 otherwise and
regresses it on AGE, age, and S, years of schooling, for males and females
separately using probit analysis. Defining the probability of having a child less than
6 in the household to be p = F (Z) where:

Z = β1 + β2AGE + β3S

she obtains the results shown in the table below (asymptotic standard errors in
parentheses).

Males Females
AGE −0.137 −0.154

(0.018) (0.023)
S 0.132 0.094

(0.015) (0.020)
constant 0.194 0.547

(0.358) (0.492)

Z −0.399 −0.874

f(Z) 0.368 0.272

For males and females separately, she calculates:

Z = β̂1 + β̂2AGE + β̂3S

where AGE and S are the mean values of AGE and S and β̂1, β̂2, and β̂3 are the
probit coefficients in the corresponding regression, and she further calculates:

f(Z) =
1√
2π

e−Z̄
2/2

where f(Z) = dF/dZ. The values of Z and f(Z) are shown in the table.

• Explain how one may derive the marginal effects of the explanatory variables
on the probability of having a child less than 6 in the household, and calculate
for both males and females the marginal effects at the means of AGE and S.

• Explain whether the signs of the marginal effects are plausible. Explain
whether you would expect the marginal effect of schooling to be higher for
males or for females.
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

• At a seminar someone asks the researcher whether the marginal effect of S is
significantly different for males and females. The researcher does not know how
to test whether the difference is significant and asks you for advice. What
would you say?

A10.5 A health economist investigating the relationship between smoking, schooling, and
age, defines a dummy variable D to be equal to 1 for smokers and 0 for
nonsmokers. She hypothesises that the effects of schooling and age are not
independent of each other and defines an interactive term schooling*age. She
includes this as an explanatory variable in the probit regression. Explain how this
would affect the estimation of the marginal effects of schooling and age.

A10.6 A researcher has data on the following variables for 5,061 respondents in the
National Longitudinal Survey of Youth 1979–:

• MARRIED, marital status in 1994, defined to be 1 if the respondent was
married with spouse present and 0 otherwise;

• MALE, defined to be 1 if the respondent was male and 0 if female;

• AGE in 1994 (the range being 29–37);

• S, years of schooling, defined as highest grade completed, and

• ASVABC, score on a test of cognitive ability, scaled so as to have mean 50 and
standard deviation 10.

She uses probit analysis to regress MARRIED on the other variables, with the
output shown:

. probit MARRIED MALE AGE S ASVABC

Probit estimates Number of obs = 5061

LR chi2(4) = 229.78

Prob > chi2 = 0.0000

Log likelihood = -3286.1289 Pseudo R2 = 0.0338

------------------------------------------------------------------------------

MARRIED | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

MALE | -.1215281 .036332 -3.34 0.001 -.1927375 -.0503188

AGE | .028571 .0081632 3.50 0.000 .0125715 .0445705

S | -.0017465 .00919 -0.19 0.849 -.0197587 .0162656

ASVABC | .0252911 .0022895 11.05 0.000 .0208038 .0297784

_cons | -1.816455 .2798724 -6.49 0.000 -2.364995 -1.267916

------------------------------------------------------------------------------

Variable Mean Marginal effect
MALE 0.4841 −0.0467
AGE 32.52 0.0110
S 13.31 −0.0007
ASVABC 48.94 0.0097

The means of the explanatory variables, and their marginal effects evaluated at the
means, are shown in the table.
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• Discuss the conclusions one may reach, given the probit output and the table,
commenting on their plausibility.

• The researcher considers including CHILD, a dummy variable defined to be 1
if the respondent had children, and 0 otherwise, as an explanatory variable.
When she does this, its z-statistic is 33.65 and its marginal effect 0.5685.
Discuss these findings.

10.7 Suppose that the time, t, required to complete a certain process has probability
density function:

f(t) = αe−α(t−β) with t > β > 0

and you have a sample of n observations with times T1, . . . , Tn.

Determine the maximum likelihood estimate of α, assuming that β is known.

A10.8 In Exercise 10.14 in the text, an event could occur with probability p. Given that
the event occurred m times in a sample of n observations, the exercise required
demonstrating that m/n was the ML estimator of p. Derive the LR statistic for the
null hypothesis p = p0. If m = 40 and n = 100, test the null hypothesis p = 0.5.

A10.9 For the variable in Exercise A10.8, derive the Wald statistic and test the null
hypothesis p = 0.5.

10.5 Answers to the starred exercises in the textbook

10.1 [This exercise does not have a star in the text, but an answer to it is needed for
comparison with the answer to Exercise 10.3.]

The output shows the result of an investigation of how the probability of a
respondent obtaining a bachelor’s degree from a four-year college is related to the
score on ASVABC, using EAWE Data Set 21. BACH is a dummy variable equal to
1 for those with bachelor’s degrees (years of schooling at least 16) and 0 otherwise.
ASVABC is a measure of cognitive ability, scaled so that in the population it has
mean 0 and standard deviation 1. Provide an interpretation of the coefficients.
Explain why OLS is not a satisfactory estimation method for this kind of model.

. reg BACH ASVABC

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 1, 498) = 123.14

Model | 24.7674233 1 24.7674233 Prob > F = 0.0000

Residual | 100.160577 498 .201125656 R-squared = 0.1983

-----------+------------------------------ Adj R-squared = 0.1966

Total | 124.928 499 .250356713 Root MSE = .44847

----------------------------------------------------------------------------

BACH | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

ASVABC | .2479312 .0223421 11.10 0.000 .2040348 .2918277

_cons | .4206845 .0209535 20.08 0.000 .3795163 .4618526

----------------------------------------------------------------------------
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

Answer:

The slope coefficient indicates that the probability of earning a bachelor’s degree
rises by 25 per cent for every additional unit of the ASVABC score. ASVABC is
scaled so that one unit is one standard deviation and it has mean zero. While this
may be realistic for a range of values of ASVABC, it is not for very low ones. Very
few of those with scores in the low end of the spectrum earned bachelors degrees
and variations in the ASVABC score would be unlikely to have an effect on the
probability. The intercept literally indicates that an individual with average score
would have a 42 per cent probability of earning a bachelor’s degree.

However, the linear probability model predicts nonsense negative probabilities for
all those with scores less of −1.70 or less. It also suffers from the problem that the
standard errors and t and F tests are invalid because the disturbance term does
not have a normal distribution. Its distribution is not even continuous, consisting of
only two possible values for each value of ASVABC.

10.3 The output shows the results of fitting a logit regression for BACH, as defined in
Exercise 10.1, with the iteration messages deleted. 48.8 per cent of the respondents
earned bachelor’s degrees.

. logit BACH ASVABC

----------------------------------------------------------------------------

Logistic regression Number of obs = 500

LR chi2(1) = 110.38

Prob > chi2 = 0.0000

Log likelihood = -291.23809 Pseudo R2 = 0.1593

----------------------------------------------------------------------------

BACH | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------+----------------------------------------------------------------

ASVABC | 1.240198 .1377998 9.00 0.000 .9701151 1.51028

_cons | -.4077999 .1088093 -3.75 0.000 -.6210623 -.1945375

----------------------------------------------------------------------------

The diagram shows the probability of earning a bachelor’s degree as a function of
ASVABC. It also shows the marginal effect function.

• With reference to the diagram, discuss the variation of the marginal effect of
the ASVABC score implicit in the logit regression.

• Sketch the probability and marginal effect diagrams for the OLS regression in
Exercise 10.1 and compare them with those for the logit regression.

Answer:

ASVABC is scaled so that it has a mean of zero. From the curve for the cumulative
probability in the figure it can be seen that, for a respondent with mean score, the
probability of graduating from college is about 40 per cent. For those one standard
deviation above the mean, it is nearly 70 per cent. For those one standard
deviation below, a little lower than 20 percent. Looking at the curve for the
marginal probability, it can be seen that the marginal effect is greatest for those of
average cognitive ability, and still quite high a standard deviation either way. For
those two standard deviations above the mean, the marginal effect is low because
most are going to college anyway. For those two standard deviations below, the
effect is gain low, for the opposite reason.
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Figure 10.4: Scatter diagram of cumulative and marginal effects against ASVABC.

For the linear probability model in Exercise 10.1, the counterpart to the cumulative
probability curve in the figure is a straight line using the regression result. In this
example, the predictions of the linear probability model do not differ much from
those of the logit model over the central range of the data. Its deficiencies become
visible only at the extremes. The OLS counterpart to the marginal probability
curve is a horizontal straight line at 0.25, showing that the marginal effect is
somewhat underestimated in the central range and overestimated elsewhere.
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Figure 10.5: Scatter diagram of cumulative and marginal effects against ASVABC.

10.7 The following probit regression, with iteration messages deleted, was fitted using
2,108 observations on females in the National Longitudinal Survey of Youth using
the LFP2011 data set described in Exercise 10.2. The respondents were aged 27 to
31 and many of them were raising young families.
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

. probit WORKING S AGE CHILDL06 CHILDL16 MARRIED ETHBLACK ETHHISP if MALE==0

----------------------------------------------------------------------------

Probit regression Number of obs = 2108

LR chi2(7) = 170.55

Prob > chi2 = 0.0000

Log likelihood = -972.89229 Pseudo R2 = 0.0806

----------------------------------------------------------------------------

WORKING | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------+----------------------------------------------------------------

S | .1046085 .0127118 8.23 0.000 .0796939 .1295232

AGE | -.0029273 .0237761 -0.12 0.902 -.0495277 .043673

CHILDL06 | -.4490263 .08128 -5.52 0.000 -.6083322 -.2897204

CHILDL16 | -.3055774 .1060307 -2.88 0.004 -.5133938 -.097761

MARRIED | -.1286145 .0724189 -1.78 0.076 -.2705529 .0133239

ETHBLACK | -.1070784 .0861386 -1.24 0.214 -.2759069 .0617502

ETHHISP | .0364241 .0987625 0.37 0.712 -.1571468 .229995

_cons | -.1885982 .7046397 -0.27 0.789 -1.569667 1.19247

----------------------------------------------------------------------------

WORKING is a binary variable equal to 1 if the respondent was working in 2011, 0
otherwise. CHILDL06 is a dummy variable equal to 1 if there was a child aged less
than 6 in the household, 0 otherwise. CHILDL16 is a dummy variable equal to 1 if
there was a child aged less than 16, but no child less than 6, in the household, 0
otherwise. MARRIED is equal to 1 if the respondent was married with spouse
present, 0 otherwise. The remaining variables are as described in Appendix B. The
mean values of the variables are given in the output from the sum command:

. sum WORKING S AGE CHILDL06 CHILDL16 MARRIED ETHBLACK ETHHISP if MALE==0

--------------------------------------------------------------------

Variable | Obs Mean Std. Dev. Min Max

-----------+--------------------------------------------------------

WORKING | 2108 .7988615 .4009465 0 1

S | 2108 14.32922 2.882736 6 20

AGE | 2108 28.99336 1.386405 27 31

CHILDL06 | 2108 .4407021 .4965891 0 1

CHILDL16 | 2108 .1465844 .3537751 0 1

MARRIED | 2108 .420778 .4938011 0 1

ETHBLACK | 2108 .1783681 .3829132 0 1

ETHHISP | 2108 .1233397 .3289047 0 1

--------------------------------------------------------------------

Calculate the marginal effects and discuss whether they are plausible.

Answer:

The marginal effects are calculated in the table below. As might be expected,
having a child aged less than 6 has a large adverse effect, very highly significant.
Schooling also has a very significant effect, more educated mothers making use of
their investment by tending to stay in the labour force. Age has a significant
negative effect, the reason for which is not obvious (the respondents were aged
29–36 in 1994). Being black also has an adverse effect, the reason for which is
likewise not obvious. (The WORKING variable is defined to be 1 if the individual
has recorded hourly earnings of at least $3. If the definition is tightened to
including also the requirement that the employment status is employed, the latter
effect is smaller, but still significant at the 5 per cent level.)
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10.5. Answers to the starred exercises in the textbook

Variable Mean β̂2 Mean×β̂2 f(Z) β̂2 × f(Z)
S 14.3292 0.1046 1.4990 0.2627 0.0275
AGE 28.9934 −0.0029 −0.0849 0.2627 −0.0008
CHILD06 0.4407 −0.4490 −0.1979 0.2627 −0.1180
CHILDL16 0.1466 −0.3056 −0.0448 0.2627 −0.0803
MARRIED 0.4208 −0.1286 −0.0541 0.2627 −0.0338
ETHBLACK 0.1784 −0.1071 −0.0191 0.2627 −0.0281
ETHHISP 0.1233 0.1233 0.0045 0.2627 0.0096
constant 1.0000 −0.1886 −0.1886
Total 0.9141

10.12 Show that the tobit model may be regarded as a special case of a selection bias
model.

Answer:

The selection bias model may be written:

B∗i = δ1 +
m∑
j=2

δjQji + εi

Y ∗i = β1

k∑
j=2

βjXji + ui

Yi = Y ∗i for B∗i > 0

Yi is not observed for B∗i ≤ 0

where the Q variables determine selection. The tobit model is the special case
where the Q variables are identical to the X variables and B∗ is the same as Y ∗.

10.14 An event is hypothesised to occur with probability p. In a sample of n observations,
it occurred m times. Demonstrate that the maximum likelihood estimator of p is
m/n.

Answer:

In each observation where the event did occur, the probability was p. In each
observation where it did not occur, the probability was (1− p). Since there were m
of the former and n−m of the latter, the joint probability was pm(1− p)n−m.
Reinterpreting this as a function of p, given m and n, the log-likelihood function for
p is:

logL(p)−m log p+ (n−m) log(1− p).
Differentiating with respect to p, we obtain the first-order condition for a minimum:

d logL(p)

dp
=
m

p
− n−m

1− p
= 0.

This yields p = m/n. We should check that the second differential is negative and
that we have therefore found a maximum. The second differential is:

d2 logL(p)

dp2
= −m

p2
− n−m

(1− p)2
.
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

Evaluated at p = m/n:

d2 logL(p)

dp2
= −n

2

m
− n−m(

1− m
n

)2 = −n2

(
1

m
+

1

n−m

)
.

This is negative, so we have indeed chosen the value of p that maximises the
probability of the outcome.

10.18 Returning to the example of the random variable X with unknown mean µ and
variance σ2, the log-likelihood for a sample of n observations was given by equation
(10.36):

logL = −n
2

log 2π − n

2
log σ2 +

1

σ2

(
−1

2
(X1 − µ)2 − · · · − 1

2
(Xn − µ)2

)
.

The first-order condition forµ produced the ML estimator of µ and the first order
condition for σ then yielded the ML estimator for σ. Often, the variance is treated
as the primary dispersion parameter, rather than the standard deviation. Show
that such a treatment yields the same results in the present case. Treat σ2 as a
parameter, differentiate logL with respect to it, and solve.

Answer:

∂ logL

∂σ2
= − n

2σ2
− 1

σ4

(
−1

2
(X1 − µ)2 − · · · − 1

2
(Xn − µ)2

)
.

Hence:

σ̂2 =
1

n

(
(X1 − µ)2 + · · ·+ (Xn − µ)2

)
as before. The ML estimator of µ is X as before.

10.19 In Exercise 10.7, logL0 is −1058.17. Compute the pseudo-R2 and confirm that it is
equal to that reported in the output.

Answer:

As defined in equation (10.48):

pseudo-R2 = 1− logL

logL0

= 1− −972.8923

−1058.17
= 0.0806

as appears in the output.

10.20 In Exercise 10.7, compute the likelihood ratio statistic 2(logL− logL0), confirm
that it is equal to that reported in the output, and perform the likelihood ratio test.

Answer:

The likelihood ratio statistic is 2(−972.89 + 1058.17) = 170.56, which is that
reported in the output, apart from rounding error in the last digit. Under the null
hypothesis that the coefficients of the explanatory variables are all jointly equal to
0, this is distributed as a chi-squared statistic with degrees of freedom equal to the
number of explanatory variables, in this case 7. The critical value of chi-squared at
the 0.1 per cent significance level with 7 degrees of freedom is 24.32, and so we
reject the null hypothesis at that level.
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10.6 Answers to the additional exercises

A10.1 In the case of FDHO there were no non-purchasing households and so it was not
possible to undertake the analysis.

The results for the logit analysis and the probit analysis were very similar. The
linear probability model also yielded similar results for most of the commodities,
the coefficients being similar to the logit and probit marginal effects and the t
statistics being of the same order of magnitude as the z statistics for the logit and
probit.

Most of the effects seem plausible with simple explanations. The total expenditure
of the household and the size of the household were both highly significant factors
in the decision to make a purchase for most categories of expenditure. The main
exception, TOB. was instead influenced (negatively: survival bias?) by the age of
the reference individual and, unsurprisingly, by his or her education.

Linear probability model, dependent variable CATBUY
EXPPC×10−4 SIZE×10−2 REFAGE×10−2 COLLEGE Cases with

probability

n β̂2 t β̂3 t β̂4 t β̂5 t < 0 > 1
ADM 2,815 0.38 20.41 4.00 9.54 −0.34 −9.92 0.22 17.74 0 44
CLOT 4,500 0.33 18.74 5.38 13.61 −0.35 −10.72 0.05 4.12 0 144
DOM 1,661 0.30 17.37 4.18 10.78 0.16 5.08 0.09 7.99 0 181
EDUC 561 0.13 11.83 3.13 12.38 −0.12 −5.80 0.05 6.01 612 0
ELEC 5,828 0.08 7.33 2.71 11.09 0.16 7.76 0.02 2.07 0 254
FDAW 5,102 0.23 14.57 2.23 6.41 −0.27 −9.56 0.11 10.85 0 223
FDHO* 6,334
FOOT 1,827 0.28 15.83 5.93 14.81 −0.22 −6.65 0.01 1.01 0 4
FURN 487 0.14 13.47 1.65 6.87 −0.07 −3.74 0.01 1.66 149 0
GASO 5,710 0.09 7.70 3.23 12.07 −0.00 −0.14 0.07 8.61 0 331
HEAL 4,802 0.21 12.82 3.18 8.77 0.82 27.46 0.11 9.82 0 406
HOUS 6,223 0.03 5.24 0.52 4.36 0.04 4.44 0.01 2.30 0 484
LIFE 1,253 0.35 15.82 3.91 11.02 0.19 8.36 0.04 3.49 0 1
LOCT 692 0.04 3.42 −0.23 −0.80 −0.15 −6.38 0.00 0.42 0 0
MAPP 399 0.10 10.34 1.59 7.23 −0.00 −0.01 −0.01 −1.54 0 0
PERS 3,817 0.30 15.56 4.55 10.53 0.29 8.19 0.12 9.28 0 66
READ 2,287 0.25 13.48 2.52 5.98 0.37 10.76 0.16 13.03 0 10
SAPP 1,037 0.20 13.80 2.86 8.61 −0.03 −1.12 0.03 3.30 0 0
TELE 5,788 0.07 6.29 3.52 14.09 0.31 15.12 0.01 1.65 0 455
TEXT 992 0.19 13.25 2.45 7.50 −0.03 −1.22 0.04 3.84 0 0
TOB 1,155 −0.01 −0.54 0.24 0.69 −0.17 −5.90 −0.10 −9.16 0 0
TOYS 2,504 0.24 12.14 6.26 14.36 −0.13 −3.58 0.06 4.70 0 4
TRIP 516 0.23 21.63 0.93 3.88 −0.03 −1.39 0.03 4.58 415 0
*FDHO had no observations with zero expenditure.
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

Logit model, dependent variable CATBUY
EXPPC×10−4 SIZE×10−2 REFAGE×10−2 COLLEGE

n β̂2 z β̂3 z β̂4 z β̂5 z
ADM 2,815 2.06 18.34 20.02 10.04 −1.69 10.02 1.00 16.52
CLOT 4,500 2.51 17.22 32.00 13.44 −1.72 −9.92 0.18 2.98
DOM 1,661 1.50 15.28 22.50 10.55 0.91 4.99 0.54 8.01
EDUC 561 1.38 11.60 35.93 12.32 −2.22 −7.14 0.81 6.99
ELEC 5,828 1.63 7.28 44.17 10.57 2.03 7.48 0.19 1.89
FDAW 5,102 2.71 14.40 17.42 6.78 −1.79 −8.99 0.63 9.16
FDHO 6,334
FOOT 1,827 1.39 14.69 29.17 14.24 −1.25 −7.00 0.08 1.23
FURN 487 1.43 12.00 21.16 6.66 −1.28 −4.17 0.28 2.46
GASO 5,710 1.50 7.50 47.81 11.71 0.16 0.66 0.71 7.87
HEAL 4,802 2.29 13.58 21.11 9.12 5.22 24.36 0.59 8.61
HOUS 6,223 4.31 5.78 37.81 4.81 2.42 4.27 0.35 1.76
LIFE 1,253 1.38 13.94 24.61 10.71 1.28 6.33 0.27 3.71
LOCT 692 0.41 3.50 −1.75 −0.60 −1.57 −6.35 0.05 0.51
MAPP 399 1.21 9.65 23.27 5.89 −0.05 −0.16 −0.13 −1.11
PERS 3,817 1.78 15.07 21.91 10.92 1.30 8.11 0.48 8.46
READ 2,287 1.18 12.35 11.97 5.97 1.77 10.61 0.77 12.64
SAPP 1,037 1.24 12.47 19.99 8.37 −0.29 −1.37 0.29 3.71
TELE 5,788 1.24 6.20 51.87 12.34 3.82 13.66 0.18 1.78
TEXT 992 1.20 11.97 17.77 7.28 −0.31 −1.44 0.34 4.27
TOB 1,155 −0.07 −0.64 1.28 0.55 −1.17 −5.85 −0.62 −8.95
TOYS 2,504 1.04 11.53 27.08 13.84 −0.59 −3.69 0.27 4.70
TRIP 516 1.92 15.76 9.60 2.62 −0.42 −1.41 0.75 5.92

Probit model, dependent variable CATBUY
EXPPC×10−4 SIZE×10−2 REFAGE×10−2 COLLEGE

n β̂2 z β̂3 z β̂4 z β̂5 z
ADM 2,815 1.17 19.26 11.97 9.93 −1.01 −10.03 0.61 16.96
CLOT 4,500 1.34 18.00 18.37 13.62 −1.03 −10.00 0.12 3.31
DOM 1,661 0.89 15.77 13.35 10.52 0.53 5.00 0.31 7.95
EDUC 561 0.78 11.88 19.78 12.61 −1.15 −7.36 0.40 7.02
ELEC 5,828 0.71 7.18 19.93 10.53 0.96 7.17 0.10 2.03
FDAW 5,102 1.37 14.87 9.53 6.72 −1.03 −9.08 0.37 9.50
FDHO 6,334
FOOT 1,827 0.82 15.39 17.60 14.43 −0.74 −6.98 0.05 1.29
FURN 487 0.80 12.45 11.37 6.83 −0.63 −4.15 0.12 2.24
GASO 5,710 0.61 7.37 21.79 11.79 0.08 0.60 0.40 8.43
HEAL 4,802 1.18 13.94 11.97 9.11 3.05 25.25 0.34 8.56
HOUS 6,223 1.33 5.76 14.17 4.56 0.98 4.22 0.19 2.26
LIFE 1,253 0.81 14.78 14.40 10.74 0.76 6.56 0.15 3.69
LOCT 692 0.21 3.30 −0.80 −0.54 −0.79 −6.26 0.02 0.50
MAPP 399 0.67 9.94 12.10 7.00 −0.03 −0.17 −0.07 −1.32
PERS 3,817 0.97 15.47 12.93 10.79 0.80 8.15 0.31 8.81
READ 2,287 0.70 12.74 7.14 5.86 1.07 10.63 0.47 12.87
SAPP 1,037 0.73 12.95 11.49 8.42 −0.15 −1.28 0.15 3.63
TELE 5,788 0.55 6.11 24.85 12.54 1.91 13.66 0.10 2.01
TEXT 992 0.71 12.53 10.21 7.33 −0.18 −1.46 0.18 4.16
TOB 1,155 −0.05 −0.79 0.84 0.63 −0.67 −5.86 −0.35 −8.89
TOYS 2,504 0.62 11.91 16.57 14.04 −0.37 −3.72 0.17 4.77
TRIP 516 1.06 16.91 4.84 2.66 −0.21 −1.42 0.35 5.93
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10.6. Answers to the additional exercises

Marginal effects, linear probability model, logit and probit
EXPPC4×10−4 SIZE×10−2

LPM logit probit LPM logit probit
ADM 0.38 0.51 0.46 4.00 4.93 4.72
CLOT 0.33 0.48 0.44 5.38 6.14 6.04
DOM 0.30 0.28 0.28 4.18 4.21 4.25
EDUC 0.13 0.09 0.10 3.13 2.24 2.57
ELEC 0.08 0.10 0.09 2.71 2.73 2.66
FDAW 0.23 0.36 0.34 2.23 2.32 2.37
FDHO
FOOT 0.28 0.28 0.28 5.93 5.82 5.89
FURN 0.14 0.09 0.10 1.65 1.32 1.48
GASO 0.09 0.11 0.09 3.23 3.47 3.35
HEAL 0.21 0.35 0.33 3.18 3.23 3.34
HOUS 0.03 0.04 0.04 −0.23 −0.17 −0.15
LIFE 0.35 0.21 0.22 3.91 3.72 3.86
LOCT 0.04 0.04 0.04 −0.23 −0.17 −0.15
MAPP 0.10 0.07 0.08 1.59 1.27 1.39
PERS 0.30 0.42 0.37 4.55 5.18 4.96
READ 0.25 0.27 0.26 2.52 2.73 2.65
SAPP 0.20 0.16 0.17 2.86 2.60 2.74
TELE 0.07 0.08 0.07 3.52 3.14 3.29
TEXT 0.19 0.15 0.16 2.45 2.23 2.36
TOB −0.01 −0.01 −0.01 0.24 0.19 0.22
TOYS 0.24 0.25 0.24 6.26 6.45 6.36
TRIP 0.23 0.11 0.13 0.93 0.58 0.61
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

Marginal effects, linear probability model, logit and probit
REFAGE×10−2 COLLEGE

LPM logit probit LPM logit probit
ADM −0.34 −0.42 −0.40 0.22 0.24 0.24
CLOT −0.35 −0.33 −0.34 0.05 0.04 0.04
DOM 0.16 0.17 0.17 0.09 0.10 0.10
EDUC −0.12 −0.14 −0.15 0.05 0.05 0.05
ELEC 0.16 0.13 0.13 0.02 0.01 0.01
FDAW −0.27 −0.24 −0.26 0.11 0.08 0.09
FDHO
FOOT −0.22 −0.25 −0.25 0.01 0.02 0.02
FURN −0.07 −0.08 −0.08 0.01 0.02 0.02
GASO −0.00 0.01 0.01 0.07 0.05 0.06
HEAL 0.82 0.80 0.85 0.11 0.09 0.09
HOUS 0.04 0.02 0.03 0.01 0.00 0.01
LIFE 0.19 0.19 0.20 0.04 0.04 0.04
LOCT −0.15 −0.15 −0.15 0.00 0.00 0.00
MAPP −0.00 0.00 0.00 −0.01 −0.01 −0.01
PERS 0.29 0.31 0.31 0.12 0.11 0.12
READ 0.37 0.40 0.40 0.16 0.18 0.17
SAPP −0.03 −0.04 −0.04 0.03 0.04 0.04
TELE 0.31 0.23 0.25 0.01 0.01 0.01
TEXT −0.03 −0.04 −0.04 0.04 0.04 0.04
TOB −0.17 −0.17 −0.17 −0.10 −0.09 −0.09
TOYS −0.13 −0.14 −0.14 0.06 0.06 0.06
TRIP −0.03 −0.03 −0.03 0.03 0.04 0.04

A10.2 The finding that the marginal effect of educational attainment was lower for males
than for females over most of the range S ≥ 9 is plausible because the probability
of working is much closer to 1 for males than for females for S ≥ 9, and hence the
possible sensitivity of the participation rate to S is smaller.

The explanation of the finding that the marginal effect of educational attainment
decreases with educational attainment for both males and females over the range
S ≥ 9 is similar. For both sexes, the greater is S, the greater is the participation
rate, and hence the smaller is the scope for it being increased by further education.

The OLS estimates of the marginal effect of educational attainment are given by
the slope coefficients and they are very similar to the logit estimates at the mean,
the reason being that most of the observations on S are confined to the middle part
of the sigmoid curve where it is relatively linear.

A10.3 Discuss whether the relationships indicated by the probability and marginal effect
curves appear to be plausible.

The probability curve indicates an inverse relationship between schooling and the
probability of being obese. This seems entirely plausible. The more educated tend
to have healthier lifestyles, including eating habits. Over the relevant range, the
marginal effect falls a little in absolute terms (is less negative) as schooling
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10.6. Answers to the additional exercises

increases. This is in keeping with the idea that further schooling may have less
effect on the highly educated than on the less educated (but the difference is not
large).

Add the probability function and the marginal effect function for the LPM to the
diagram. Explain why you drew them the way you did.
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Figure 10.6: Scatter diagram of probability of being obese and marginal effect against
years of schooling.

The estimated probability function for the LPM is just the regression equation and
the marginal effect is the coefficient of S. They are shown as the dashed lines in the
diagram.

The logit model is considered to have several advantages over the LPM. Explain
what these advantages are. Evaluate the importance of the advantages of the logit
model in this particular case.

The disadvantages of the LPM are (1) that it can give nonsense fitted values
(predicted probabilities greater than 1 or less than 0); (2) the disturbance term in
observation i must be equal to either −1− F (Zi) (if the dependent variable is equal
to 1) or −F (Zi) (if the dependent variable is equal to 0) and so it violates the usual
assumption that the disturbance term is normally distributed, although this may
not matter asymptotically; (3) the disturbance term will be heteroskedastic
because Zi is different for different observations; (4) the LPM implicitly assumes
that the marginal effect of each explanatory variable is constant over its entire
range, which is often intuitively unappealing.

In this case, nonsense predictions are clearly not an issue. The assumption of a
constant marginal effect does not seem to be a problem either, given the
approximate linearity of the logit F (Z).

The LPM is fitted using OLS. Explain how, instead, it might be fitted using
maximum likelihood estimation:

Write down the probability of being obese for any obese individual, given Si for that
individual, and write down the probability of not being obese for any non-obese
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

individual, again given Si for that individual.

Obese: pOi = β1 + β2Si; not obese: pNOi = 1− β1 − β2Si.

Write down the likelihood function for this sample of 164 obese individuals and 376
non-obese individuals.

L(β1, β2 | data) =
∏

OBESE

pOi
∏

NOT OBESE

pNOi =
∏

OBESE

(β1+β2Si)
∏

NOT OBESE

(1−β1−β2Si).

Explain how one would use this function to estimate the parameters. [Note: You
are not expected to attempt to derive the estimators of the parameters.]

You would use some algorithm to find the values of β1 and β2 that maximises the
function.

Explain whether your maximum likelihood estimators will be the same or different
from those obtained using least squares.

Least squares involves finding the extremum of a completely different expression
and will therefore lead to different estimators.

10.4 Explain how one may derive the marginal effects of the explanatory variables on the
probability of having a child less than 6 in the household, and calculate for both
males and females the marginal effects at the means of AGE and S.

Since p is a function of Z, and Z is a linear function of the X variables, the
marginal effect of Xj is:

∂p

∂Xj

=
dp

dZ

∂Z

∂Xj

=
dp

dZ
βj

where βj is the coefficient of Xj in the expression for Z. In the case of probit
analysis, p = F (Z) is the cumulative standardised normal distribution. Hence
dp/dZ is just the standardised normal distribution.

For males, this is 0.368 when evaluated at the means. Hence the marginal effect of
AGE is 0.368×−0.137 = −0.050 and that of S is 0.368× 0.132 = 0.049. For
females the corresponding figures are 0.272×−0.154 = −0.042 and
0.272× 0.094 = 0.026, respectively. So for every extra year of age, the probability is
reduced by 5.0 per cent for males and 4.2 per cent for females. For every extra year
of schooling, the probability increases by 4.9 per cent for males and 2.6 per cent for
females.

Explain whether the signs of the marginal effects are plausible. Explain whether you
would expect the marginal effect of schooling to be higher for males or for females.

Yes. Given that the cohort is aged 35–42, the respondents have passed the age at
which most adults start families, and the older they are, the less likely they are to
have small children in the household. At the same time, the more educated the
respondent, the more likely he or she is to have started having a family relatively
late, so the positive effect of schooling is also plausible. However, given the age of
the cohort, it is likely to be weaker for females than for males, given that most
females intending to have families will have started them by this time, irrespective
of their education.
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10.6. Answers to the additional exercises

At a seminar someone asks the researcher whether the marginal effect of S is
significantly different for males and females. The researcher does not know how to
test whether the difference is significant and asks you for advice. What would you
say?

Fit a probit regression for the combined sample, adding a male intercept dummy
and male slope dummies for AGE and S. Test the coefficient of the slope dummy
for S.

10.5 The Z function will be of the form:

Z = β1 + β2A+ β3S + β4AS

so the marginal effects are:

∂p

∂A
=

dp

dZ

∂Z

∂A
= f(Z)(β2 + β4S)

and:
∂p

∂S
=

dp

dZ

∂Z

∂S
= f(Z)(β3 + β4A).

Both factors depend on the values of A and/or S, but the marginal effects could be
evaluated for a representative individual using the mean values of A and S in the
sample.

A10.6 Discuss the conclusions one may reach, given the probit output and the table,
commenting on their plausibility.

Being male has a small but highly significant negative effect. This is plausible
because males tend to marry later than females and the cohort is still relatively
young.

Age has a highly significant positive effect, again plausible because older people are
more likely to have married than younger people.

Schooling has no apparent effect at all. It is not obvious whether this is plausible.

Cognitive ability has a highly significant positive effect. Again, it is not obvious
whether this is plausible.

The researcher considers including CHILD, a dummy variable defined to be 1 if the
respondent had children, and 0 otherwise, as an explanatory variable. When she
does this, its z-statistic is 33.65 and its marginal effect 0.5685. Discuss these
findings.

Obviously one would expect a high positive correlation between being married and
having children and this would account for the huge and highly significant
coefficient. However getting married and having children are often a joint decision,
and accordingly it is simplistic to suppose that one characteristic is a determinant
of the other. The finding should not be taken at face value.

A10.7 Determine the maximum likelihood estimate of α, assuming that β is known.

The log-likelihood function is:

logL(α | β, T1, . . . , Tn) = n logα− α
∑

(Ti − β).
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

Setting the first derivative with respect to α equal to zero, we have:
n

α̂
−
∑

(Ti − β) = 0

and hence:

α̂ =
1

T − β
.

The second derivative is −n/α̂2, which is negative, confirming we have maximised
the loglikelihood function.

A10.8 From the solution to Exercise 10.14, the log-likelihood function for p is:

logL(p) = m log p+ (n−m) log(1− p).
Thus the LR statistic is:

LR = 2
((
m log

m

n
+ (n−m) log

(
1− m

n

))
− (m log p0 + (n−m) log(1− p0))

)
= 2

(
m log

(
m/n

p0

)
+ (n−m) log

(
1−m/n
1− p0

))
.

If m = 40 and n = 100, the LR statistic for H0 : p = 0.5 is:

LR = 2

(
40 log

(
0.4

0.5

)
+ 60 log

(
0.6

0.5

))
= 4.03.

We would reject the null hypothesis at the 5 per cent level (critical value of
chi-squared with one degree of freedom 3.84) but not at the 1 per cent level
(critical value 6.64).

A10.9 The first derivative of the log-likelihood function is:

d logL(p)

dp
=
m

p
− n−m

1− p
= 0

and the second differential is:

d logL(p)

dp2
= −m

p2
− n−m

(1− p)2
.

Evaluated at p = m/n:

d logL(p)

dp2
= −n

2

m
− n−m(

1− m
n

)2 = −n2

(
1

m
+

1

n−m

)
= − n3

m(n−m)
.

The variance of the ML estimate is given by:(
−d logL(p)

dp2

)−1

=

(
n3

m(n−m)

)−1

=
m(n−m)

n3
.

The Wald statistic is therefore:(
m
n
− p0

)2

m(n−m)
n3

=

(
m
n
− p0

)2

1
n
m
n
n−m
n

.

Given the data, this is equal to:

(0.4− 0.5)2

1
100
× 0.4× 0.6

= 4.17.

Under the null hypothesis this has a chi-squared distribution with one degree of
freedom, and so the conclusion is the same as in Exercise A.8.
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