
Chapter 4

Transformations of variables

4.1 Overview

This chapter shows how least squares regression analysis can be extended to fit
nonlinear models. Sometimes an apparently nonlinear model can be linearised by taking
logarithms. Y = β1X

β2 and Y = β1eβ2X are examples. Because they can be fitted using
linear regression analysis, they have proved very popular in the literature, there usually
being little to be gained from using more sophisticated specifications. If you plot
earnings on schooling, using the EAWE data set, or expenditure on a given category of
expenditure on total household expenditure, using the CES data set, you will see that
there is so much randomness in the data that one nonlinear specification is likely to be
just as good as another, and indeed a linear specification may not be obviously inferior.
Often the real reason for preferring a nonlinear specification to a linear one is that it
makes more sense theoretically. The chapter shows how the least squares principle can
be applied when the model cannot be linearised.

4.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

explain the difference between nonlinearity in parameters and nonlinearity in
variables

explain why nonlinearity in parameters is potentially a problem while nonlinearity
in variables is not

define an elasticity

explain how to interpret an elasticity in simple terms

perform basic manipulations with logarithms

interpret the coefficients of semi-logarithmic and logarithmic regressions

explain why the coefficients of semi-logarithmic and logarithmic regressions should
not be interpreted using the method for regressions in natural units described in
Chapter 1

perform a RESET test of functional misspecification
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4. Transformations of variables

explain the role of the disturbance term in a nonlinear model

explain how in principle a nonlinear model that cannot be linearised may be fitted

perform a transformation for comparing the fits of models with linear and
logarithmic dependent variables.

4.3 Further material

Box–Cox tests of functional specification

The theory behind the procedure for discriminating between a linear and a logarithmic
specification of the dependent variable is explained in the Appendix to Chapter 10 of
the text. However, the exposition there is fairly brief. An expanded version is offered
here. It should be skipped on first reading because it makes use of material on maximum
likelihood estimation. To keep the mathematics uncluttered, the theory will be
described in the context of the simple regression model, where we are choosing between:

Y = β1 + β2X + u

and:
log Y = β1 + β2X + u.

It generalises with no substantive changes to the multiple regression model.

The two models are actually special cases of the more general model:

Yλ =
Y λ − 1

λ
= β1 + β2X + u

with λ = 1 yielding the linear model (with an unimportant adjustment to the intercept)
and λ = 0 yielding the logarithmic specification at the limit as λ tends to zero.
Assuming that u is iid (independently and identically distributed) N(0, σ2), the density
function for ui is:

f(ui) =
1

σ
√

2π
e−u

2
i /2σ

2

and hence the density function for Yλi is:

f(Yλi) =
1

σ
√

2π
e−(Yλi−β1−β2Xi)2/2σ2

.

From this we obtain the density function for Yi:

f(Yi) =
1

σ
√

2π
e−(Yλi−β1−β2Xi)2/2σ2

∣∣∣∣∂Yλi∂Yi

∣∣∣∣ =
1

σ
√

2π
e−(Yλi−β1−β2Xi)2/2σ2

Y λ−1
i .

The factor
∣∣∣∂Yλi∂Yi

∣∣∣ is the Jacobian for relating the density function of Yλi to that of Yi.

Hence the likelihood function for the parameters is:

L(β1, β2, σ, λ) =

(
1

σ
√

2π

)n n∏
i=1

e−(Yλi−β1−β2Xi)2/2σ2
n∏
i=1

Y λ−1
i
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4.3. Further material

and the log-likelihood is:

logL(β1, β2, σ, λ) = −n
2

log 2πσ2 −
n∑
i=1

1

2σ2
(Yλi − β1 − β2Xi)

2 +
n∑
i=1

log Y λ−1
i

= −n
2

log 2π − n log σ − 1

2σ2

n∑
i=1

(Yλi − β1 − β2Xi)
2 + (λ− 1)

n∑
i=1

log Yi.

From the first-order condition ∂ logL/∂σ = 0, we have:

−n
σ

+
1

σ3

n∑
i=1

(Yλi − β1 − β2Xi)
2 = 0

giving:

σ̂2 =
1

n

n∑
i=1

(Yλi − β1 − β2Xi)
2.

Substituting into the log-likelihood function, we obtain the concentrated log-likelihood:

logL(β1, β2, λ) = −n
2

log 2π − n

2
log

1

n

n∑
i=1

(Yλi − β1 − β2Xi)
2 − n

2
+ (λ− 1)

n∑
i=1

log Yi.

The expression can be simplified (Zarembka, 1968) by working with Y ∗i rather than Yi,
where Y ∗i is Yi divided by YGM, the geometric mean of the Yi in the sample, for:

n∑
i=1

log Y ∗i =
n∑
i=1

log(Yi/YGM) =
n∑
i=1

(log Yi − log YGM)

=
n∑
i=1

log Yi − n log YGM =
n∑
i=1

log Yi − n log

(
n∏
i=1

Yi

)1/n

=
n∑
i=1

log Yi − log

(
n∏
i=1

Yi

)
=

n∑
i=1

log Yi −
n∑
i=1

log Yi = 0.

With this simplification, the log-likelihood is:

logL(β1, β2, λ) = −n
2

(
log 2π + log

1

n
+ 1

)
− n

2
log

n∑
i=1

(Y ∗λi − β1 − β2Xi)
2

and it will be maximised when β1, β2 and λ are chosen so as to minimise
n∑
i=1

(Y ∗λi − β1 − β2Xi)
2, the residual sum of squares from a least squares regression of the

scaled, transformed Y on X. One simple procedure is to perform a grid search, scaling
and transforming the data on Y for a range of values of λ and choosing the value that
leads to the smallest residual sum of squares (Spitzer, 1982).

A null hypothesis λ = λ0 can be tested using a likelihood ratio test in the usual way.
Under the null hypothesis, the test statistic 2(logLλ − logL0) will have a chi-squared
distribution with one degree of freedom, where logLλ is the unconstrained log-likelihood
and L0 is the constrained one. Note that, in view of the preceding equation:

2(logLλ − logL0) = n(logRSS0 − logRSSλ)
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4. Transformations of variables

where RSS0 and RSSλ are the residual sums of squares from the constrained and
unconstrained regressions with Y ∗.

The most obvious tests are λ = 0 for the logarithmic specification and λ = 1 for the
linear one. Note that it is not possible to test the two hypotheses directly against each
other. As with all tests, one can only test whether a hypothesis is incompatible with the
sample result. In this case we are testing whether the log-likelihood under the
restriction is significantly smaller than the unrestricted log-likelihood. Thus, while it is
possible that we may reject the linear but not the logarithmic, or vice versa, it is also
possible that we may reject both or fail to reject both.

Example
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The figure shows the residual sum of squares for values of λ from −1 to 1 for the wage
equation example described in Section 4.2 in the text. The maximum likelihood estimate
is 0.10, with RSS = 130.3. For the linear and logarithmic specifications, RSS was 217.0
and 131.4, respectively, with likelihood ratio statistics 500(log 217.0− log 130.3) = 255.0
and 500(log 131.4− log 130.3) = 4.20.The logarithmic specification is clearly much to be
preferred, but even it is rejected at the 5 per cent level, with χ2(1) = 3.84.

4.4 Additional exercises

A4.1 Is expenditure on your category per capita related to total expenditure per capita?
An alternative model specification.

Define a new variable LGCATPC as the logarithm of expenditure per capita on
your category. Define a new variable LGEXPPC as the logarithm of total
household expenditure per capita. Regress LGCATPC on LGEXPPC. Provide an
interpretation of the coefficients, and perform appropriate statistical tests.

A4.2 Is expenditure on your category per capita related to household size as well as to
total expenditure per capita? An alternative model specification.

Regress LGCATPC on LGEXPPC and LGSIZE. Provide an interpretation of the
coefficients, and perform appropriate statistical tests.
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4.4. Additional exercises

A4.3 A researcher is considering two regression specifications:

log Y = β1 + β2 logX + u (1)

and:

log
Y

X
= α1 + α2 logX + u (2)

where u is a disturbance term.

Writing y = log Y , x = logX, and z = log Y
X

, and using the same sample of n
observations, the researcher fits the two specifications using OLS:

ŷ = β̂1 + β̂2x (3)

and:
ẑ = α̂1 + α̂2x. (4)

• Using the expressions for the OLS regression coefficients, demonstrate that
β̂2 = α̂2 + 1.

• Similarly, using the expressions for the OLS regression coefficients,
demonstrate that β̂1 = α̂1.

• Hence demonstrate that the relationship between the fitted values of y, the
fitted values of z, and the actual values of x, is ŷi − xi = ẑi.

• Hence show that the residuals for regression (3) are identical to those for (4).

• Hence show that the standard errors of β̂2 and α̂2 are the same.

• Determine the relationship between the t statistic for β̂2 and the t statistic for
α̂2, and give an intuitive explanation for the relationship.

• Explain whether R2 would be the same for the two regressions.

A4.4 A researcher has data on a measure of job performance, SKILL, and years of work
experience, EXP, for a sample of individuals in the same occupation. Believing
there to be diminishing returns to experience, the researcher proposes the model:

SKILL = β1 + β2 log(EXP) + β3 log
(
EXP2

)
+ u.

Comment on this specification.

A4.5 A researcher hypothesises that a variable Y is determined by a variable X and
considers the following four alternative regression specifications, using
cross-sectional data:

Y = β1 + β2X + u (1)

log Y = β1 + β2X + u (2)

Y = β1 + β2 logX + u (3)

log Y = β1 + β2 logX + u. (4)

Explain why a direct comparison of R2, or of RSS, in models (1) and (2) is
illegitimate. What should be the strategy of the researcher for determining which of
the four specifications has the best fit?
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4. Transformations of variables

A4.6 Is a logarithmic specification preferable to a linear specification for an expenditure
function?

Use your category of expenditure from the CES data set. Define CATPCST as
CATPC scaled by its geometric mean and LGCATST as the logarithm of
CATPCST. Regress CATPCST on EXPPC and SIZE and regress LGCATST on
LGEXPPC and LGSIZE. Compare the RSS for these equations.

A4.7

. reg LGEARN S EXP ASVABC SASVABC

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 4, 495) = 22.68

Model | 23.6368302 4 5.90920754 Prob > F = 0.0000

Residual | 128.96239 495 .26053008 R-squared = 0.1549

-------------+------------------------------ Adj R-squared = 0.1481

Total | 152.59922 499 .30581006 Root MSE = .51042

------------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

S | .0764243 .0116879 6.54 0.000 .0534603 .0993883

EXP | .0400506 .0096479 4.15 0.000 .0210948 .0590065

ASVABC | -.2096325 .1406659 -1.49 0.137 -.4860084 .0667434

SASVABC | .0188685 .0093393 2.02 0.044 .0005189 .0372181

_cons | 1.386753 .2109596 6.57 0.000 .9722664 1.80124

------------------------------------------------------------------------------

The output above shows the result of regressing the logarithm of hourly earnings
on years of schooling, years of work experience, ASVABC score, and SASVABC, an
interactive variable defined as the product of S and ASVABC, using EAWE Data
Set 21. The mean values of S, EXP, and ASVABC in the sample were 14.9, 6.4,
and 0.27, respectively. Give an interpretation of the regression output.

A4.8 Perform a RESET test of functional misspecification. Using your EAWE data set,
regress WEIGHT11 on HEIGHT. Save the fitted values as YHAT and define
YHATSQ as its square. Add YHATSQ to the regression specification and test its
coefficient.

4.5 Answers to the starred exercises in the textbook

4.8 Suppose that the logarithm of Y is regressed on the logarithm of X, the fitted
regression being:

log Ŷ = β̂1 + β̂2 logX.

Suppose X∗ = µX, where µ is a constant, and suppose that log Y is regressed on
logX∗. Determine how the regression coefficients are related to those of the original
regression. Determine also how the t statistic for β̂2 and R2 for the equation are
related to those in the original regression.
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4.5. Answers to the starred exercises in the textbook

Answer:

Nothing of substance is affected since the change amounts only to a fixed constant
shift in the measurement of the explanatory variable.

Let the fitted regression be:

log Ŷ = β̂∗1 + β̂∗2 logX∗.

Note that:

logX∗i − logX∗ = log µXi −
1

n

n∑
j=1

logX∗j

= log µXi −
1

n

n∑
j=1

log µXj

= log µ+ logXi −
1

n

n∑
j=1

(log µ+ logXj)

= logXi −
1

n

n∑
j=1

logXj

= logXi − logX.

Hence β̂∗2 = β̂2. To compute the standard error of β̂∗2 , we will also need β̂∗1 .

β̂∗1 = log Y − β̂∗2 logX∗ = log Y − β̂2
1

n

n∑
j=1

(log µ+ logXj)

= log Y − β̂2 log µ− β̂2 logX

= β̂1 − β̂2 log µ.

Thus the residual û∗i is given by:

û∗i = log Yi − β̂∗1 − β̂∗2 logX∗i = log Yi − (β̂1 − β̂2 log µ)− β̂2(logXi + log µ) = ûi.

Hence the estimator of the variance of the disturbance term is unchanged and so
the standard error of β̂∗2 is the same as that for β̂2. As a consequence, the t statistic
must be the same. R2 must also be the same:

R2∗ = 1−
∑
û∗2i∑(

log Yi − log Y
) = 1−

∑
û2
i∑(

log Yi − log Y
) = R2.

4.11 RSS was the same in Tables 4.6 and 4.8. Demonstrate that this was not a
coincidence.

Answer:

This is a special case of the transformation in Exercise 4.7.
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4. Transformations of variables

4.14

. gen LGHTSQ = ln(HEIGHTSQ)

. reg LGWT04 LGHEIGHT LGHTSQ

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 211.28

Model | 7.90843858 1 7.90843858 Prob > F = 0.0000

Residual | 18.6403163 498 .037430354 R-squared = 0.2979

-------------+------------------------------ Adj R-squared = 0.2965

Total | 26.5487548 499 .053203918 Root MSE = .19347

------------------------------------------------------------------------------

LGWT04 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

LGHEIGHT | (dropped)

LGHTSQ | 1.053218 .0724577 14.54 0.000 .9108572 1.195578

_cons | -3.78834 .610925 -6.20 0.000 -4.988648 -2.588031

------------------------------------------------------------------------------

The output shows the results of regressing, LGWT04, the logarithm of
WEIGHT04, on LGHEIGHT, the logarithm of HEIGHT, and LGHTSQ, the
logarithm of the square of HEIGHT, using EAWE Data Set 21. Explain the
regression results, comparing them with those in Exercise 4.2.

Answer:

LGHTSQ = 2 LGHEIGHT, so the specification is subject to exact
multicollinearity. In such a situation, Stata drops one of the variables responsible.

4.18

. nl (S = {beta1} + {beta2}/({beta3} + SIBLINGS)) if SIBLINGS>0

(obs = 473)

Iteration 0: residual SS = 3502.041

Iteration 1: residual SS = 3500.884

.....................................

Iteration 14: residual SS = 3482.794

Source | SS df MS

-------------+------------------------------ Number of obs = 473

Model | 132.339291 2 66.1696453 R-squared = 0.0366

Residual | 3482.7939 470 7.41019979 Adj R-squared = 0.0325

-------------+------------------------------ Root MSE = 2.722168

Total | 3615.13319 472 7.65918049 Res. dev. = 2286.658

------------------------------------------------------------------------------

S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

/beta1 | 10.45811 5.371492 1.95 0.052 -.0970041 21.01322

/beta2 | 47.95198 125.3578 0.38 0.702 -198.3791 294.2831

/beta3 | 8.6994 15.10277 0.58 0.565 -20.97791 38.37671

------------------------------------------------------------------------------

Parameter beta1 taken as constant term in model & ANOVA table
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4.6. Answers to the additional exercises

The output uses EAWE Data Set 21 to fit the nonlinear model:

S = β1 +
β2

β3 + SIBLINGS
+ u

where S is the years of schooling of the respondent and SIBLINGS is the number
of brothers and sisters. The specification is an extension of that for Exercise 4.1,
with the addition of the parameter β3. Provide an interpretation of the regression
results and compare it with that for Exercise 4.1.

Answer:

As in Exercise 4.1, the estimate of β1 provides an estimate of the lower bound of
schooling, 10.46 years, when the number of siblings is large. The other parameters
do not have straightforward interpretations. The figure below represents the
relationship. Comparing this figure with that for Exercise 4.1, it can be seen that it
gives a very different picture of the adverse effect of additional siblings. The
specification in Exercise 4.1 suggests that the adverse effect is particularly large for
the first few siblings, and then attenuates. The revised specification indicates that
the adverse effect is more evenly spread and is more enduring. However, the
relationship has been fitted with imprecision since the estimates of β2 and β3 are
not significant.
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4.6 Answers to the additional exercises

A4.1

. reg LGFDHOPC LGEXPPC

Source | SS df MS Number of obs = 6334

-------------+------------------------------ F( 1, 6332) = 4757.00

Model | 1502.58932 1 1502.58932 Prob > F = 0.0000

Residual | 2000.08269 6332 .315869029 R-squared = 0.4290

-------------+------------------------------ Adj R-squared = 0.4289

Total | 3502.67201 6333 .553082585 Root MSE = .56202
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4. Transformations of variables

------------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

LGEXPPC | .6092734 .0088338 68.97 0.000 .5919562 .6265905

_cons | .8988291 .0703516 12.78 0.000 .7609161 1.036742

------------------------------------------------------------------------------

The regression implies that the income elasticity of expenditure on food is 0.61
(supposing that total household expenditure can be taken as a proxy for permanent
income). In addition to testing the null hypothesis that the elasticity is equal to
zero, which is rejected at a very high significance level for all the categories, one
might test whether it is different from 1, as a means of classifying the categories of
expenditure as luxuries (elasticity > 1) and necessities (elasticity < 1).

The table gives the results for all the categories of expenditure.

Regression of LGCATPC on EXPPC

n β̂2 s.e.(β̂2) t (β2 = 0) t (β2 = 1) R2 RSS
ADM 2,815 1.098 0.030 37.20 3.33 0.330 1,383.9
CLOT 4,500 0.794 0.021 37.34 −9.69 0.237 1,394.0
DOM 1,661 0.812 0.049 16.54 −3.84 0.142 273.5
EDUC 561 1.382 0.090 15.43 4.27 0.299 238.1
ELEC 5,828 0.586 0.011 50.95 −36.05 0.308 2,596.3
FDAW 5,102 0.947 0.015 64.68 −3.59 0.451 4,183.6
FDHO 6,334 0.609 0.009 68.97 −44.23 0.429 4,757.0
FOOT 1,827 0.608 0.027 22.11 −14.26 0.211 488.7
FURN 487 0.912 0.085 10.66 −1.03 0.190 113.7
GASO 5,710 0.677 0.012 56.92 −27.18 0.362 3,240.1
HEAL 4,802 0.868 0.021 40.75 −6.22 0.257 1,660.6
HOUS 6,223 1.033 0.014 73.34 2.34 0.464 5,378.5
LIFE 1,253 0.607 0.047 13.00 −8.40 0.119 169.1
LOCT 692 0.510 0.055 9.29 −8.92 0.111 86.2
MAPP 399 0.817 0.033 9.87 −2.21 0.197 97.5
PERS 3,817 0.891 0.019 48.14 −5.88 0.378 2,317.3
READ 2,287 0.909 0.032 28.46 −2.84 0.262 809.9
SAPP 1,037 0.665 0.045 14.88 −7.49 0.176 221.3
TELE 5,788 0.710 0.012 58.30 −23.82 0.370 3,398.8
TEXT 992 0.629 0.046 13.72 −8.09 0.160 188.2
TOB 1,155 0.721 0.035 20.39 −7.87 0.265 415.8
TOYS 2,504 0.733 0.028 26.22 −9.57 0.216 687.5
TRIP 516 0.723 0.077 9.43 −3.60 0.147 88.9
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4.6. Answers to the additional exercises

A4.2

. reg LGFDHOPC LGEXPPC LGSIZE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 2, 6331) = 2410.79

Model | 1514.30728 2 757.15364 Prob> F = 0.0000

Residual | 1988.36473 6331 .314068035 R-squared = 0.4323

-----------+------------------------------ Adj R-squared = 0.4321

Total | 3502.67201 6333 .553082585 Root MSE = .56042

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .5842097 .0097174 60.12 0.000 .5651604 .6032591

LGSIZE | -.0814427 .0133333 -6.11 0.000 -.1075806 -.0553049

_cons | 1.158326 .0820119 14.12 0.000 .9975545 1.319097

----------------------------------------------------------------------------

The income elasticity, 0.58, is now a little lower than before. The size elasticity is
significantly negative, suggesting economies of scale and indicating that the model
in the previous exercise was misspecified.

The specification is equivalent to that in Exercise 4.5 in the text. Writing the latter
again as:

LGCAT = β1 + β2LGEXP + β3LGSIZE + u

we have:

LGCAT − LGSIZE = β1 + β2(LGEXP − LGSIZE ) + (β3 + β2 − 1)LGSIZE + u

and so:

LGCATPC = β1 + β2LGEXPPC + (β3 + β2 − 1)LGSIZE + u.

Note that the estimates of the income elasticity are identical to those in Exercise
4.5 in the text. This follows from the fact that the theoretical coefficient, β2, has
not been affected by the manipulation. The specification differs from that in
Exercise A4.1 in that we have not dropped the LGSIZE term and so we are not
imposing the restriction β3 + β2 − 1 = 0.
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4. Transformations of variables

Dependent variable LGCATPC
LGEXPPC LGSIZE

n β̂2 s.e.(β̂2) β̂3 s.e.(β̂3) R2 F RSS
ADM 2,815 1.080 0.033 −0.055 0.043 0.330 692.9 3,945.2
CLOT 4,500 0.842 0.024 0.146 0.032 0.240 710.1 5,766.1
DOM 1,661 0.941 0.054 0.415 0.075 0.157 154.6 4,062.5
EDUC 561 1.229 0.101 −0.437 0.139 0.311 125.9 1,380.1
ELEC 5,828 0.372 0.012 −0.362 0.017 0.359 1,627.8 2,636.3
FDAW 5,102 0.879 0.016 −0.213 0.022 0.461 2,176.6 3,369.1
FDHO 6,334 0.584 0.010 −0.081 0.013 0.432 2,410.8 1,988.4
FOOT 1,827 0.396 0.031 −0.560 0.042 0.281 356.1 1,373.5
FURN 487 0.807 0.103 −0.246 0.137 0.195 58.7 913.9
GASO 5,710 0.676 0.013 −0.004 0.018 0.362 1,691.8 2,879.3
HEAL 4,802 0.779 0.023 −0.306 0.031 0.272 894.6 6,062.5
HOUS 6,223 0.989 0.016 −0.140 0.021 0.467 2,729.5 4,825.6
LIFE 1,253 0.464 0.050 −0.461 0.065 0.154 113.4 1,559.2
LOCT 692 0.389 0.060 −0.396 0.086 0.138 54.9 1,075.1
MAPP 399 0.721 0.094 −0.264 0.123 0.206 51.5 576.8
PERS 3,817 0.824 0.020 −0.217 0.028 0.388 1,206.3 3,002.2
READ 2,287 0.764 0.034 −0.503 0.047 0.297 482.8 2,892.1
SAPP 1,037 0.467 0.048 −0.592 0.066 0.236 160.1 1,148.9
TELE 5,788 0.640 0.013 −0.222 0.018 0.386 1,816.3 3,055.1
TEXT 992 0.388 0.049 −0.713 0.067 0.246 161.0 1,032.9
TOB 1,155 0.563 0.037 −0.515 0.049 0.329 282.1 873.4
TOYS 2,504 0.638 0.031 −0.304 0.043 0.231 375.8 2,828.3
TRIP 516 0.681 0.083 −0.142 0.109 0.150 45.3 792.8

A4.3 A researcher is considering two regression specifications:

log Y = β1 + β2 logX + u (1)

and:

log
Y

X
= α1 + α2 logX + u (2)

where u is a disturbance term.

Determine whether (2) is a reparameterised or a restricted version of (1).

(2) may be rewritten:

log Y = α1 + (α2 + 1) logX + u

so it is a reparameterised version of (1) with β1 = α1 and β2 = α2 + 1.

Writing y = log Y , x = logX, and z = log Y
X

, and using the same sample of n
observations, the researcher fits the two specifications using OLS:

ŷ = β̂1 + β̂2x (3)

and:
ẑ = α̂1 + α̂2x. (4)
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4.6. Answers to the additional exercises

Using the expressions for the OLS regression coefficients, demonstrate that
β̂2 = α̂2 + 1.

α̂2 =

∑
(xi −x)(zi −z)∑

(xi −x)2
=

∑
(xi −x)([yi − xi]− [y−x])∑

(xi −x)2

=

∑
(xi −x)(yi −y)∑

(xi −x)2
−
∑

(xi −x)2∑
(xi −x)2

= β̂2 − 1.

Similarly, using the expressions for the OLS regression coefficients, demonstrate
that β̂1 = α̂1.

α̂1 = z− α̂2x= (y−x)− α̂2x= y− (α̂2 + 1)x= y− β̂2x= β̂1.

Hence demonstrate that the relationship between the fitted values of y, the fitted
values of z, and the actual values of x, is ŷi − xi = ẑi.

ẑi = α̂1 + α̂2xi = β̂1 + (β̂2 − 1)xi = β̂1 + β̂2xi − xi = ŷi − xi.

Hence show that the residuals for regression (3) are identical to those for (4).

Let ûi be the residual in (3) and v̂i the residual in (4). Then:

v̂i = zi − ẑi = yi − xi − (ŷi − xi) = yi − ŷi = ûi.

Hence show that the standard errors of β̂2 and α̂2 are the same.

The standard error of β̂2 is:

s.e.(β̂2) =

√∑
û2
i /(n− 2)∑
(xi −x)2

=

√∑
v̂2
i /(n− 2)∑
(xi −x)2

= s.e.(α̂2).

Determine the relationship between the t statistic for β̂2 and the t statistic for α̂2,
and give an intuitive explanation for the relationship.

tβ̂2 =
β̂2

s.e.(β̂2)
=

α̂2 + 1

s.e.(α̂2)
.

The t statistic for β̂2 is for the test of H0 : β2 = 0. Given the relationship, it is also
for the test of H0 : α2 = −1. The tests are equivalent since both of them reduce the
model to log Y depending only on an intercept and the disturbance term.

Explain whether R2 would be the same for the two regressions.

R2 will be different because it measures the proportion of the variance of the
dependent variable explained by the regression, and the dependent variables are
different.

A4.4 The proposed model:

SKILL = β1 + β2 log(EXP) + β3 log(EXP2) + u

cannot be fitted since:
log(EXP2) = 2 log(EXP)

and the specification is therefore subject to exact multicollinearity.
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4. Transformations of variables

A4.5 In (1) R2 is the proportion of the variance of Y explained by the regression. In (2)
it is the proportion of the variance of log Y explained by the regression. Thus,
although related, they are not directly comparable. In (1) RSS has dimension the
squared units of Y . In (2) it has dimension the squared units of log Y . Typically it
will be much lower in (2) because the logarithm of Y tends to be much smaller
than Y .

The specifications with the same dependent variable may be compared directly in
terms of RSS (or R2) and hence two of the specifications may be eliminated
immediately. The remaining two specifications should be compared after scaling,
with Y replaced by Y ∗ where Y ∗ is defined as Y divided by the geometric mean of
Y in the sample. RSS for the scaled regressions will then be comparable.

A4.6 The RSS comparisons for all the categories of expenditure indicate that the
logarithmic specification is overwhelmingly superior to the linear one. The
differences are actually surprisingly large and suggest that some other factor may
also be at work. One possibility is that the data contain many outliers, and these
do more damage to the fit in linear than in logarithmic specifications. To see this,
plot CATPC and EXPPC and compare with a plot of LGCATPC and LGEXPPC.
(Strictly speaking, you should control for SIZE and LGSIZE using the
Frisch–Waugh–Lovell method described in Chapter 3.)

The following Stata output gives the results of fitting the model for FDHO,
assuming that both the dependent variable and the explanatory variables are
subject to the Box–Cox transformation with the same value of λ. Iteration
messages have been deleted. The maximum likelihood estimate of λ is 0.10, so the
logarithmic specification is a better approximation than the linear specification.
The latter is very soundly rejected by the likelihood-ratio test.

. boxcox FDHOPC EXPPC SIZE if FDHO>0, model(lambda)

Number of obs = 6334

LR chi2(2) = 3592.55

Log likelihood = -41551.328 Prob > chi2 = 0.000

------------------------------------------------------------------------------

FDHOPC | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

/lambda | .1019402 .0117364 8.69 0.000 .0789372 .1249432

------------------------------------------------------------------------------

Estimates of scale-variant parameters

----------------------------

| Coef.

-------------+--------------

Notrans |

_cons | 2.292828

-------------+--------------

Trans |

EXPPC | .4608736

SIZE | -.1486856

-------------+--------------

/sigma | .9983288

----------------------------
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4.6. Answers to the additional exercises

---------------------------------------------------------

Test Restricted LR statistic P-value

H0: log likelihood chi2 Prob > chi2

---------------------------------------------------------

lambda = -1 -50942.835 18783.01 0.000

lambda = 0 -41590.144 77.63 0.000

lambda = 1 -44053.749 5004.84 0.000

---------------------------------------------------------

A4.7 Let the theoretical model for the regression be written:

LGEARN = β1 + β2S + β3EXP + β4ASVABC + β5SA + u.

The estimate of β4 is negative, at first sight suggesting that cognitive ability has an
adverse effect on earnings, contrary to common sense and previous results with
wage equations of this kind. However, rewriting the model as:

LGEARN = β1 + β2S + β3EXP + (β4 + β5S)ASVABC + u

it can be seen that, as a consequence of the inclusion of the interactive term, β4

represents the effect of a marginal year of schooling for an individual with no
schooling. Since no individual in the sample had fewer than 8 years of schooling,
the perverse sign of the estimate illustrates only the danger of extrapolating
outside the data range. It makes better sense to evaluate the implicit coefficient for
an individual with the mean years of schooling, 14.9. This is
(−0.2096 + 0.0189× 14.9) = 0.072, implying a much more plausible 7.2 per cent
increase in earnings for each standard deviation increase in cognitive ability. The
positive sign of the coefficient of SA suggests that schooling and cognitive ability
have mutually reinforcing effects on earnings.

One way of avoiding nonsense parameter estimates is to measure the variables in
question from their sample means. This has been done in the regression output
below, where S1 and ASVABC1 are schooling and ASVABC measured from their
sample means and SASVABC1 is their interaction. The coefficients of S and
ASVABC now provide estimates of their effects when the other variable is equal to
its sample mean.

. reg LGEARN S1 EXP ASVABC1 SASVABC1

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 4, 495) = 22.68

Model | 23.6368304 4 5.90920759 Prob > F = 0.0000

Residual | 128.962389 495 .260530079 R-squared = 0.1549

-----------+------------------------------ Adj R-squared = 0.1481

Total | 152.59922 499 .30581006 Root MSE = .51042

----------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

S1 | .0815188 .0116521 7.00 0.000 .0586252 .1044125

EXP | .0400506 .0096479 4.15 0.000 .0210948 .0590065

ASVABC1 | .0715084 .0298278 2.40 0.017 .0129036 .1301132

SASVABC1 | .0188685 .0093393 2.02 0.044 .0005189 .0372181

_cons | 2.544783 .0675566 37.67 0.000 2.41205 2.677516

----------------------------------------------------------------------------
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4. Transformations of variables

A4.8 In the first part of the output, WEIGHT11 is regressed on HEIGHT, using EAWE
Data Set 21. The predict command saves the fitted values from the most recent
regression, assigning them the variable name that follows the command, in this
case YHAT. YHATSQ is defined as the square of YHAT, and this is added to the
regression specification. Somewhat surprisingly, its coefficient is not significant. A
logarithmic regression of WEIGHT11 on HEIGHT yields an estimated elasticity of
2.05, significantly different from 1 at a high significance level. Multicollinearity is
responsible for the failure to detect nonlinearity hear. YHAT is very highly
correlated with HEIGHT.

. reg WEIGHT11 HEIGHT

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 1, 498) = 139.97

Model | 236642.736 1 236642.736 Prob > F = 0.0000

Residual | 841926.912 498 1690.61629 R-squared = 0.2194

-----------+------------------------------ Adj R-squared = 0.2178

Total | 1078569.65 499 2161.46222 Root MSE = 41.117

----------------------------------------------------------------------------

WEIGHT11 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

HEIGHT | 5.369246 .4538259 11.83 0.000 4.477597 6.260895

_cons | -184.7802 30.8406 -5.99 0.000 -245.3739 -124.1865

----------------------------------------------------------------------------

. predict YHAT

. gen YHATSQ = YHAT*YHAT

. reg WEIGHT11 HEIGHT YHATSQ

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 2, 497) = 70.33

Model | 237931.888 2 118965.944 Prob > F = 0.0000

Residual | 840637.76 497 1691.42407 R-squared = 0.2206

-----------+------------------------------ Adj R-squared = 0.2175

Total | 1078569.65 499 2161.46222 Root MSE = 41.127

----------------------------------------------------------------------------

WEIGHT11 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

HEIGHT | -.4995924 6.737741 -0.07 0.941 -13.73756 12.73837

YHATSQ | .0030233 .003463 0.87 0.383 -.0037807 .0098273

_cons | 114.5523 344.2538 0.33 0.739 -561.8199 790.9244

----------------------------------------------------------------------------
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