Solutions to End-of-Chapter Exercises Chapter 2

Fundamental constants & properties of nuclei			
$c = 2.997 \times 10^{8} \text{ m s}^{-1}$ $e = 1.602 \times 10^{-19} \text{ C}$ $k = 1.381 \times 10^{-23} \text{ J K}^{-1}$ $h = 6.626 \times 10^{-34} \text{ J s}$			
Mass Electron = 9.109 390 × 10 ⁻³¹ kg Proton = 1.672 622 × 10 ⁻²⁷ kg $\mu_0 = 4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1} (= \text{T}^2 \text{ J}^{-1} \text{ m}^3)$ $\mu_B = 9.274 \times 10^{-24} \text{ J T}^{-1}$ $\mu_N = 5.050 784 \times 10^{-27} \text{ J T}^{-1}$ $g_e = 2.0023 193 \text{ (electron } g \text{ factor)}$ $g_p = 5.585 694 7 \text{ (proton } g \text{ factor)}$			
$\gamma_{e} = 1.761 \times 10^{-4} \text{ s}^{-1}$ Properties for other common nuclei			
	$g_{ m N}$	ν_N / MHz	$\gamma / 10^7 \text{ s}^{-1} \text{ T}^{-1}$
¹ H	5.5857	14.9021	26.752
² H	0.8574	2.2876	4.107
^{13}C	1.4048	3.7479	6.728
14 N	0.4038	1.0772	1.934
³¹ P	2.2632	6.0380	10.839
$v_{\rm L}$ (in units of MHz) for $B = 0.35$ T			

Exercise 2.1) Calculate the *g* value of the resonance due to the unknown radical in Fig. 2.4. Assume a microwave frequency of 9.5 GHz and $g_{\text{DPPH}} = 2.0036$.

ANSWER

From the resonance equation given in eqn 2.9:

$$g = \frac{(6.626 \times 10^{-34} \text{ Js}) \times (9.5 \times 10^9 \text{ s}^{-1})}{(9.274 \times 10^{-24} \text{ JT}^{-1}) \times (3387 \times 10^{-4} \text{ T})} = 2.0040$$

Or using the reference expression $g = g_{ref} B_{ref} / B$ (see margin notes, page 10):

$$g = \frac{(2.0037) \times (338.745 \text{ mT})}{(338.700 \text{ mT})} = 2.0040$$

Exercise 2.2) Draw the energy level diagram for an unpaired electron interacting with a single nucleus of i) ¹⁴N, ii) ¹¹B, and iii) ¹⁵N. Assume the magnitude of the hyperfine interaction is much larger than the energy associated with the nuclear Zeeman interaction (i.e., $|a| >> g_N \mu_N B \cdot m_I$).

ANSWER

Exercise 2.3) In a magnetic field of 335 mT, calculate the polarization parameters for the operating temperatures of 4, 50 and 298 K.

ANSWER

From the polarization expression given in eqn 2.25, where B = 0.335 Tesla:

At 4K,
$$P = \frac{h\gamma B}{4\pi kT} = \frac{(6.626 \times 10^{-34} \text{ Js}) \times (1.761 \times 10^{11} \text{ s}^{-1} \text{ T}^{-1}) \times (0.335 \text{ T})}{4\pi \times (1.381 \times 10^{-23} \text{ JK}^{-1}) \times (4 \text{ K})} = 0.056$$

At 50K,
$$P = \frac{h\gamma B}{4\pi kT} = \frac{(6.626 \times 10^{-34} \text{ Js}) \times (1.761 \times 10^{11} \text{ s}^{-1} \text{T}^{-1}) \times (0.335 \text{ T})}{4\pi \times (1.381 \times 10^{-23} \text{ JK}^{-1}) \times (50 \text{ K})} = 0.0045$$

At 298K, $P = \frac{h\gamma B}{4\pi kT} = \frac{(6.626 \times 10^{-34} \text{ Js}) \times (1.761 \times 10^{11} \text{ s}^{-1} \text{T}^{-1}) \times (0.335 \text{ T})}{4\pi \times (1.381 \times 10^{-23} \text{ JK}^{-1}) \times (298 \text{ K})} = 0.000756$

Exercise 2.4) The isotropic hyperfine coupling of a 1 H atom is 50.69 mT. For an observed hyperfine coupling of 7.1 mT, calculate the electron spin density on a 1 H nucleus.

ANSWER

Electron spin density $=\frac{a_{\text{expt}}}{a_0} \times 100 = \frac{7.1 \text{ mT}}{50.69 \text{ mT}} \times 100 = 14\%$

Exercise 2.5) Using the classical expression for a magnetic moment ($\mu = IA$, where *I* is the effective current and *A* is the area of a circular orbit), show that the orbital magnetic moment of an electron can be described by:

$$\mu_L = \frac{e\hbar}{2m_e} \sqrt{l(l+1)}$$

ANSWER:

The orbital motion of an electron can be treated classically as a current loop of radius *r*. Thus the current around the loop (*I*) is the charge of the electron (*e*) divided by the time period for one cycle, $T = 2\pi r / v$ (where v is the linear speed of the electron) and $A = \pi r^2$. The magnitude of the resultant magnetic moment is thus given by:

$$\mu = IA = \frac{e}{2\pi r/v} \times \pi r^2 = \frac{e v r}{2}$$

Since orbital angular momentum is defined as L = mvr (for an electron $m = m_e$) we can write:

$$\mu_L = \frac{e}{2m_e} m_e \mathrm{v}r = \frac{e}{2m_e} L$$

If the quantization of the angular momentum is taken into consideration, then

$$\mu_L = \frac{e}{2m_e}L = \frac{e}{2m_e}\sqrt{l(l+1)}\hbar = \mu_B\sqrt{l(l+1)} \text{ (remember this has units of }\hbar\text{) where}$$

$$\mu_R = \frac{e\hbar}{2m_e}L$$

$$l_{\rm B} = \frac{1}{2m_{\rm e}}$$

