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Chapter 6 

Techniques of approximation 

All the following material © P.W. Atkins and R.S. Friedman. 

 

Exercises 
 
6.1 The first-order WKB wavefunction is given in eqn 6.6 in classically allowed regions (note  
 
      here that E >V since a and x are positive). With p(x) given by eqn 6.1b, 
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      The first-order WKB wavefunction is 
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6.2 The energies of a two-level system are given by eqn 6.15. Therefore, with all energies in  
 
       cm−1 units,  
 

േܧ ൌ
ଵ
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ଶ
ඥሺ10000 െ 5000ሻଶ  4 ൈ 500ଶ 

 
       yielding E+ = 10 049.51 cm−1  and  E− = 4950.49 cm−1.   
 
6.3 The wavefunction for the ground-state harmonic oscillator is given by 
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     The first-order energy correction, eqn 6.24, is 
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6.4 The second-order energy correction is given in eqn 6.30. Here, H(1) = a and H(2) = 0. The  
 
      ground-state wavefunction is given by 
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      and the v = 1 wavefunction by 
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     Since the wavefunctions are real, H01

(1) = H10
(1); the denominator of the v =1 contribution  

 
      to E(2) is (0 + ½) ħω − (1 + ½) ħω = −ħω. The matrix element H01

(1) is 
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      Therefore, the contribution to E(2) from v =1 is 
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6.5 As discussed in Section 6.3, to know the energy correct to order 2n + 1 in the  
 
      perturbation, it is sufficient to know the wavefunctions only to nth order in the  
 
      perturbation. Therefore, if the perturbed wavefunction is known to second order, the  
 
      energy is accurately known to 5th order.  
 
6.6 Following Example 6.5 in the text, we need to decide which matrix elements < s | y | n >  
 
      are non-zero. The function for a s-orbital (l = 0) is a component of the basis for Γ(0) and y  
 
      is likewise a component of the basis for Γ(1). Because Γ(0) × Γ(1) = Γ(1) by eqn 5.51, we can  
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     infer that only p-orbitals can be mixed into the ground state.  Furthermore, because the  
 
     perturbation is in the y-direction, only py can be mixed.   
 
6.7 The optimum form of the wavefunction corresponds to a minimum in the Rayleigh ratio.  
 
      Therefore, we seek the value of k such that the derivative of the Rayleigh ratio with  
 
      respect to k vanishes. 
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     and therefore 
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6.8 Use the Hellmann-Feynman theorem, eqn 6.48.  
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6.9 The probability of finding the system in state 2 for a degenerate two-level system is given  
 
      by eqn 6.64. Therefore, we should use this formula to find the time for which a  
 
      perturbation should be applied to result in P2(t) = 1/3, and then immediately extinguish  
 
      the perturbation: 
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      so 
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     The perturbation should be applied for this amount of time and then removed. 
 
6.10 The transition rate to a continuum of states is given by Fermi’s golden rule, eqn 6.84.  
 
        The molecular density of states here is 
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        Fermi’s golden rule then yields 
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ൌ 	2.24 ൈ 10ଵସsିଵ 

 
6.11 Use the lifetime broadening relation, eqn 6.97. 
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Problems 

6.1 First consider exp(+iS+(x)/ħ). Noting that  
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     we obtain upon substitution of exp(+iS+(x)/ħ) into eqn 6.1: 
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     After factoring out the common term of exp(+iS+(x)/ħ), we obtain 
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      which is eqn 6.3 for S+.  Next consider exp(−iS−(x)/ħ). Noting that  
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      we obtain upon substitution of exp(−iS−(x)/ħ) into eqn 6.1: 
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       After factoring out the common term of exp(−iS−(x)/ħ), we obtain 
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        which is eqn 6.3 for S−.  
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6.4 We begin with eqn 6.13 applied to the wavefunction ψ− and corresponding energy E−.  
 
      Therefore, from eqn 6.17a and eqn 6.15, 
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      Substitution into eqn 6.13 yields, with H11 = E1

(0), H22 = E2
(0), and H12 = H21 = | H12

(1)| eiφ 
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      Multiplication of the first of the equations by sin ζ and the second of the equations by   
 
      cos ζ produces 
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      Subtracting the top equation from the bottom equation and using the trigonometric  
 
      identities 
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      and therefore, since tan 2ζ = sin 2ζ / cos 2ζ, 
 



Atkins & Friedman: Molecular Quantum Mechanics 5e 
 

 

C06   p. 6 

tan	2ߞ	 ൌ
െ2ቚܪଵଶ

ሺଵሻ	ቚe୧ఝ

ଶܧ
ሺሻ െ ଵܧ

ሺሻ 	 

  
 
     If we now let φ = π so that eiφ = −1, we obtain eqn 6.17b. 
 
  

 6.7 H  (ħ2/2m)(d2/dx2)  mgx 

H(0)  (ħ2/2m)(d2/dx2);    H(1)  mgx 

E(1)  0H(1)0  mg x mgL2
1  

The first-order correction disregards the adjustment of the location of the particle in the 

gravitational field, so E(1) is the potential energy of a particle at its average height ( 2
1 L). 

For m  me, 

E(1)/L  2
1 mg  4.47  1030 J m1 

  
 
 

6.10 The first-order correction to the energy is given by eqn 6.24: 
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where the state 0 is the ground-state harmonic oscillator wavefunction of Section 2.14: 
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and the perturbation hamiltonian is 

H(1)  ax3  bx4 
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The following standard integrals will be useful: 
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We also use the result that if the function f(x) in the integrand is an even function of x, 

then 
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and if the function is odd, then 
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(a) The anharmonic perturbation is present for all values of x.  
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(b) The anharmonic perturbation is only present during bond expansion so H(1) 

vanishes for x  0. 
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(c) The anharmonic perturbation is only present during bond compression so H(1) 

vanishes for x  0. 

 )1(
0E    

 





 0 43

2/1
d)(e

π

22

xbxaxx
 

   
















5

2/1

42/1 8

π3

2π 
 ba

 

   

   3 1/2 4

3

2 π 8

a b

 
   

Exercise: Repeat the problem for the v  1 harmonic oscillator wavefunction. 

  

6.13 (a) x0 spans B1  A1  B1 in C2v; hence 1B  states are admixed. 

  (b) lx0 spans B2  A1  B2 in C2v; hence 2B  states are admixed. 

Exercise: : The symmetry of the ground state of ClO2 is 2B1. What symmetry species of 

excited states are admixed? 

  

6.16 H(1)   sin2 

Form the secular determinant by using  
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Consequently, E   4
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1   Find the coefficients from the secular 

equations and c12  c22  1 (or by intuition): 






















2/)(

2/)(

0)(

0)(

11

11

22
1

14
1

24
1

12
1

4
1

4
3








cEc

ccE
 

For the first-order energies we have E  4
3  and .4

1   If desired, check this as follows: 

 (1)
3/4,3/4H   (1) (1) (1) (1)1

1,1 1, 1 1, 1 1,12 ( )H H H H         4
3

2
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2
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1,1 1, 1 1, 1 1,12 ( )H H H H        0 
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This calculation confirms that H(1) is diagonal in the 
4
1

4
3 ,  basis, and that its 

eigenvalues are 4
3  and .4

1   

For the second-order energies we require the following matrix elements: 
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Both  linear combinations correspond to ml  1, and so for them E(0)  A. For the 
4
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[The ml  0 does not in fact make a contribution to the sum.] The energies to second 

order are therefore 

AAEAAE 128/,128/ 2
4
1

4/1
2

4
3

4/3    

Exercise: Find the first- and second-order energy corrections for a particle subject to 

H(1)   sin4. 

 

6.19 First, normalize the linear combinations to 1: 

   d)( 2
2a      d)s2sss(d)ss( CA

2
C

2
A2

12
CA2

1  

   1  SAC 

   d)( 2a   1  SAC 

Therefore, 

 2a   (sA  sC)/{2(1  SAC)}1/2 

 a  (sA  sC)/{2(1  SAC)}1/2 

Now construct the matrix elements of H: 

   d11 aHa    

   d22 aHa   )1(2/d)ss()ss( ACCACA SH    

   (  )/(1  SAC) 

  daHa   (  )/(1  SAC) 
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   d21 aHa     2/1
ACCAB )}1(2{/d)ss( SHs    {2/(1  SAC)}1/2 

   d21aa   {2/(1  SAC)}1/2SAB    [SAB  SBC] 

Hence, the 2  2 secular determinant is 
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SS
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Set   (SAC/SAB); then with SAB  0.723 and SAC  0.345, 

 det H  ES  
EE

EE




345.1/)477.0()723.0(219.1

)723.0(219.1




 

    0.223E2  (1.794  1.744)E

     (0.355  0.7442  1.4862) 

Therefore, we must solve 

E2  (8.045  7.821)E  (1.592  3.3362  6.6642)  0 

Write E/   and /  ; then 

2  (8.045  7.821)  (1.592  3.336  6.6642)  0 

  3.911  4.023  2{22.845   33.052  11.956} 

which can be plotted as a function of , Fig. 6.2. (The result from Problem 6.18,   1  

 2,  is also shown.) 



 

Figure 6

calculat

E

 

6.22  

  cf 

  

c2

A

6.2: The ene

ted in Probl

xercise: Inc

f (t)  (1/iħ)

2p(t)  (1/iħ)

Atkins & Fri

ergies calcu

lem 6.18. 

clude overla


t

tH
0

i(1)
fi e)( 

)2pzez1s 

edman: M

ulated in Pro

ap in the Ex

t tdfi     [eqn

p

0
( )e

t
t


 2 ,i
E

olecular Q
 

C06   p. 13
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Set E(t)  t; note that 2p,1s  4
3 hcRH/ħ  (3/2)cRH. For simplicity of notation, write  

 2p,1s 

 c2p(t)  (e/iħ)2pzz1s i

0
e d

t tt t  

   (e/iħ)2pzz1s{(t/i)eit  (1/2)(eit  1)} 

 c2p(t)2  (e/ħ)22pzz1s2(2/4){1  cos t  t sin t  2
1 2t2} 

Exercise: Find c2p(t)2 in the case where the perturbation is turned on quadratically (E 

 t2). 

 

6.25 We use eqn 6.87 for the rate of stimulated emission, taking the value of B from eqn 6.88 

and the density of states of the radiation field from eqn 6.92b. The transition dipole 

moment is calculated by using the hydrogen orbitals RnlYlml
 where the radial functions 

are listed in Table 3.4 and the spherical harmonics in Table 3.2; the transition frequency 

 is obtained from the energies in eqn 3.66. For the rate of spontaneous emission, use 

the relation between A and B in eqn 6.93. 

First consider the transition dipole moment z for the 3pz  2s transition. 

 z  
3 10

3p 2s 06

3 2
d*

5z
e z ea   

    

   1.769ea0  1.500  1029 C m 

Since the lower (2s) state of the atom is spherically symmetrical, the contributions for 

3px, 3py and 3pz are identical. Therefore 

2  x2  y2  z2  3  2
0

2131.3 ae   6.752  1058 C2 m2 
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The Einstein coefficient of stimulated emission is  

B  
2

2
06


 ħ

  1.143  1021 J1 m3 s2 

The frequency of the transition (with R the Rydberg constant) is 

  



  22 3

1

2

1
cR  4.567  1014 Hz 

and so it follows that 

A  
3

3π8

c

h
B  6.728  107 s1 

At 1000 K and for the transition frequency, 

rad  
1e

/π8
/

33

kTh

ch



  1.782  1023 J Hz1 m3 

It then follows that the rate of stimulated emission is Brad  2.036  102 s1 whereas 

that of spontaneous emission is A  6.728  107 s1. 

Exercise: Find the dependence on atomic number of the rates of stimulated and 

spontaneous emission for the 3p  2s transition in hydrogenic atoms at 1000 K. 

 

6.28 We use eqn 6.97 to estimate the lifetime  from the full width at half maximum, which 

we denote . The latter is converted from a wavenumber to an energy in joules by 

multiplication by hc; the full width as an energy in joules is then identified with E. 

  



cE π2

1

)(
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(a)   (2  2.9979  1010 cm s1  0.010 cm1)1  5.3  1010 s  530 ps 

(b)   (2  2.9979  1010 cm s1  1.5 cm1)1  3.5  1012 s  3.5 ps 

(c)   (2  2.9979  1010 cm s1  40 cm1)1  13  1014 s  130 fs 

Exercise: What is the full width of the spectral peak if the lifetime of the upper state is 

1.0 s? 


