Chapter 5

Group theory

All the following material © P.W. Atkins and R.S. Friedman.

Exercises

- **5.1** (a) E, σ_h , $2C_3$, $2S_3$, $3C_2$, $3\sigma_v$;
 - **(b)** *E*, *C*₂, $\sigma_{\rm v}$, $\sigma'_{\rm v}$;
 - (c) E, $2C_6$, $2C_3$, C_2 , $3C_2$ ', $3C_2$ ", i, $2S_3$, $2S_6$, $3C_2$, σ_h , $3\sigma_d$, $3\sigma_v$.
- **5.2 (a)** *E*, *C*₂(*z*), *C*₂(*y*), *C*₂(*x*), *i*, $\sigma(xy)$, $\sigma(xz)$, $\sigma(yz)$;
 - **(b)** *E*, *C*₂, *i*, $\sigma_{\rm h}$;
 - (c) E, C_2, i, σ_h .
- **5.3 (a)** D_{3h} , (b) C_{2v} , (c) D_{6h} .
- **5.4 (a)** D_{2h} (b) C_{2h} (c) C_{2h} .
- **5.5** (a) H₂O: $E, C_2, 2\sigma_v$; hence C_{2v} .
 - **(b)** CO₂: $E, C_{\infty}, C_2 \perp C_{\infty}, \sigma_h$; hence $D_{\infty h}$
 - (c) C₂H₄: *E*, C₂, 2C'₂ \perp C₂, σ_h ; hence D_{2h}
 - (d) *cis*-ClHC=CHCl: *E*, C_2 , $2\sigma_v$; hence C_{2v}
- **5.6** (a) *trans*-ClHC=CHCl: E, C_2, σ_h ; hence C_{2h}
 - (**b**) Benzene: $E, C_6, 6C'_2, \sigma_h$; hence \underline{D}_{6h}
 - (c) Naphthalene: $E, C_2, 2C'_2, \sigma_h$; hence D_{2h}

(d) CHClFBr: <i>E</i> ; hence $\underline{C_1}$									
(e) B(OH) ₃ : E, C_3, σ_h ; hence $\underline{C_{3h}}$									
Exercise: Classify chlorobenzene, anthracene, H_2O_2 , S_8									
5.7 (a) PF_5 (pentagonal pyramid), corannulene $C_{20}H_{10}$,									
(b) all cis -C ₅ H ₅ F ₅ (planar), (c) Fe(C ₅ H ₅) ₂ (staggered).									
5.8 T_d : CH ₄ ; O_h : SF ₆ ; <i>I</i> : C ₆₀ .									
5.9 (a) The group multiplication table for C_s is as follows:									
First:		Ε		σ					
Second	:								
Ε		Ε		σ					
σ		σ		Ε					
(b) The group multiplication table for D_2 is as follows:									
First:	E	$C_2(z)$	$C_2(y)$	$C_2(x)$					
Second:									
E	E	$C_2(z)$	$C_2(y)$	$C_2(x)$					
$C_2(z)$	$C_2(z)$	Ε	$C_2(x)$	$C_2(y)$					
$C_2(y)$	$C_2(y)$	$C_2(x)$	Ε	$C_2(z)$					
$C_2(x)$	$C_2(x)$	$C_2(y)$	$C_2(z)$	E					

5.10 We need to confirm that (RS)T = R(ST) for all elements *R*, *S* and *T* that appear in the group multiplication table for C_{2v} in Example 5.2.

 $(EC_2)\sigma_v = C_2\sigma_v = \sigma'_v = E(C_2\sigma_v)$ $(EC_2)\sigma'_v = C_2\sigma'_v = \sigma_v = E(C_2\sigma'_v)$ $(E\sigma_v)C_2 = \sigma_vC_2 = \sigma'_v = E(\sigma_vC_2)$ $(E\sigma_v)\sigma'_v = \sigma_v\sigma'_v = C_2 = E(\sigma_v\sigma'_v)$ $(E\sigma'_v)C_2 = \sigma'_vC_2 = \sigma_v = E(\sigma'_vC_2)$ $(E\sigma'_v)\sigma_v = \sigma'_v\sigma_v = C_2 = E(\sigma'_v\sigma_v)$ $(C_2\sigma_v)E = \sigma'_vE = \sigma'_v = C_2(\sigma_vE)$ $(C_2\sigma_v)F = \sigma_vE = \sigma_v = C_2(\sigma_v\sigma'_v)$ $(C_2\sigma'_v)E = \sigma_vE = \sigma_v = C_2(\sigma'_v\sigma_v)$ $(\sigma_v\sigma'_v)E = C_2E = C_2 = \sigma_v(\sigma'_vE)$ $(\sigma_v\sigma'_v)C_2 = C_2C_2 = E = \sigma_v(\sigma'_vC_2)$

Since the elements commute in the group C_{2v} , if (RS)T = R(ST), then (SR)T = S(RT). For example:

$$(\sigma'_{v}\sigma_{v})C_{2} = (\sigma_{v}\sigma'_{v})C_{2} = \sigma_{v}(\sigma'_{v}C_{2}) = \sigma_{v}(C_{2}\sigma'_{v}) = (\sigma_{v}C_{2})\sigma'_{v} = \sigma'_{v}(\sigma_{v}C_{2})$$

Exercise: Confirm that the elements in the C_{3v} group multiplication table of Table 5.2 multiply associatively.

5.11 Write $f = (H1s_A, H1s_B, O2s, O2p_x, O2p_y, O2p_z)$; then Ef = f = f1; hence D(E) = 1, the 6

 \times 6 unit matrix.

$$C_{2}f = (\text{H1s}_{\text{B}}, \text{H1s}_{\text{A}}, \text{O2s}, -\text{O2p}_{x}, -\text{O2p}_{y}, \text{O2p}_{z})$$
$$= f \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = f\mathcal{D}(C_{2})$$

 $\sigma_{\mathbf{y}} \mathbf{f} = (\text{H1s}_{\text{B}}, \text{H1s}_{\text{A}}, \text{O2s}, \text{O2p}_{x}, -\text{O2p}_{y}, \text{O2p}_{z})$

$$= f \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = f \mathcal{D}(\sigma_{v})$$

 $\sigma'_{v} f = (H1s_A, H1s_B, O2s, -O2p_x, O2p_y, O2p_z)$

$$= f \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = f \mathcal{D}(\sigma_{v}')$$

Exercise: Replace the p-orbitals by d-orbitals, and find the matrix representation.

5.12

Atkins & Friedman: Molecular Quantum Mechanics 5e

$$\boldsymbol{D}(C_2)\boldsymbol{D}(C_2) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \boldsymbol{D}(E); \text{ reproducing } C_2^2 = E$$
$$\boldsymbol{D}(\sigma_v)\boldsymbol{D}(C_2) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \boldsymbol{D}(\sigma_v'); \text{ reproducing } \sigma_v C_2 = \sigma_v'$$

Exercise: Confirm these multiplications for the representatives constructed using d-orbitals.

5.13 Denote $s_1 + s_2$ as s' and $s_1 - s_2$ as s". Since

$$(s', s'', 02s, 02p_x, 02p_y, 02p_z) = (s_1, s_2, 02s, 02p_x, 02p_y, 02p_z) \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

the matrix *c* is given by
$$\boldsymbol{c} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

with an inverse given by

$$\boldsymbol{c}^{-1} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 1/2 & -1/2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

5.14 The representatives for C_2 and σ_v in the basis (H1s_A, H1s_B, O2s, O2p_x, O2p_y, O2p_z) are given in Exercise 5.11 and denoted $D(C_2)$ and $D(\sigma_v)$, respectively. The representatives in the new basis are given by $c^{-1} D(C_2)c$ and $c^{-1} D(\sigma_v)c$:

$$\boldsymbol{D}'(\sigma_{\rm v}) = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 1/2 & -1/2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- 5.15 *H* has the full symmetry of the system [definition of symmetry operation], and so it is a basis for A₁ or the equivalent totally symmetric irreducible representation. Therefore, ψ'Hψ spans Γ' × Γ if ψ' spans Γ' and ψ spans Γ. But Γ' × Γ contains A₁ only if Γ' = Γ. Therefore, the integral vanishes when ψ' and ψ belong to different symmetry species.
 Exercise: Under what circumstances may a molecule possess a permanent electric dipole moment?
- **5.16** The point group of a regular tetrahedron is T_d : three-dimensional irreducible representations are allowed; therefore the maximum degeneracy is <u>3</u>. (Accidental degeneracies could increase this number.)

Exercise: What is the maximum degeneracy of molecular obitals of (a) benzene, (b) anthracene, (c) an icosahedral molecule?

5.17
$$\chi(C_{120^\circ}) = \sin(\frac{3}{2} \times 120^\circ)/\sin 60^\circ = 0; \ \chi(E) = 3$$

 $\chi(\sigma_v) = 1$ [because $p_y \to -p_y, p_x \to p_x, p_z \to p_z$]

The characters for $(E, 2C_3, 3\sigma_v)$ are therefore (3,0,1). Therefore, the orbitals span

 $A_1 + E$.

Exercise: What symmetry species would be spanned if the p-orbitals were replaced by (a) f-orbitals, (b) g-orbitals?

5.18 Carbon dioxide is of point group D_{∞h}. The initial wavefunction is assumed to be of symmetry Σ⁻_u (or A_{2u}); from the character table in Resource section 1, z spans Σ⁺_u (or A_{1u}). By inspection of the character table,

$$A_{2u} \times A_{1u} = A_{2g}$$

Therefore, the symmetry of the excited state must be Σ_g^- (or A_{2g}).

Exercise: Repeat for *y*-polarized radiation.

5.19 We need to show that there is a symmetry transformation of the group that transforms

 C_3^+ into C_3^- . There are three C_2 rotation axes in the point group D₃, each of which is its

own inverse. For any of these C_2 axes, the joint operation $C_2^{-1}C_3^+C_2$ yields C_3^- .

Problems

5.1 The sums of the diagonal elements in the matrices in Exercise 5.11 are

$$\chi(E) = 6, \ \chi(C_2) = 0, \ \chi(\sigma_v) = 2, \ \chi(\sigma'_v) = 4$$

Use eqn 5.22 in the form

$$a_{l} = (1/4) \{ 6\chi^{(l)}(E) + 0 + 2\chi^{(l)}(\sigma_{v}) + 4\chi^{(l)}(\sigma'_{v}) \}$$

Then

$$a(A_1) = \frac{1}{4} \{ 6 + 0 + 2 + 4 \} = 3 \ a(A_2) = \frac{1}{4} \{ 6 + 0 - 2 - 4 \} = 0$$
$$a(B_1) = \frac{1}{4} \{ 6 - 0 + 2 - 4 \} = 1 \ a(B_2) = \frac{1}{4} \{ 6 - 0 - 2 + 4 \} = 2$$

Hence, the reduction is into $3A_1 + B_1 + 2B_2$

Draw up the following Table:

	H1s _A	H1s _B	O2s	O2p _x	O2p _y	O2p _z
Ε	H1s _A	H1s _B	O2s	O2p _x	O2p _y	O2pz
C_2	H1s _B	H1s _A	O2s	$-O2p_x$	–O2p _y	O2p _z
$\sigma_{\!\scriptscriptstyle \mathcal{V}}$	H1s _B	H1s _A	O2s	$O2p_x$	–O2p _y	O2pz
σ'_v	H1s _A	H1s _B	O2s	$-O2p_x$	O2p _y	O2pz

Form $f^{(A_1)}$ by using $p^{(A_1)} = \frac{1}{4} \sum_R \chi^{(A_1)}(R)R$. From column 1,

$$f^{(A_1)} = \frac{1}{4} \{H1s_A + H1s_B + H1s_B + H1s_A\} = \frac{1}{2} \{H1s_A + H1s_B\}$$

From column 2, find the same. From column 3, $f^{(A_1)} = O2s$, from columns 4 and 5 obtain 0. From column 6, $f^{(A_1)} = O2p_z$. Hence

$$\boldsymbol{f}^{(\mathrm{A}_{1})} = \{\frac{1}{2}(\mathrm{H1}\boldsymbol{s}_{\mathrm{A}} + \mathrm{H1}\boldsymbol{s}_{\mathrm{B}}), \mathrm{O2s}, \mathrm{O2p}_{z}\}$$

Form $f^{(B_1)}$: only column 4 gives a non-zero quantity.

$$\boldsymbol{f}^{(\mathrm{B}_{1})}=\mathrm{O2p}_{x}$$

Form $f^{(B_2)}$: columns 3,4,6 give zero; columns 1,2, and 5 give

$$\boldsymbol{f}^{(\mathrm{B}_2)} = \{\frac{1}{2}(\mathrm{Hls}_{\mathrm{B}} - \mathrm{Hls}_{\mathrm{A}}), \mathrm{O2p}_{y}\}$$

Only $f_1^{(A_1)}$ and $f_1^{(B_2)}$ involve linear combinations; the matrix of coefficients (Section 5.6) is therefore given by

$$\{\frac{1}{2}(H1s_{A} + H1s_{B}), \frac{1}{2}(H1s_{B} - H1s_{A}), O2s, O2p_{x}, O2p_{y}, O2p_{z}\}$$

$$= \{H1s_{A}, H1s_{B}, O2s, O2p_{x}, O2p_{y}, O2p_{z}\} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0\\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Consequently,

$$\boldsymbol{c} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0\\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \boldsymbol{c}^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0\\ -1 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Then, from eqn 5.7b, showing only the H1s-combinations:

$$\boldsymbol{D}'(\mathbf{E}) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\boldsymbol{D}'(\mathbf{C}_2) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\boldsymbol{D}'(\sigma_{\rm v}) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\boldsymbol{D}'(\sigma_{\rm v}') = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Because these matrices are diagonal (and therefore also block-diagonal), and the remainder of D(R) are already diagonal, the entire representation is (block-) diagonal. **Exercise:** Consider a representation using the basis (p_x , p_y , p_z) on each atom in a C_{2v} AB₂ molecule. Find the representatives, the symmetry-adapted combinations, and the block-diagonal representations.

5.4

 $D(C_{3}^{+}(A))D(C_{3}^{-}(A))$

 $= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = D(E)$ $D(S_4^+(AC))D(C_3^-(B))$ $= \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = D(S_4^-(CD))$ $D(S_4^+(AC))D(C_3^-(C))$ $= \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = D(\sigma_{d}(AB))$

Exercise: Check three of the group multiplications for the representation developed in the *Exercise* accompanying problem 5.2.

5.7 (a)
$$\chi(A_2) \times \chi(B_1) \times \chi(B_2)$$

= (1, 1, -1, -1) × (1, -1, 1, -1) × (1, -1, -1, 1) = (1, 1, 1, 1) = $\chi(A_1)$
therefore, $A_2 \times B_1 \times B_2 = A_1$ in C_{2v}
(b) $\chi(A_1) \times \chi(A_2) \times \chi(E)$
= (1, 1, 1) × (1, 1, -1) × (2, -1, 0) = (2, -1, 0) = $\chi(E)$;
therefore, $A_1 \times A_2 \times E = E$ in C_{3v}
(c) $\chi(B_2) \times \chi(E_1) = (1, -1, 1, -1, 1, -1) \times (2, -2, -1, 1, 0, 0)$
= (2, 2, -1, -1, 0, 0) = $\chi(E_2)$
therefore, $B_2 \times E_1 = E_2$ in C_{6v}
(d) $\chi(E_1) \times \chi(E_1) = (2, 2 \cos \phi, 0) \times (2, 2 \cos \phi, 0)$
= (4, 4 cos² ϕ , 0) = (4, 2 + 2 cos 2 ϕ , 0)
= $\chi(A_1) + \chi(A_2) + \chi(E_2)$
therefore, $E_1 \times E_1 = A_1 + A_2 + E_2$ in C_{av}
(Alternatively: $\Pi \times \Pi = \Sigma^+ + \Sigma^- + \Delta$)
(e) $\chi(T_1) \times \chi(T_2) \times \chi(E)$
= (3, 0, -1, -1, 1) × (3, 0, -1, 1, -1) × (2, -1, 2, 0, 0) = (18, 0, 2, 0, 0)
Decompose this using $a_l = (1/24) \{18 \chi^{(l)}(E) + 6\chi^{(l)}(C_2)\}$ [eqn 5.23].
 $a(A_1) = (1/24) \{18 + 6\} = 1$ $a(A_2) = (1/24) \{18 + 6\} = 1$

$$a(E) = (1/24)\{36 + 12\} = 2$$

 $a(T_1) = (1/24)\{54 - 6\} = 2$ $a(T_2) = (1/24)\{54 - 6\} = 2$

Therefore,

$$\mathbf{T}_1 \times \mathbf{T}_2 \times \mathbf{E} = \mathbf{A}_1 + \mathbf{A}_2 + 2\mathbf{E} + 2\mathbf{T}_1 + 2\mathbf{T}_2 \text{ in } O$$

Exercise: Analyse the following direct products: $E \times E \times A_2$ in C_{3v} , $A_{2u} \times E_{1u}$ in D_{6h} , and $T_{1g}^2 \times T_{2g}^2 \times E_u$ in O_h .

5.10 (a)

 $a_1^2b_1b_2$: $A_1 \times A_1 \times B_1 \times B_2 = B_1 \times B_2 = A_2$; $\underline{}^1A_2$ and 3A_2 may arise.

- (b) (i) $a_2e: A_2 \times E = E; \frac{1}{E} \text{ and } \frac{3}{E} \text{ may arise.}$
 - (ii) $e^2 : E \times E = A_1 + [A_2] + E; \underline{A_1, A_2, E}$ may arise.

(c) (i)
$$a_2e: A_2 \times E = E; \frac{1}{E} \text{ and } \frac{3}{E} \text{ may arise.}$$

- (ii) $et_1: E \times T_1 = T_1 + T_2; \frac{1}{T_1, 3}T_1, T_2, \text{ and } 3T_2 \text{ may arise.}$
- (iii) $t_1t_2: T_1 \times T_2 = A_2 + E + T_1 + T_2; \ \underline{}^1A_2, \underline{}^3A_2, \underline{}^1E, \underline{}^3E, \underline{}^1T_1, \underline{}^3T_1, \underline{}^1T_2, \text{ and } \underline{}^3T_2 \text{ may}$ arise.
- (v) t_2^2 : $T_2 \times T_2 = A_1 + E + [T_1] + T_2$; $\frac{{}^1A_1, {}^1E, {}^3T_1, \text{ and } {}^1T_2}{M_1, {}^1E, {}^2T_1, {}^1E, {}^2T_1, {}^1E, {$
- (d) (i) $e^2: E \times E = A_1 + [A_2] + E; \frac{{}^1A_1, {}^3A_2, \text{ and } {}^1E}{A_1, {}^2A_2, {}^$
 - (ii) et₁: E × T₁ = T₁ + T₂; $\frac{1}{T_1}, \frac{3}{T_1}, \frac{1}{T_2}, \text{ and } \frac{3}{T_2}$ may arise.
 - (iii) $t_2^2 : T_2 \times T_2 = A_1 + E + [T_1] + T_2; \frac{{}^1A_1, {}^1E, {}^3T_1, \text{ and } {}^1T_2}{M_1, {}^1E, {}^2T_1, {}^1E, {}^2T_1, {}^1E, {}^1E_1, {}^1E_1$

Exercise: Classify the term that may arise from d^2 in R_3 , $\sigma^1 \pi^1$ in $C_{\infty v}$, π^2 in $D_{\infty h}$, $e_g^1 t_{1u}^1$ in O_h , and e_{1g}^2 in D_{6h} .

5.13 (a) In C_{2v} translations span $A_1 + B_1 + B_2$; hence a 2A_1 term may make a transition to $A_1 \times {}^2A_1 = {}^2A_1$, $B_1 \times {}^2A_1 = {}^2B_1$, and $B_2 \times {}^2A_1 = {}^2B_2$ and a 2B_1 term may make transitions to $A_1 \times {}^2B_1 = {}^2B_1$, $B_1 \times {}^2B_1 = {}^2A_1$, and $B_2 \times {}^2B_1 = {}^2A_2$. In $D_{\infty h}$, translations span $\Sigma_u^+ + \Pi_u$. Therefore, because $\Sigma_u^+ \times \Sigma_g^- = \Sigma_u^-$ and $\Pi_u \times \Sigma_g^- = \Pi_u$, transitions to ${}^3\Sigma_u^-$ and ${}^3\Pi_u$ are allowed.

(b) In C_{2v} rotations span $A_2 + B_1 + B_2$. Then, because $A_1 \times (A_2 + B_1 + B_2) = A_2 + B_1 + B_2$, transitions to 2A_2 , 2B_1 , and 2B_2 are allowed for NO₂. Because $B_1 \times (A_2 + B_1 + B_2) = B_2 + A_1 + A_2$, transitions to 2B_2 , 2A_1 , and 2A_2 are allowed for ClO₂. In $D_{\infty h}$, rotations transform as $\Sigma_g^- + \Pi_g$, and because $\Sigma_g^- \times (\Sigma_g^- + \Pi_g) = \Sigma_g^+ + \Pi_g$, transitions to ${}^3\Sigma_g^+$ and ${}^3\Pi_g$ are allowed in O₂.

Exercise: What electric and magnetic dipole transitions may take place from the E_{1g} , E_{2u} , and B_{2g} terms of benzene?

5.16 For an f orbital, l = 3. We calculate the characters from eqn 5.47b with l = 3. (a) For a C_{3v} environment, we only consider the symmetry operations *E* and C_3 for which angles α can be identified. This is equivalent to working in the rotational subgroup C_3 . For *E*, $\alpha = 0$ and $\chi = 7$; for C_3 , $\alpha = 2\pi/3$ and $\chi = 1$. We now use eqn 5.23 with h = 6and find a(E) = 2. We can use h = 6 because the character for σ_v is zero for the irreducible representation E. However, since the characters for σ_v are nonzero for the irreducible representations A₁ and A₂, we must revert to using the rotational subgroup C₃. In this case the angles are $\alpha = 0$ for E, $\alpha = 2\pi/3$ for C₃ and $\alpha = 4\pi/3$ for C₃²; this yields characters (7, 1, 1) for (E, C₃, C₃²) and use of eqn 5.23 with h = 3 (the order of the group C₃) yields a(A) = 3. Therefore, the symmetry species are 3A + 2E. (b) For a T_d environment, we only consider the symmetry operations E, C₂ and C₃ for which angles α can be identified. Therefore we work in the rotational subgroup T. For E, $\alpha =$ 0 and $\chi = 7$; for C₃, $\alpha = 2\pi/3$ and $\chi = 1$; for C₃², $\alpha = 4\pi/3$ and $\chi = 1$; and for C₂, $\alpha = \pi$ and $\chi = -1$. We now use eqn 5.23 with h = 12 (for group T) and find a(A) = 1 and a(T) = 2. Therefore, the symmetry species are A + 2T.

5.19 We have shown in Section 5.18 that the difference between two infinitesimal rotations is equivalent to a single infinitesimal rotation and that the reverse argument implies the angular momentum commutation rules. We show here that the commutation relation $[l_x, l_y] = i\hbar l_z$ and the definition of angular momentum in terms of position and linear momentum operators implies the fundamental quantum mechanical commutation rule $[q, p_q] = i\hbar$ and, as a result, the latter commutation rule can be considered a manifestation of three-dimensional space. We begin by expanding $[l_x, l_y]$: $[l_x, l_y] = [yp_z - zp_y, zp_x - xp_z]$

$$= [yp_{z}, zp_{x}] - [yp_{z}, xp_{z}] - [zp_{y}, zp_{x}] + [zp_{y}, xp_{z}]$$

$$= yp_{z}zp_{x} - zp_{x}yp_{z} - (yp_{z}xp_{z} - xp_{z}yp_{z}) - (zp_{y}zp_{x} - zp_{x}zp_{y}) + (zp_{y}xp_{z} - xp_{z}zp_{y})$$

$$= yp_{x}[p_{z}, z] - 0 - 0 + xp_{y}[z, p_{z}]$$

 $= [z, p_z] \{xp_y - yp_x\}$

Since $l_z = xp_y - yp_x$, the relation $[l_x, l_y] = i\hbar l_z$ immediately implies that $[z, p_z] = i\hbar$, the fundamental quantum mechanical selection rule.