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Chapter 2 

Linear motion and the harmonic 
oscillator 

All the following material © P.W. Atkins and R.S. Friedman. 

Exercises  

2.1  For the energy in (a) use E  eV. 

(a) k  (2meeV/ħ2)1/2  (5.123  109 m1)  (V/Volt)1/2. 

 (i) V  1.0 V; k  5.123  109 m1  5.123 nm1; 

  (x)  A exp{5.123 i(x/nm)}, A  1/L1/2, L  . 

 (ii) V  10 kV; k  5.123  1011 m1  0.5123 pm1; 

  (x)  A exp{0.5123 i(x/pm)} 

(b) Because p  (1.0 g)  (10 m s1)  1.0  102 kg m s1, 

 k  p/ħ[eqn 2.7]  9.48  1031 m1; hence 

(x)  A exp{9.48i  1031(x/m)} 

Exercise: What value of V is needed to accelerate an electron so that its wavelength is 

equal to its Compton wavelength? 

2.2 In each case (x)2  A2, a constant (A2  1/L; L  ) 

2.3    Substituting eqn 2.5 for ψ in eqn 2.4 yields: 

െ
ଶ

2݉
dଶ

dݔଶ
൫ܣe୧௫  eି୧௫൯ܤ	 ൌ

ଶ݇ଶ

2݉
൫ܣe୧௫   	eି୧௫൯ܤ	

 
confirming that the wavefunction is an eigenfunction with eigenvalue ħ2k2/2m. The  



Atkins & Friedman: Molecular Quantum Mechanics 5e 
 

 

C02   p. 2 

 
relation between k and E given in eqn 2.5 then follows. Similar substitution of eqn 2.6 for  
 
ψ in eqn 2.4 yields: 
 

െ
ଶ

2݉
dଶ

dݔଶ
ሺܥcos݇ݔ  ሻݔsin݇ܦ ൌ

ଶ݇ଶ

2݉
ሺܥcos݇ݔ   ሻݔsin݇ܦ

 
and the wavefunction is seen to satisfy eqn 2.4.  
 

2.4 The flux density for the wavefunction A sinkx is, using eqn 2.11,  
 

ሻݔsin݇ܣሺ	௫ܬ ൌ
1
2݉

൬
݇
i
ݔcos݇ܣݔsin݇∗ܣ 	

݇
െi

൰ݔcos݇∗ܣݔsin݇ܣ ൌ 0 

 
2.5  Use the expression as given in the brief illustration in Section 2.7 for the penetration  

depth 1/κ: 
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Solving for the kinetic energy yields E = 1.76 eV. 
 

2.6 The transmission probability is given in eqn 2.26. Using the Worksheet entitled Equation  
 

2.26 on the text’s website and setting 
 

 m = me (so that m/me=1)  
 
E = V0 = 2.0 eV (so that E/Eh = V0/Eh = 0.073499) 
 
 β = 1.0 × 1010 m−1 (so that β/(1/a0) = 0.529177)  
 
yields T = 6.361 × 10−1. 

2.7   4  (2/L)1/2 sin(4x/L)  0 when x  ,,,,,0 4
3

2
1

4
1 LLLL  of which the central three are 

nodes. 

Exercise: Repeat the question for n  6. 

2.8  To show that the n = 1 and  n = 2 wavefunctions for a particle in a box are  
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orthogonal, we must evaluate the integral  

 
 

නඨ
2
ܮ
sin ቀ

πݔ
ܮ
ቁ





ඨ
2
ܮ
sin ൬

2πݔ
ܮ
൰ dݔ ൌ 0	 

 
The integral can be evaluated using mathematical software or standard integration tables  
 
and does indeed vanish. 
 

2.9 The wavefunction for a particle in a geometrically square two-dimensional box of length  
 
L is given by (see eqn 2.35) 
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(a) Nodes correspond to points where the wavefunction passes through zero. For (i)  
 
n1 = 2, n2 = 1, this occurs at points (x,y) such that  x = L/2. For (ii) n1 = 3, n2 = 2,  
 
this occurs at points (x,y) such that  x = L/3 or 2L/3 and at points (x,y) such that  y  
 
= L/2.  
 

(b) Maxima in the probability densities occur where ψ2 is maximized. For (i) n1 = 2,  
 
n2 = 1, this occurs at points (x,y) such that  x = L/4 or 3L/4 and y = L/2. For (ii) n1  
 
= 3, n2 = 2, this occurs at points (x,y) such that  x = L/6, L/2 or 5L/6 and y = L/4 or  
 
3L/4. 
 

2.10 The energy of a particle in a three-dimensional cubic box is given by: 

 ,2,1,2,1,2,1
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The lowest energy level corresponds to (n1 = n2 = n3 = 1) and equals 3h2/8mL2. Three  
 
times this energy, that is 9h2/8mL2, can be achieved with the following sets of  
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quantum numbers: 
 
 (n1 = 2, n2 = 2, n3 = 1) 

(n1 = 2, n2 = 1, n3 = 2) 
(n1 = 1, n2 = 2, n3 = 2) 

 
Therefore the degeneracy of the energy level is 3.  
 

2.11 The harmonic oscillator wavefunction is given in eqn 2.41. Nodes correspond to those  
 

points x such that the Hermite polynomial Hv(αx) vanishes. Using Table 2.1, we seek  
 

values of z = αx such that 4z2 – 2 = 0. This equation is satisfied by 
 

ݖ ൌ േඨ
1
2

 

         
and therefore x = α/√2 and x = −α/√2. 

 
2.12 The energy levels of the harmonic oscillator are given by 2.40. The separation  

 
between neighboring vibrational energy levels v and v +1  is given by 

 

Δܧ ൌ ߱ ൌ ඨ
݇
݉
ൌ 1.055 ൈ 10ିଷସJs ൈ ඨ

275	Nmିଵ

1.33 ൈ 10ିଶହkg
ൌ 4.797 ൈ 10ିଶଵJ 

 
Equating this with the photon energy hc/λ yields a wavelength of 4.14 × 10−5 m and a  

 
corresponding wavenumber of 1/(4.14 × 10−3 cm) = 241 cm−1. 

 
 

Problems 

 

2.1  See Fig. 2.1. 

 



 

 

 

E

pa

  

 

 2.4 Fr

A

Figure 2.1: 

xercise: Sk

arabolic we

rom eqns 2.

Atkins & Fri

The wavefu

ketch the gen

lls separated

.12 and 2.13

edman: M

function in t

neral form o

d and surrou

3, 

olecular Q
 

C02   p. 5

the presence

of the wave

unded by re

Quantum M

e of various

efunction fo

egions of co

echanics 5

s potentials. 

r a potentia

onstant pote

5e 

 

 

al with two 

ential. 



Atkins & Friedman: Molecular Quantum Mechanics 5e 
 

 

C02   p. 6 

 (x, t)   





kk

kkk kmtkkxABktxkg 2
1

2
1

d}2/iiexp{d),()( 2 

 (x, 0)  AB 




kk

kk
kkx2

1

2
1

d}iexp{  

   (AB/ix) 1 1
2 2

i( ) i( )
e e

k k x k k x     

   (ABeikx/ix) 1 1
2 2
i i

e e
kx kx     2AB(eikx sin 2
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   2N2k  1; hence N  (2k)1/2 
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      = (2/k)(k/2)2 = k/(2) 
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(1) A  B  A  B, [from I(0)  II(0)] 

(2) AeikL  BeikL  AeikL, [from II(L)  III(L)] 

(3) kA  kB  kA  kB, [from I II(0) (0)]    

(4) kAeikL  kBeikL  kAeikL  [from II III( ) ( )]L L    

From (1) and (3): 

A  2
1 (1  )A  2

1 (1  )B; B  2
1 (1  )A  2

1 (1  )B 

From (2) and (4) 

 A  Aei(kk)L  Bei(kk)L 

 A  Aei(kk)L  Bei(kk)L 

so 

2
1 (1  )A  Aei(kk)L, 2

1 (1  )A  Bei(kk)L 

Then 

AeikL 2 i 2 i(1 ) e (1 ) e 4k L k L A         

A/A  2eikL/{2 cos kL  i(1  2)sin kL} 

The transmission coefficient (or tunnelling probability) is 

 P  A2/A2  A/A2 

   42/{42  (1  2)2sin2 kL}, 2  E/(E  V) 

Exercise: Find the transmission coefficient for a particle incident on a rectangular dip 

in the potential energy. 
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2.10 Use the normalized wavefunctions in eqn 2.31: 

 n  (2/L)1/2 sin(nx/L); also use 

 2sin dax x   2
1 x  (1/4a) sin 2ax 

(a) Pn  
L

n

L
Lx 2

1
2
1

0
2

0 )/2(d   sin2(nx/L)dx  2
1  for all n 

(b) Pn  
L

n

L
Lx 4

1
4
1

0
2

0 )/2(d   sin2(nx/L)dx  )}πsin()π/2(1{ 2
1

4
1 nn  

 P1  1
4 {1  (2/)}  0.090 85 

(c)   

 Pn  
1 1
2 2

1 1
2 2

2 2d (2 / ) sin ( π / )d
L x L x

nL x L x
x L n x L x

 

 


 

 
   

   (2/L){x  (L/2n)cos(n)sin(2nx/L)} 

   (2/L){x  (1)n(L/2n)sin(2nx/L)} 

 P1  (2/L){x  (L/2)sin(2x/L)}  4x/L when x/L  1 

 Note that 

n
lim Pn  (a) 2

1 , (b) 4
1 , (c) 2x/L 

 the last corresponding to a uniform distribution (the classical limit). 

Exercise: Find Pn (and P1) for the particle being in a short region of length x centred 

on the general point x. 
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2.13 Use the wavefunction n  (2/L)1/2 sin(nx/L) and the integral 

xaxx dsin2   (1/4a2){a2x2  ax sin(2ax)  2
1 cos(2ax)} 

 xn  2 2

0 0
d (2 / ) sin ( π / )d

L L

nx x L x n x L x    

   (L/2n22){n22  n sin(2n)  2
1 [cos(2n)  1]}  L2

1  

The result is also obvious, by symmetry. 

Exercise: Evaluate x when the particle is in the normalized mixed state 1 cos   

2 sin . Account for its dependence on the parameter . 
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  (0)/I(0)  (A  B)/(A  B)        [A  0] 

 ΙI  (0)/II(0)  ik(A  B)/(A  B) 

 ΙI  (L)/II(L)  ik(AeikL  BeikL)/(AeikL  BeikL) 

 ΙII  (L)/III(L)  (AeL  BeL)/(AeL  BeL)      [B  0] 

Because / is continuous at each boundary, 

(A  B)/(A  B)  /ik  i/k  i    [  /k] 

(AeikL  BeikL)/(AeikL  BeikL)  /ik  i/k  i 

This pair of equations solves to 

(1  i)A  (1  i)B,    (1  i)AeikL  (1  i)BeikL 

It follows that 

(1  2) sin kL  2 cos kL  0, or tan kL  2/(1  2) 

Then, since 

tan kL  2 tan( 2
1 kL)/[1  tan2( 2

1 kL)],    tan( 2
1 kL)   

Consequently, 

cos( 2
1 kL)  1/(1  2)1/2  ħk/(2mV)1/2 

Therefore, 

kL  2 arccos{ħk/(2mV)1/2}  n,    n  0, 1, . . . 

But arccos z  1
2 π   arcsin z, so 
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kL  2 arcsin{ħk/(2mV)1/2}  n,    n  1, 2, . . . 

Solve this equation for k by plotting y  kL and 

y  n  2 arcsin(ħ2k2/2mV)1/2    for n  1, 2, . . . 

and finding the values of k at which the two lines coincide, and then form En  ħ2k2/2m 

for each value of n. This procedure is illustrated in Fig. 2.9 for the special case V  

225ħ2/2mL2, so, with kL  z, y  z and y  n  2 arcsin z/15, En  2
nz (ħ2/2mL2) with zn 

the intersection value of n. (Because E  V, z  15.) We find z  2.9, 5.9, 8.8, 11.7 for n 

 1, 2, 3, 4; hence E/(ħ2/2mL2)  8.4, 35, 77, 137 for n  1, 2, 3, 4. 

When V is large in the sense 2mV  ħ2k2, arcsin(ħ2k2/2mV)1/2  0. Hence the equation 

to solve is kL  n. Consequently En  n2h2/8mL2 in accord with the infinitely deep 

square-well solutions. 
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2.22 The Schrödinger equation is 

(ħ2/2m)(d2/dx2)  2
1 kfx

2  E 

Substitute y  (m/ħ)1/2x with 2  kf /m; then   y2  , with   E/ 2
1 ħ and 

  d2/dy2. 

Substitute eqn 2.41:   NvHve
y2/2: 

(d2/dy2)(Hve
y2/2)  y2Hve

y2/2  Hve
y2/2 

Use 

 (d2/dy2)(Hve
y2/2)  ( vH    2y vH    Hv  y2Hv)e

y2/2 

   (2y vH    2vHv  2y vH    Hv  y2Hv)e
y2/2    [given] 

   {y2Hv  (2v  1)Hv}ey2/2 

Then 

{y2Hv  (2v 1)Hv  y2Hv}ey2/2  Hve
y2/2 

so   2v  1, or E  2
1 (2v 1)ħ  (v  2

1 )ħ, as required. 

 

2.25 (a) 
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 v  1xv  Nv1Nv2 





 yyyHyH y

vv de)()(
2

1     [y  x] 

   2Nv1Nv
2

1
1 1 12{ } dy

v v vH H vH e y
 

  
     [Table 2.1] 

   2
1 2Nv1Nv 






 yH y

v de
22

1     [orthogonality] 

   2
1 2Nv1Nv1/22v1(v  1)! 

   2/1
2/112/1

12/1

)1(
2

1

})!1(!22{π2

)!1(2π









v
vv

v
vv

v


 

(b) 

 v 2x2v  Nv2Nv3 





 yHyH y

vv de
22

2  

   3Nv2Nv 





  yvHHyH y
vvv de}{

2

112
1

2  

    3Nv2Nv 





  yHvvHvHHH y
vvvvv de}{

2

2
2

2
1

2
1

24
1

2  

   4
1 3Nv2Nv 






 yH y
v de

22
2     [orthogonality] 

   4
1 3Nv2Nv1/22v2(v  2)!    [Table 2.1] 

   
3 1/2 2

2 1/21
22 2 1/2

π 2 ( 2)!
{( 2)( 1)}

4{2 2 ( 2)! ! π}

v

v v

v
v v

v v

 


 


 


  


 

Exercise: Evaluate v 3x3v in the same way. 

 

2.28  According to classical mechanics, the turning point xtp occurs when all the energy of the  
 

oscillator is potential energy and its kinetic energy is zero. This equality occurs when  
 

ܧ ൌ	
ଵ

ଶ
݇ݔ୲୮ଶ 		or		ݔ୲୮ ൌ 	 ቀ

ଶ


ቁ
ଵ/ଶ
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Since we are only considering the stretching of the harmonic oscillator beyond the  
 
classical turning point, we only choose the positive square root for xtp. The probability  
 
P of finding the ground-state harmonic oscillator stretched beyond a displacement xtp  

 
is given by: 
 

ܲ ൌ	 න ߰
ଶ

ஶ

௫౪౦

dݔ 

 
Using eqn 2.41 and the Hermite polynomial H0 in Table 2.1, we obtain: 
 

ܲ ൌ
ߙ
πଵ/ଶ

	 න eିఈ
మ௫మ

ஶ

௫౪౦

dݔ 

 
The turning point can be expressed in terms of α, using (i) the definition of α in eqn  
 
2.41 and (ii) the ground-state energy E = ½ħω = ½ħ(kf/m)1/2. This results in xtp = 1/α.  
 
Now introduce the variable y = αx so that dy = αdx,  y2 = α2x2 and ytp = αxtp = 1. The  
 
above integral then becomes, in terms of the variable y: 
 

ܲ ൌ
1
πଵ/ଶ

	න eି௬
మ

ஶ

ଵ

dݕ 

 
The above integral is related to the error function given in the Problem, and using the  
 
value of erf 1 given:  
 

   ܲ ൌ 	 ଵ

భ/మ
	 eି௬

మஶ
ଵ dݕ ൌ 	 ଵ

ଶ
ሺ1 െ erf 	1ሻ ൌ 	 ଵ

ଶ
ሺ1 െ 0.8427ሻ 

 
The probability is 7.865 × 10−2. 

 

2.31 The wavefunction (x) is given as a sum of normalized particle-in-a-box eigenfunctions 

n(x). Therefore, according to quantum mechanical postulate 3, a single measurement 

of the energy yields a single outcome which is one of the eigenvalues En (associated 
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with the eigenfunction n appearing in the expansion of ). The probability of 

obtaining En is cn2 where cn is the coefficient of n in the expansion. 

(a) When the energy of the particle is measured, possible outcomes are 

2

2

52

2

32

2

1
8

25

8

9

8 mL

h
E

mL

h
E

mL

h
E   

(b) The probability of obtaining each result is 

c12  (1/3)2  1/9    for E1 

c32  (i/3)2  1/9    for E3 

c52  [(7/9)1/2]2  7/9    for E5 

(c) The expectation value is the weighted sum of the possible eigenvalues: 

2

2

59
7

39
1

19
1

72

185

mL

h
EEE   

Exercise: If the linear momentum of the particle described above were measured, what 

would we expect to find? 

 


