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Chapter 1 

The foundations of quantum mechanics 

All the following material © P.W. Atkins and R.S. Friedman. 

Exercises 

 1.1 (a) (f  g)dx   fdx   gdx; linear. 

(b) (f  g)1/2  f 1/2  g1/2; nonlinear. 

(c) f (x  a)  g(x  a)  f (x  a)  g(x  a); linear. 

(d) f (x)  g(x)  f (x)  g(x); linear. 

Exercise: Repeat the exercise for (a) differentiation, (b) exponentiation. 

 1.2 (a) (d/dx)eax  aeax; eax is an eigenfunction, eigenvalue a. 

 (d/dx)eax2
  2axeax2

  2a{xeax2
}; eax2

 not an e.f. 

 (d/dx)x  1; x not an e.f. 

 (d/dx)x2  2x; x2 not an e.f. 

 (d/dx)(ax  b)  a; ax  b not an e.f. 

 (d/dx)sin x  cos x; sin x not an e.f. 

(b) (d2/dx2)eax  a2eax; eax is an eigenfunction, eigenvalue a2. 

 (d2/dx2)eax2
  2aeax2

  4a2x2eax2
; eax2

 not an e.f. 

 (d2/dx2)x  0  0x; x is an e.f.; e.v. is 0. 

 (d2/dx2)x2  2; x2 not an e.f. 

 (d2/dx2)(ax  b)  0  0(ax  b); ax  b is an e.f.; e.v. is 0. 

 (d2/dx2)sin x  sin x; sin x is an e.f.; e.v. is 1. 
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Exercise: Find the operator of which eax2
 is an eigenfunction. Find the eigenfunction of 

the operator ‘multiplication by x2’. 

  

 1.3 

 mA  iBn  mAn  imBn 

    nAm*  inBm* [A, B hermitian, eqn 1.26] 

   {nAm  inBm}*  nA  iBm*. 

Hence, A  iB is the hermitian conjugate of A  iB (and A  iB is not self-conjugate, 

another term for hermitian). 

Exercise: Confirm that x  (d/dx) and x  (d/dx) are hermitian conjugates. 

 

1.4    If the maximum uncertainty in the position x of the electron is x, the minimum 

uncertainty in the momentum px will be given by xpx  2
1 ħ. Since the electron is 

confined to the linear box, x  0.10 nm. Therefore 

 px  
x2


 

   
m1010.02

s J 10055.1
9

34








 

   5.3  1025 kg m s1 

(a) Since px  mev, the uncertainty in the velocity is 

 v  px/me 

   (5.3  1025 kg m s1)/(9.109 38  1031 kg) 

   5.8  105 m s1 



Atkins & Friedman: Molecular Quantum Mechanics 5e 
 

 

C01   p. 3 

(b) Since, EK  2
xp /2me 

 EK  (px)
2/2me 

   (5.3  1025 kg m s1)2/(2  9.109 38  1031 kg) 

   1.5  1019 J 

Exercise: If the length of the box is doubled to 0.20 nm, what are the minimum 

uncertainties? If a proton is confined to a linear box of length 0.20 nm, what are the 

minimum uncertainties? 

1.5   

  Use the integral 

 xaxx dsin22   3
6
1 x   (1/4a3){ 2

1  sin(2ax)  ax cos(2ax)  a2x2 sin(2ax)} 

 x2n  (2/L) 2 2 2 2 21
30

sin ( π / )d {1 (3 / 2 π )}
L

x n x L x L n   

 x22  3
1 L2{1  (3/82)}  

Since the particle is equally likely to be found in the right-hand side of the box 

(between L/2 and L) and in the left-hand side of the box (between 0 and L/2), the 

average value < x > = L/2 for all values of n. Therefore,  

  

 xn  {x2n  2/12}nx   { 3
1 L2  (1/2n22)L2  4

1 L2}1/2 

   2 2 1/2( / 2 3){1 (6 / π )}L n  

 x  2 1/2( / 2 3){1 (3 / 2π )}L   

  As for the momentum, the intuitive solution is pn  0 because the wavefunction is a 

standing wave. The elegant solution is  
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p  npn  npn* [hermiticity]  np*n  npn[p*  p]. 

Therefore since p  p, p  0. 

The straightforward solution is: 

 pn  (ħ/i)(2/L) xLxnxLxn
L

d)/πsin()d/d)(/πsin(
0  

   (2ħ/iL)(n/L) 0d)/πcos()/πsin(
0

 xLxnLxn
L

 

          Also, note that  

 p2n  2mEn  n2h2/4L2 

         Thus,             pn {p2n  2/122/12} nn pp    nh/2L 

 Therefore: 

 xnpn  (L/2 3 ){1  (6/n22)}1/2(nh/2L) 

   (n/4 3 ){1  (6/n22)}1/2h  )2/()}π/6(1){3/π( 2/122 nn   

 x2p2  (2 3/π ){1  (3/22)}1/2(ħ/2)  3.3406(ħ/2)  ħ/2 

as required. As n increases, the uncertainty product xnpn increases. 

Exercise: Repeat the calculation for the mixed state 1 cos   2 sin . 

What value of  minimizes the uncertainty product? 

1.6   To use the Born interpretation to find the probability, we need to first normalize the 

wavefunction, (x)  Ne2x. Normalization requires that 


 


0

42

0
1ded* xNx x  

which yields N  2. The probability of finding the particle at a distance x  1 is given by 
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 Probability  2 2

1
(2e ) dx x

   

   e4 

Exercise: Suppose that the particle is now described by the unnormalized wavefunction 

(x)  e3x. Between 0 and what other distance is the probability of finding the particle 

equal to 2
1 ? 

1.7  Use eqn 1.44. Since lz  (ħ/i)(/), V()  V, a constant, and H  (1/2mr2) 2
zl   V: 

[H, lz]  (1/2mr2)[ 2
zl , lz]  [V, lz]  0 {[V, lz]  dV/d  0}, 

Hence, (d/dt)lz  0 

Exercise: Find the equation of motion for the expectation value of lz for a particle on a 

vertical ring in a uniform gravitational field. Examine the equations for small 

displacements from the lowest point. 

1.8  The most probable location is given by the value of x corresponding to the maximum 

(or maxima) of 2; write this location x*. In the present case 

2  N2x2ex2/2
 

(d/dx)2  N2{2xex2/2
  2(x3/2)ex2/2

}  0 at x  x* 

Hence, 1  2
*x /2  0, so *x  

Exercise: Evaluate N for the wavefunction. Consider then another excited state wave-

function {2(x/)2  1}ex2/22
, and locate x*. 

1.9  Base the answer on 2  (b3/)e2br. The probability densities are 

(a) (0)2  b3/  1/(53 pm)3  2.1  106 pm3 

(b) (r  1/b, , )2  (b3/)e2  2.9  107 pm3 
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[The values of  and  do not matter because  is spherically symmetrical.] The 

probabilities are given by 

P   
volume

22 || Vd   

because 2 is virtually constant over the small volume of integration V  1 pm3. 

Hence: 

(a) P  (0)2V  2.1  106;  

(b) P  (1/b, , )2V  2.9  107 

 

Problems  

 1.1 (a) 

 px  sin(x/L)
xd

d
sin(x/L) 

   sin(x/L)cos(x/L)  0 

(b) 

  2
xp   2mT  2mE [V  0]    [see eqn 2.30] 

   2m 







2

2

8mL

h
[for n  1]  h2/4L2 

Alternatively, integrate explicitly. 

Exercise: Evaluate (a)  3
xp , (b)  4

xp . 

1.4  (a) [A, B]  AB  BA  (BA  AB)  [B, A] 

(b) [Am, An]  AmAn  AnAm  Amn  Amn  0 
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(c) 

 [A2, B]  AAB  BAA  ABA  (AAB  ABA)  ABA  (ABA  BAA) 

   A[A, B]  [A, B]A 

(d) 

[A, [B, C]]  [B, [C, A]]  [C, [A, B]] 

 (ABC  ACB  BCA  CBA)  (BCA  BAC  CAB  ACB) 

   (CAB  CBA  ABC  BAC)  0 

Exercise: Express [A2, B2], [A3, B], and [A, [B, [C, [D, E]]]] in terms of individual 

commutators. 

 

1.7  Find a normalization constant N such that eqn 1.18 is satisfied. 

   d|| 2   N2 2π π 2 2

0 0 0
d sin d e dbrr r  

     

   N2{2}{2} })2/(!2{π4de 32

0

22 bNrr br 
   

   N2/b3. 

Hence N  (b3/)1/2  1.5  1015 m3/2 

Consequently,   (b3/)1/2ebr 

Exercise:  depends on Z as eZbr. Find N for general Z. 

  

1.10 (a) [1/x, px]; use the position representation. 
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 [1/x, px]  [x1, (ħ/i)d/dx]  (ħ/i){x1(d/dx)  (d/dx)x1} 

   (ħ/i){x1(d/dx)  (dx1/dx)  x1(d/dx)} 

   (ħ/i)(dx1/dx)  (ħ/i)x2 

(b) 

 [1/x, 2
xp ]  [x1, ħ2(d2/dx2)] 

   ħ2{x1(d2/dx2)  (d2/dx2)x1} 

   ħ2{x1(d2/dx2)  (d/dx)[(dx1/dx)  x1(d/dx)]} 

   ħ2{x1(d2/dx2)  (d/dx)[x2  x1(d/dx)]} 

   ħ2{x1(d2/dx2)  (dx2/dx)  x2(d/dx) 

   (dx1/dx)(d/dx)  x1(d2/dx2)} 

   ħ2{2x3  2x2(d/dx)} 

   2ħ2/x3  2ħ2x2(i/ħ)px  )i)(/2( 3
xxpx   

(c) 

[xpy  ypx, ypz  zpy] 

 [xpy, ypz]  [xpy, zpy]  [ypx, ypz]  [ypx, zpy] 

 x[py, y]pz  0  0  px[y, py]z 

 x(iħ)pz  px(iħ)z  )(i zx xpzp   

(d) 
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 [x2(2/y2), y(/x)] 

   x2(2/y2)y(/x)  y(/x)x2(2/y2) 

   x2(/x)(2/y2)y  (/x)x2y(2/y2) 

   x2(/x)(/y){1 y(/y)}  {2x  x2(/x)}y(2/y2) 

   x2(/x){2(/y)  y(2/y2)}  2xy(2/y2)  x2(/x)y(2/y2) 

   2x2(/x)(/y)  2xy(2/y2) 

   2x2(2/xy)  2xy(2/y2) 

Exercise: Evaluate [xy(2/xy), x2(2/y2)]. 

1.13  Use the correspondence in Section 1.5. 

(a) 

 T  p2/2m  (ħ2/2m)(d2/dx2) in one dimension. 

 T  p2/2m  (ħ2/2m){(2/x2)  (2/y2)  (2/z2)} 

   (ħ2/2m)2 in three dimensions. 

(b) 1/x  multiplication by (1/x) 

 (c)   
i

iiQ r   multiplication by i i
i

Q r  

(d) 

 lz  xpy  ypx  (ħ/i){x(/y)  y(/x)} 

   (ħ/i)(/) for x  r cos , y  r sin  

(e) x2  x2  x2  multiplication by {x2  x2} 

 p2  p2  p2  {ħ2(2/x2)  p2} 

Exercise: Devise operators for 1/r, xpx, and ex. 
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1.16 Take H (2/t2). Because H has the dimensions of energy,  must have the 

dimensions of energy  time2, or ML2. Try   , with H an operator on x, not t. The 

equation separates into H  E, d2dt  (E/). The latter admits solutions of the 

form   cos(E/)1/2t. Then 

  tE 2/1222
)/(cosd||d||   

which oscillates in time between 0 and 1; hence the total probability is not conserved. 

 

 
  

1.19  (a) 

 eAeB  (1  A  2
1 A2  . . .)(1  B  2

1 B2  . . .) 

   1  (A  B)  2
1 (A2 2AB  B2)  . . . 

 eAB  1 (A  B)  2
1 (A  B)2  . . . 

   1  (A  B)  2
1 (A2  AB  BA  B2)  . . . 

Therefore, eAeB  eAB only if AB  BA, which is so if [A, B]  0.  

(b) If [A, [A, B]]  [B, [A, B]]  0, then 
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 eAB  1  (A  B)  2
1 (A2  AB  BA  B2) 

    (1/3!)(A3  A2B  ABA  BAA  BBA  BAB  ABB  B3)  . . . 

   1  (A  B)  2
1 (A2  2AB  B2)  2

1 [A, B] 

    (1/3!)(A3  3A2B  3AB2  B3)  2
1 (A  B)[A, B]  . . . 

   
],[2

1

eee
BABA 

 

Therefore, eAeB = eA+Bef  where f = [A, B]/2.  

Exercise: Find expressions for cos A cos B and cos A sin B, where A and B are 

operators such that 

[A, [A, B]]  [B, [A, B]]  0 

(Use cos A  2
1 (eiA  eiA), etc.) 

 

1.22 (d/dt)  (i/ ħ)[H, ] [eqn 1.44]. 

For a harmonic oscillator, H  2
xp /2m  2

1 kf x
2, and 

 [H, x]  2[ xp /2m, x]  (i ħ /m)px [Problem 1.11] 

 [H, px]  [ 2
1  kf x

2, px]  i ħ kf x [Problem 1.11] 

 (d/dt)x   xpm)/1( ; (d/dt)px  kfx 

Therefore 

(d2/dt2)x  (1/m)(d/dt)px  ( kf/m)x 

The solution of (d2/dt2)x  ( kf/m)x is 
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 x  A cos t  B sin t,    2  kf /m 

 p  m(d/dt)x  Am sin t  Bm cos t 

which is the classical trajectory. 

Exercise: Find the equation of motion of the expectation values of x and p for a quartic 

oscillator (V  x4). 

 

1.25 (ħ 2/2m)(d2/dx2)  V(t)  i ħ (/t). 

(a) Try   (x)(t), then 

(ħ 2/2m)  V(t)  i ħ ddt 

( ħ 2/2m)(/)  V(t)  i ħ (ddt) (1/)  0 

By the same argument as that in Section 1.14, (ħ 2/2m)(/)  , a constant; hence 

   (2m/ ħ 2) (1.1) 

i ħ (ddt) (1/)  V(t)  , the same constant; hence 

 (d/dt) ln     V(t)/i ħ (1.2) 

(b) Equation (1) has the solution   Aeikx  Beikx, k  (2m/ ħ 2)1/2 

 Equation (2) has the solution ln (t)  ln (0)  (i/ ħ) 0
t {  V(t)} dt 

 Therefore, on absorbing ln (0) into A and B, 

  (x) exp 
t

ttVt
0

d)()/i()/(i   
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Exercise: Consider the form of  for an exponentially switched cosine potential 

energy, V(t)  V (1  et/T) cos t, for various switching rates. 

 

1.28     From eqn 1.44, 

d〈ݔ〉
dݐ

ൌ
i

〈ሾܪ,  〈ሿݔ

 
The commutator has been evaluated in Problem 1.11(b): 
 

〈ሾܪ, 〈ሿݔ ൌ

i݉

 ௫

and therefore 
 

d〈ݔ〉

dݐ
ൌ 	
〈௫〉

݉
 

 
which is eqn 1.47.  

 


