
Chapter 16

RBC and New Keynesian
models � Web Appendix

Acknowledgement1

16.1 The equations in a simple RBC model

Production The model begins with the production function. This takes the
form of the Cobb-Douglas production function:

yt = BtK
�
t N

1��
t (16.1)

where y is output, K is capital, and N is hours of labour (rather than em-
ployment as we usually de�ne it). � is capital�s share of income and 1 � � is
labour�s. We assume that next period�s capital is equal to the existing capital
stock (adjusted for depreciation, �) plus any new investment:

Kt+1 = It + (1� �)Kt:

The �rst step in setting out the model is to take the �rst order conditions for
pro�t maximization by di¤erentiating the pro�t function with respect to labour
and with respect to capital and setting each equal to zero. For simplicity, we
set the price level equal to 1:

Max pro�ts = yt � wtNt � rtKt

@pro�ts
@N

= (1� �)BtK�
t N

1���1
t � wt = 0

! wt = (1� �)BtK�
t N

��
t =MPL (16.2)

@pro�ts
@K

= �BtK
��1
t N1��

t � rt = 0

! rt = �BtK
��1
t N1��

t =MPK: (16.3)

1Bob Rowthorn made a major contribution to this appendix.
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Pro�t maximization produces the familiar results that under perfect compe-
tition, the wage is equal to the marginal product of labour and the real interest
rate is equal to the marginal product of capital. Note that the production de-
cision does not involve any expectations because all the variables are for the
current period.

Consumption Consumption behaviour follows from the permanent income
model of Chapter 1. The di¤erence is that we now include leisure as well as
consumption in the utility function. The agent maximizes utility over an in�nite
horizon subject to the intertemporal budget constraint

MaxUt = Et

1X
t=0

1

(1 + �)
tu (Ct; lt)

discounted PV of utility

s.t.
1X
t=0

1

(1 + rt)
tCt

PV of lifetime consumption

� a0 +
1X
t=0

1

(1 + rt)
t (wt(1� lt))

PV of lifetime wealth = initial assets + income from working

:

Note that there are minor presentational variations from other chapters.
Firstly, we use B to refer to technology in the production function and we use
a to refer to the individual�s assets. Second, because of our focus here on the
leisure/labour choice, we use l to refer to the the fraction of time devoted to
leisure. This means that 0 < l < 1. It is also the case that the proportion of
time devoted to labour, N; varies between zero and one and that 1 = lt + Nt:
Third, instead of assuming r constant as we did in Chapter 1, we allow it to
vary.

We assume a speci�c form for the consumption function. We use a constant
relative risk aversion (CRRA) utility function as this simpli�es the analysis by
making the labour supply curve vertical. The utility function can be written as,

MaxUt = Et

1X
t=0

1

(1 + �)
t

 
lnCt + �

l1��t

1� �

!
discounted PV of utility

:

Intertemporal optimization The RBC model has two intertemporal op-
timization conditions. One is the intertemporal consumption optimization con-
dition (the consumption Euler equation from Chapter 1) and the second is the
leisure Euler equation. We �rstly derive the consumption Euler equation. This
involves equating the marginal rate of substitution (MRS) and the marginal
rate of transformation (MRT). The MRS is the ratio of marginal utilities of
consumption in periods t and t+ 1; taking into account the fact that utility in
period t+1 must be discounted by the subjective discount factor, �. The MRT
is the rate at which savings in period t can be transformed into income in period
t+ 1; which rests on the interest rate, rt:
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1
Ct

Et
1=Ct+1
1+�| {z }

MRS

= Et(1 + rt)| {z }
MRT

(16.4)

! 1

Ct
= Et

(1 + rt)

(1 + �)

1

Ct+1
(16.5)

! Ct = Et
(1 + �)

(1 + rt)
Ct+1 (consumption Euler equation)

This produces a consumption Euler equation the same as that derived in Chap-
ter 1. The equation shows that consumption today is a function of expected
consumption tomorrow. The preference for consumption today or tomorrow
depends on the relative size of rt and �: In the special case where rt = � con-
sumption is perfectly smooth and the agent consumes the same in every period.
We can now move on to derive the leisure Euler equation. This again involves

equating the MRS and MRT, but this time for leisure instead of consumption:

�l��t

Et
�l��t+1
1+�| {z }

MRS

= Et
(1 + rt)wt
wt+1| {z }
MRT

(16.6)

! �l��t = Et
(1 + rt)

(1 + �)

wt
wt+1

�l��t+1 (16.7)

! l�t = Et
(1 + �)

(1 + rt)

wt+1
wt

l�t+1 (leisure Euler equation)

In the leisure Euler equation, the left hand side relates to the leisure choice.
And this time, the agent make the hours decision controlling as well for the rate
at which utility from working today is transformed into utility from working
tomorrow ( wt

wt+1
).

The technology shock In the RBC model, the equilibrium is disturbed
by a (temporary and persistent) shock to Bt in the production function. Bt is
referred to as total factor productivity or the Solow residual. It is easy to see
what it means by rearranging the production function to get:

yt = BtK
�
t N

1��
t

Bt =
yt

K�
t N

1��
t

:

Whereas labour productivity is output per worker or per hour and capital pro-
ductivity is output per unit of �xed capital. Bt is a measure of productivity
where both capital and labour inputs are taken into account. If Bt shifts then
the output produced by given inputs changes and it is in this sense that it is a
measure of technology.
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In the Ramsey growth model, B is growing at a constant exponential rate:
this is the economy�s steady state rate of growth of per capita output. In the
RBC model, the trend growth of B is removed and we examine the consequences
of a shock to Bt. The technology shock is modelled in the following way:

Bt = �Bt�1 + "t; (shock to technology)

where 0 < � < 1 captures the persistence of the technology shock. This is
an ad hoc assumption about the shock � it does not have any microeconomic
foundations. It says that the technology shock dies away gradually rather than
disappearing the following period, which would be the case if � = 0. On the
other hand, the shock does not last forever, because � < 1. "t is the random
shock.
The technology shock and the business cycle
We now repeat the description of the propagation and ampli�cation mech-

anisms from Section 16.2.3 of Chapter 16, discussing how the underlying equa-
tions are a¤ected at each step. A positive shock to "t means that Bt goes up.

1. Output goes up because of the technology shock as shown by the produc-
tion function (Equation 16.1).

2. From the �rst order conditions of the pro�t function (Equations 16.2 and
16.3), we know that both the real wage and the real interest rate rise in
response to a higher Bt.

3. The rise in the interest rate calls for a response via the consumption Euler
equation. The higher return from saving leads to a cut in current con-
sumption. Saving and therefore investment go up.

4. The leisure Euler equation has also been disturbed by the increase in the
wage and in the interest rate. The agent re-optimizes by reducing leisure
and �making hay while the sun shines�taking advantage of the temporarily
higher wage.

5. The outcome of higher saving is a larger capital stock next period. From
the production function, the labour demand curve shifts outward extend-
ing the upswing initiated by the technology shock.

6. As the technology shock peters out, the economy gradually returns to the
steady state growth path.

16.2 The derivation of the NewKeynesian Phillips
curve

The �rst stage in deriving the New Keynesian Phillips curve is to formally set
out a model of Calvo pricing. If we �rst assume that �rms can adjust their price
in every period then what price would they set? Following Calvo�s logic, the
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optimal price, p��t , depends on the output gap, xt, and the general price level,
pt:

p��t = pt + �xt: (16.8)

In Equation 16.8, the prices are expressed in natural logs and xt = log yt �
log yet : This expression shows that the optimal price depends positively on the
output gap � i.e. �rms would like to set a higher price when output is above
equilibrium. Firms choose their price in each period to maximise their pro�ts.
We assume a quadratic pro�t function to capture the idea that pro�ts are higher
the closer is p�t to p

��
t (as well as simplifying the mathematics):

F (p�t ; pt; xt) = A� (p�t � p��t )2 = A� (p�t � pt � �xt)2: (16.9)

The next stage in deriving the New Keynesian Phillips curve is to introduce
price stickiness. As discussed in Section 16.3.1 of Chapter 16, under Calvo
pricing, �rms can only change their prices in a given period if they receive a
�green light�. Each period, the probability that a �rm will receive the green light
is �: This means that when �rms do get to change their price in this period, they
also take into account the fact they might not be able to change their prices in
future periods. In fact, there is a (1� � )i chance that a �rm will not be able to
change its price for at least the next i periods. In this Calvo pricing model, the
present value of the future stream of pro�ts from choosing price p�t is therefore
given by:

Vt = F (p�t ; pt; xt) +
1X
i=1

[(1� �) ]iF (p�t ; pt+i; xt+i); (16.10)

where  is the discount factor. Equation 16.10 shows that the �rm must set
the current price taking into account their optimal price for this period and the
expected optimal prices for future periods. Firms are fully forward-looking in
this model and have to form expectations about the future price level (pt+i) and
the future output gap (xt+i).
We now need to �nd the price (p�t ) that maximises the present value of the

future stream of pro�ts (Vt). We can do this by substituting Equation 16.9 into
Equation 16.10, di¤erentiating it with respect to p�t and setting it equal to zero:

Vt = A� (p�t � pt � �xt)2 +
1X
i=1

[(1� �) ]i[A� (p�t � pt+i � �xt+i)]2

(16.11)

@Vt
@p�t

=
@

@p�t

"
A� (p�t � pt � �xt)2 +

1X
i=1

[(1� �) ]i[A� (p�t � pt+i � �xt+i)]2
#

(16.12)

0 = (p�t � pt � �xt) +
1X
i=1

[(1� �) ]i(p�t � pt+i � �xt+i): (16.13)
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The next step is to rearrange equation 16.13 to get the equation in terms of
p�t :

2

p�t

 
1 +

1X
i=1

[(1� �) ]i
!
= pt + �xt +

1X
i=1

[(1� �) ]i(pt+i + �xt+i) (16.14)

p�t = (1� (1� �) )
"
pt + �xt +

1X
i=1

[(1� �) ]i(pt+i + �xt+i)
#
:

(16.15)

By the same logic as used up to this point, we can use Equation 16.15 to �nd
an expression for the optimal price for �rms in period t+ 1: The maximisation
problem is exactly the same in period t+1; but just moved forward one period:

p�t+1 = (1� (1� �) )
"
pt+1 + �xt+1 +

1X
i=1

[(1� �) ]i(pt+i+1 + �xt+i+1)
#

(16.16)

p�t+1 = (1� (1� �) )
" 1X
i=1

[(1� �) ]i�1(pt+i + �xt+i)
#
: (16.17)

We now multiply both sides of 16.17 through by (1 � �) and then using
Equations 16.15 and 16.18 we can �nd an expression for p�t in terms of p

�
t+1:

(1� �) p�t+1 = (1� (1� �) )
" 1X
i=1

[(1� �) ]i(pt+i + �xt+i)
#
: (16.18)

p�t = [1� (1� �) ](pt + �xt) + (1� �) p�t+1 (16.19)

Phillips curves are typically expressed in terms of in�ation and not prices,
so we need to convert Equation 16.19 into terms of in�ation. This requires the
following de�nitions:

��t = p�t � pt�1
��t+1 = p�t+1 � pt
�t = pt � pt�1

�t+1 = pt+1 � pt:

These de�nitions can then be substituted into Equation 16.19 to become:

��t = �t + [1� (1� �) ]�xt + (1� �) ��t+1: (16.20)

2To get from Equation 16.14 to Equation 16.15 requires using the formula for the sum of
a geometric series. In this case the geometric series starts from period 1 and not period 0 as
normal. The rule therefore becomes: z + z2 + z3:::+ z1 = 1

1�z � 1.
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If we assume that �rms actually set the optimal prices in each period, then
all �rms who get the green light to change prices in a given period will set the
optimal price. The remaining �rms are not able to change their prices, which
means we can express in�ation in periods t and t+ 1 as:

�t = ���t

�t+1 = ���t+1

The next stage of the derivation involve substituting these expressions back
into Equation 16.20 and simplifying:

�t
�
= �t + [1� (1� �) ]�xt + (1� �) 

�t+1
�

�t(1� �) = �[1� (1� �) ]�xt + (1� �) �t+1

�t =  �t+1 +
�[1� (1� �) ]

1� � �xt (16.21)

The last stage of the derivation is to replace �t+1 by its expectation. This
re�ects the fact that �t+1 is not known with certainty in period t and �rms have
to form expectations about the future whilst making decisions in the present.
This yields the New Keynesian Phillips curve that is discussed in Section 16.3.1
of Chapter 16:

�t =  Et�t+1 +
�[1� (1� �) ]

1� � �xt:

16.3 The behaviour of in�ation in the New Key-
nesian model

The New Keynesian Phillips curve is of the form

�t =  Et�t+1 + �xt;

where xt is the output gap and � is equal to
�[1�(1��) ]

1�� a. We can represent this
NKPC in its alternative form by carrying out repeated substitution (following
the same method as shown in Section 16.3.1 of Chapter 16). This yields a
NKPC of the form

�t =  kEt�t+k + �
i=k�1X
i=0

 iEtxt+i:

Note that this solution is based on the rule of iterated expectations, which
implies that EtEt+1 = Et etc. This form of the NKPC also assumes a �nite
amount of periods (up to period t + k); rather than the in�nite time horizon
used in Chapter 16. This allows us to more easily model the reaction of in�ation
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to shocks lasting a �nite amount of time (e.g. temporary in�ation or demand
shocks).
Suppose that an economy initially has zero in�ation and the output gap is

zero. Then �t = 0 and �t�1 = 0: Suppose also that there is a temporary positive
shock to output, which starts in period t and ends at period t+T: This positive
output gap is the same magnitude in each future period (until it disappears),
such that xt = xt+1 = xt+2 = xt+3::: = xt+T�1 = � > 0 and that xt+i = 0 for
i � T: Finally, suppose that expectations with regard to future output gaps are
ful�lled, so that Etxt+i = xt+i for all i � 0. And assume that k > T .

�t =  kEt�t+k + �
i=T�1X
i=0

 iEtxt+i

=  kEt�t+k + �

i=T�1X
i=0

 ixt+i

=  kEt�t+k + �

i=T�1X
i=0

 i�

=  kEt�t+k + ��

�
1�  T
1�  

�
:

The last line of the derivation shown above uses the formula for the sum of
a geometric series.3 If 0 <  < 1 and Et�t+k is bounded for all t and k, then
letting k !1 yields

�t = �

�
1�  T
1�  

�
�: (16.22)

By the same logic,

�t+m = �

�
1�  T�m
1�  

�
� for T > m � 0 (16.23)

�t+m = 0 for m � T:

Thus, in�ation jumps and then gradually falls back again to zero. We can show
this using Equations 16.22 and 16.23: as 0 <  < 1 we know that  T <  T�m

for T > m � 0; which means that
�
1� T
1� 

�
>
�
1� T�m
1� 

�
and that in�ation is

higher in period t than it is in period t+m. We can also see from Equation 16.23

that the nearer we are to time T (i.e. the higher is m); the smaller
�
1� T�m
1� 

�
3We have a geometric series of the form: 1 + + 2 + :::+ T�1: We can solve this series

by using the formula for the sum of the �rst T terms of a geometric series, which states that:
i=T�1X
i=0

 i = 1� T
1� :
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becomes, which means that in�ation gradually falls between period t and period
t+ T:
Let us now consider the case where  = 1: If  = 1; then

�t =  kEt�t+k + �
i=T�1X
i=0

 ixt+i for k � T

= Et�t+k + �
i=T�1X
i=0

� for k � T

= Et�t+k + �T� for k � T:

Likewise,

�t+m = Et�t+k + �(T �m)� for m < T and k � T:

Since this holds for all k � T , it follows that Et�t+k = Et�t+i for all k; i � T:
Suppose that Et�t+k = �� for all k � T: Suppose also, that all price expec-

tations are ful�lled. Then the actual path of in�ation is as follows

�t+m = �� + �(T �m)� for T > m � 0
�t+m = �� for m � T:

Thus, if  = 1, the New Keynesian Phillips curve does not determine a unique
in�ation path. What happens depends on long-term expectations. When the
positive shocks to output begin in�ation jumps upwards and then gradually
falls, but how high it initially jumps and where it eventually stabilizes depends
on long-term expectations. There is an in�nite number of possible in�ation
trajectories along which expectations are ful�lled. To determine the unique
path we require that  < 1: In this case, we also require that future in�ation
expectations are bounded.

Why is there an initial jump in in�ation?

The initial jump in in�ation occurs because all future output gap shocks are
taken into account when �rms are making pricing decisions in the current period
(i.e. period t). In future periods (i.e. t+ 1 onwards), there are fewer shocks to
take into account in the summation and hence in�ation falls from its period t
level.

16.4 In�ation trajectories in the 3-equation and
New Keynesian models

The subsection compares the behaviour of in�ation implied by the following
adaptive expectations (i.e. backwards-looking) Phillips curve

�t = �t�1 + �xt (16.24)
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and the following forward-looking New Keynesian Phillips curve

�t = Et�t+1 + �xt; (16.25)

where xt is the output gap. To make the NKPC as simple as possible, we have
assumed that  = 1 (i.e. there is no discounting) and � is such that the term
�[1�(1��) ]

1�� is equal to 1 and hence can be removed from the equation.4

We can now use Equations 16.24 and 16.25 to trace the path of in�ation
following a temporary positive demand shock using both the adaptive expecta-
tions and NK Phillips curves. This provides the mathematical underpinnings
to the impulse response functions shown in Fig. 16.6 in Chapter 16.
We start with the adaptive (i.e. backward-looking) expectations case. Sup-

pose that �t�1 = 0 and that the economy is subject to a �nite series of identical
positive shocks; xt; xt+1; xt+2::::xt+T�1 = � > 0 and that xt+k = 0 for k � T
� i.e. there is a positive output gap that starts in period t and ends in period
t+T: As in the previous section of the appendix, the time horizon of this prob-
lem runs from period t to period t + k: This is in contrast to the in�nite time
horizon shown in the main body of the chapter. Under these assumptions, the
adaptive expectations Phillips curve (Equation 16.24) generates the following
sequence:

�t�1 = 0

�t = �xt = ��

�t+1 = �xt + �xt+1 = 2��

�t+2 = �xt + �xt+1 + �xt+2 = 3��

:::

�t+T�2 = �xt + �xt+1 + �xt+2 + ::+ �xt+T�2 = (T � 1)��
�t+T�1 = �xt + �xt+1 + �xt+2 + ::+ �xt+T�2 + �xt+T�1 = T��

�t+T = �xt + �xt+1 + �xt+2 + ::+ �xt+T�2 + �xt+T�1 = T��

:::

�t+T+i = �xt + �xt+1 + �xt+2 + ::+ �xt+T�2 + �xt+T�1 = T��:

We can see from the equations above that the in�ation rate builds up and then
stabilizes at the rate � = T��: This is because in each period in�ation is equal
to lagged in�ation plus the output gap. This means that in�ation will rise for as
long as the positive output gap persists. Once the output gap returns to normal
in period t+ T; then in�ation stops rising.
We now move onto the New Keynesian Phillips curve. To solve this forward-

looking case, we require some assumption about expectations. Suppose that,
from time t onwards all future shocks are foreseen and that the long-term ex-
pectation is that in�ation will stabilize at rate ��: In this case, Et+k�t+k+1 =
�t+k+1 for all k � 0: The solution to the New Keynesian Phillips curve (Equa-
tion 16.25) is then:

4The value of � which satis�es this condition is 0.618033988.
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�t�1 = 0

�t = �� + �xt + �xt+1 + �xt+2 + ::+ �xt+T�2 + �xt+T�1 = �� + T��

�t+1 = �� + �xt+1 + �xt+2 + ::+ �xt+T�2 + �xt+T�1 = �� + (T � 1)��
:::

�t+T�2 = �� + �xt+T�2 + �xt+T�1 = �� + 2��

�t+T�1 = �� + �xt+T�1 = �� + ��

�t+T = �� + 0 = ��

:::

�t+T+i = �� + 0 = ��:

We can see from the equations above that in the forward-looking case, in-
�ation jumps upwards in period t and then slowly falls back to its long-run
expected level over the course of the output gap. This is because in�ation in
each period depends on the entire path of expected future output gaps. As
time goes on, the time the output gap is expected to persist for is diminished,
causing �rms to want to adjust their prices by less and in�ation to slowly fall
back towards its long-run expected level. Note that the solution is not unique.
It depends on the value of ��: If we assume that the long-term expectation is
that in�ation will eventually disappear (i.e. �� = 0); the solution to the New
Keynesian curve is as follows:

�t�1 = 0

�t = �xt + �xt+1 + �xt+2 + ::+ �xt+T�2 + �xt+T�1 = �� + T��

�t+1 = �xt+1 + �xt+2 + ::+ �xt+T�2 + �xt+T�1 = �� + (T � 1)��
:::

�t+T�2 = �xt+T�2 + �xt+T�1 = �� + 2��

�t+T�1 = �xt+T�1 = �� + ��

�t+T = 0

:::

�t+T+i = 0:

We can see from the equations in this subsection that the trajectory of in-
�ation di¤ers in the adaptive expectations and New Keynesian cases. How can
we explain this in simple terms? In the adaptive expectations (i.e. backward-
looking) solution, the sequence of disturbances that are taken into account be-
comes longer over time. In the New Keynesian (i.e. forward-looking) solution,
this sequence gets shorter over time. The disturbances are all positive (or zero
from t + T onwards), which means that in�ation rises over time (up to t + T )
in the backward-looking case, but falls over time (up to t + T ) in the forward-
looking case.
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